{"cells": [{"cell_type": "markdown", "metadata": {}, "source": ["# Chicago\n", "\n", "This notebooks displays some of the data available at [Divvy Data](https://www.divvybikes.com/system-data). We assume the data was downloaded."]}, {"cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [{"data": {"text/html": ["
run previous cell, wait for 2 seconds
\n", ""], "text/plain": [""]}, "execution_count": 2, "metadata": {}, "output_type": "execute_result"}], "source": ["from jyquickhelper import add_notebook_menu\n", "add_notebook_menu()"]}, {"cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": ["%matplotlib inline"]}, {"cell_type": "markdown", "metadata": {}, "source": ["## Data"]}, {"cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": ["from pyensae.datasource import download_data\n", "file = download_data(\"Divvy_Trips_2016_Q3Q4.zip\", url=\"https://s3.amazonaws.com/divvy-data/tripdata/\")"]}, {"cell_type": "markdown", "metadata": {}, "source": ["### Stations"]}, {"cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [{"data": {"text/html": ["
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
idnamelatitudelongitudedpcapacityonline_date
04562112 W Peterson Ave41.991178-87.683593155/12/2015
110163rd St Beach41.781016-87.576120234/20/2015
2109900 W Harrison St41.874675-87.650019198/6/2013
321Aberdeen St & Jackson Blvd41.877726-87.654787156/21/2013
480Aberdeen St & Monroe St41.880420-87.655599196/26/2013
\n", "
"], "text/plain": [" id name latitude longitude dpcapacity \\\n", "0 456 2112 W Peterson Ave 41.991178 -87.683593 15 \n", "1 101 63rd St Beach 41.781016 -87.576120 23 \n", "2 109 900 W Harrison St 41.874675 -87.650019 19 \n", "3 21 Aberdeen St & Jackson Blvd 41.877726 -87.654787 15 \n", "4 80 Aberdeen St & Monroe St 41.880420 -87.655599 19 \n", "\n", " online_date \n", "0 5/12/2015 \n", "1 4/20/2015 \n", "2 8/6/2013 \n", "3 6/21/2013 \n", "4 6/26/2013 "]}, "execution_count": 5, "metadata": {}, "output_type": "execute_result"}], "source": ["import pandas\n", "stations = df = pandas.read_csv(\"Divvy_Stations_2016_Q3.csv\")\n", "df.head()"]}, {"cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [{"data": {"text/html": ["
"], "text/plain": [".CustomFoliumMap at 0x272b789c9e8>"]}, "execution_count": 6, "metadata": {}, "output_type": "execute_result"}], "source": ["import folium\n", "from pyensae.notebookhelper import folium_html_map\n", "minx, maxx = df.latitude.min(), df.latitude.max()\n", "miny, maxy = df.longitude.min(), df.longitude.max()\n", "map_osm = folium.Map(location=[(minx + maxx)/2, (miny + maxy)/2], \n", " min_lat=minx, max_lat=maxx, min_lon=miny, max_lon=maxy, zoom_start=11)\n", "for rows in df.to_dict(\"records\"):\n", " x,y = rows[\"latitude\"], rows[\"longitude\"]\n", " name = rows[\"name\"]\n", " map_osm.add_child(folium.CircleMarker([x, y], popup=name, radius=4, fill_color=\"yellow\"))\n", "folium_html_map(map_osm, width=\"80%\")"]}, {"cell_type": "markdown", "metadata": {}, "source": ["### Trips"]}, {"cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [{"data": {"text/html": ["
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
trip_idstarttimestoptimebikeidtripdurationfrom_station_idfrom_station_nameto_station_idto_station_nameusertypegenderbirthyear
0121501609/30/2016 23:59:5810/1/2016 00:04:03495924569Damen Ave & Pierce Ave17Wood St & Division StSubscriberMale1988.0
1121501599/30/2016 23:59:5810/1/2016 00:04:092589251383Ashland Ave & Harrison St320Loomis St & Lexington StSubscriberFemale1990.0
2121501589/30/2016 23:59:5110/1/2016 00:24:5136561500302Sheffield Ave & Wrightwood Ave334Lake Shore Dr & Belmont AveCustomerNaNNaN
3121501579/30/2016 23:59:5110/1/2016 00:03:563570245475Washtenaw Ave & Lawrence Ave471Francisco Ave & Foster AveSubscriberFemale1988.0
4121501569/30/2016 23:59:3210/1/2016 00:26:5031581638302Sheffield Ave & Wrightwood Ave492Leavitt St & Addison StCustomerNaNNaN
\n", "
"], "text/plain": [" trip_id starttime stoptime bikeid tripduration \\\n", "0 12150160 9/30/2016 23:59:58 10/1/2016 00:04:03 4959 245 \n", "1 12150159 9/30/2016 23:59:58 10/1/2016 00:04:09 2589 251 \n", "2 12150158 9/30/2016 23:59:51 10/1/2016 00:24:51 3656 1500 \n", "3 12150157 9/30/2016 23:59:51 10/1/2016 00:03:56 3570 245 \n", "4 12150156 9/30/2016 23:59:32 10/1/2016 00:26:50 3158 1638 \n", "\n", " from_station_id from_station_name to_station_id \\\n", "0 69 Damen Ave & Pierce Ave 17 \n", "1 383 Ashland Ave & Harrison St 320 \n", "2 302 Sheffield Ave & Wrightwood Ave 334 \n", "3 475 Washtenaw Ave & Lawrence Ave 471 \n", "4 302 Sheffield Ave & Wrightwood Ave 492 \n", "\n", " to_station_name usertype gender birthyear \n", "0 Wood St & Division St Subscriber Male 1988.0 \n", "1 Loomis St & Lexington St Subscriber Female 1990.0 \n", "2 Lake Shore Dr & Belmont Ave Customer NaN NaN \n", "3 Francisco Ave & Foster Ave Subscriber Female 1988.0 \n", "4 Leavitt St & Addison St Customer NaN NaN "]}, "execution_count": 7, "metadata": {}, "output_type": "execute_result"}], "source": ["bikes = df = pandas.read_csv(\"Divvy_Trips_2016_Q3.csv\")\n", "df.head()"]}, {"cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [{"data": {"text/plain": ["(1441811, 12)"]}, "execution_count": 8, "metadata": {}, "output_type": "execute_result"}], "source": ["df.shape"]}, {"cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": ["df[\"dtstart\"] = pandas.to_datetime(df.starttime, infer_datetime_format=True)\n", "df[\"dtstop\"] = pandas.to_datetime(df.stoptime, infer_datetime_format=True)"]}, {"cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": ["from datetime import datetime, time\n", "df[\"day\"] = df.dtstart.apply(lambda r: r.timetuple().tm_yday)\n", "df[\"time\"] = df.dtstart.apply(lambda r: time(r.hour, r.minute, 0))"]}, {"cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0UAAAD8CAYAAAC4qg+VAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAGGdJREFUeJzt3X+sZGd5H/Dvgx0iBE1s6rJ17VUXtRsJg1NCtsYSqnpJFDAkiokUJAiCNaHZFJkmRNsWQ6Q6DaFyfkAUN4lTp6ywVZKtW0ixwlJna3EbRYrBhhAW41CviIsXu3apKbDQgpY+/WPOypP1/X3vzL13z+cjXc3MO+859z27z5w73znnvFPdHQAAgLF62nYPAAAAYDsJRQAAwKgJRQAAwKgJRQAAwKgJRQAAwKgJRQAAwKgJRQAAwKgJRQAAwKgJRQAAwKhduN0D2KhLLrmk9+3bt+b+X//61/PMZz5zdgOCKeqNeVJvzJN6Y57UG5v1iU984kvd/TdW67drQ9G+ffty3333rbn/4uJiFhYWZjcgmKLemCf1xjypN+ZJvbFZVfXf19LP6XMAAMCoCUUAAMCoCUUAAMCoCUUAAMCoCUUAAMCorRqKqmpvVX20qh6oqvur6meH9l+oqi9W1aeGn1dOLfP2qjpZVZ+rqpdPtV8ztJ2sqhum2p9bVR+rqger6t9X1dO3ekMBAACWspYjRWeSHO7u5yW5Osn1VXXF8Nyvd/cLh59jSTI895okz09yTZLfrqoLquqCJL+V5BVJrkjy2qn1/PKwrv1JvpzkTVu0fQAAACtaNRR196Pd/cnh/teSPJDkshUWuTbJ0e7+Znf/ZZKTSa4afk529+e7+1tJjia5tqoqyQ8k+Y/D8rcledVGNwgAAGA91nVNUVXtS/J9ST42NL2lqj5dVUeq6uKh7bIkD08tdmpoW679ryf539195px2AACAmbtwrR2r6llJPpDkrd391aq6Jck7k/Rw++4kP5mklli8s3QA6xX6LzWGQ0kOJcmePXuyuLi41uHn9OnT6+rPeJ344ldWfP7Ky7571XWoN+ZJvTFP6o15Um/My5pCUVV9RyaB6P3d/cEk6e7Hpp7/3SR/ODw8lWTv1OKXJ3lkuL9U+5eSXFRVFw5Hi6b7/xXdfWuSW5PkwIEDvbCwsJbhJ0kWFxeznv6M13U3fHjF5x963cKq61BvzJN6Y57UG/Ok3piXtcw+V0nem+SB7n7PVPulU91+LMlnhvt3JnlNVX1nVT03yf4kH09yb5L9w0xzT89kMoY7u7uTfDTJjw/LH0zyoc1tFgAAwNqs5UjRS5K8PsmJqvrU0PaOTGaPe2Emp7o9lOSnk6S776+qO5J8NpOZ667v7m8nSVW9JcldSS5IcqS77x/W97YkR6vql5L8WSYhDAAAYOZWDUXd/SdZ+rqfYyss864k71qi/dhSy3X35zOZnQ4AAGCu1jX7HAAAwPlGKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEbtwu0eALvXvhs+vOLzD930w3MaCQAAbJwjRQAAwKgJRQAAwKgJRQAAwKgJRQAAwKgJRQAAwKitGoqqam9VfbSqHqiq+6vqZ4f2Z1fV8ap6cLi9eGivqrq5qk5W1aer6kVT6zo49H+wqg5OtX9/VZ0Ylrm5qmoWGwsAAHCutRwpOpPkcHc/L8nVSa6vqiuS3JDk7u7en+Tu4XGSvCLJ/uHnUJJbkkmISnJjkhcnuSrJjWeD1NDn0NRy12x+0wAAAFa3aijq7ke7+5PD/a8leSDJZUmuTXLb0O22JK8a7l+b5PaeuCfJRVV1aZKXJzne3U9095eTHE9yzfDcd3X3n3Z3J7l9al0AAAAzta5riqpqX5LvS/KxJHu6+9FkEpySPGfodlmSh6cWOzW0rdR+aol2AACAmbtwrR2r6llJPpDkrd391RUu+1nqid5A+1JjOJTJaXbZs2dPFhcXVxn1k06fPr2u/qzu8JVnVnx+t/57b8V2qTfmSb0xT+qNeVJvzMuaQlFVfUcmgej93f3Bofmxqrq0ux8dToF7fGg/lWTv1OKXJ3lkaF84p31xaL98if5P0d23Jrk1SQ4cONALCwtLdVvS4uJi1tOf1V13w4dXfP6h1y3MZyBbbCu2S70xT+qNeVJvzJN6Y15WDUXDTHDvTfJAd79n6qk7kxxMctNw+6Gp9rdU1dFMJlX4yhCc7kryr6YmV3hZkrd39xNV9bWqujqT0/LekORfb8G2AQCs277VPhy76YfnNBJgXtZypOglSV6f5ERVfWpoe0cmYeiOqnpTki8kefXw3LEkr0xyMsk3krwxSYbw884k9w79frG7nxjuvznJ+5I8I8lHhh8AAICZWzUUdfefZOnrfpLkB5fo30muX2ZdR5IcWaL9viQvWG0sAAAAW21ds88BAACcb4QiAABg1NY8JTcA8+NCbwCYH0eKAACAUROKAACAUXP63A6w0mkyTpEBAIDZcqQIAAAYNUeKmBlHwNgJVpuwYCXqFADGwZEiAABg1IQiAABg1IQiAABg1IQiAABg1Ey0MAebudCb88tqteDCfgCA+ROKgJmbZRj0oQMAsFlC0Q7nyMLucvb/6/CVZ3KdN+vAGm3XVxiM9W+MD1OAcwlFAMsY6xtGABgboYhl+SQNYGvYnwLsbEIRAMA6bNfpjsDsCEWcl/zBmi+fgu88XgMAsHZC0S7nmof5EwA4a7e+/nbruAFgVoQitoU3ZUvz7wKcy34BNseRc9ZCKNoCjhwAAMDuJRQBqxL8d57p/5Pz6XuxHBUBYDsIRQD8FbMMJrMM2AIVABslFLEjeXMDAMC8CEUA28ApiZwPdvIHWF5jwHo8bbsHAAAAsJ0cKQIAYNdyVJCtIBQBsC6+8wNYr516quVOHRfzJxTBecKOfefx6SWwm+zUDzzsS5kHoQgAVuFDh/nzbw7Mk1DE6PjECcbJm2xgJ7FP2lmEIgAAVuQNPOe7VUNRVR1J8iNJHu/uFwxtv5Dkp5L8z6HbO7r72PDc25O8Kcm3k/xMd981tF+T5DeSXJDk33b3TUP7c5McTfLsJJ9M8vru/tZWbSAAALPlLAx2u7UcKXpfkt9Mcvs57b/e3b823VBVVyR5TZLnJ/lbSf5LVX3P8PRvJfmhJKeS3FtVd3b3Z5P88rCuo1X1O5kEqls2uD0AACxhJweX5cZ2+MozcWIT87BqlXX3H1fVvjWu79okR7v7m0n+sqpOJrlqeO5kd38+SarqaJJrq+qBJD+Q5CeGPrcl+YUIRQAA7HA7OWiyPtXdq3eahKI/POf0ueuSfDXJfUkOd/eXq+o3k9zT3f9u6PfeJB8ZVnNNd/+jof31SV6cSQC6p7v/7tC+N8lHzv6eJcZxKMmhJNmzZ8/3Hz16dM0bevr06TzrWc9ac//1OPHFr8xkvVvhysu+e8PL7ubt2u6x73lG8tj/2fr1rrTdq23zTq6FnTy23WBW9bYRs35tbuY1MMt1b+c+aZavn6XWPf33dDv3Ozv178BmtnnWduP+crv3b7v1tc2TXvrSl36iuw+s1m+jxyNvSfLOJD3cvjvJTyapJfp2kqct075c/yV1961Jbk2SAwcO9MLCwpoHvLi4mPX0X4/rdvCnBA+9bmHDy+7m7drusR++8kzefWLrD/evtN2rbfNOroWdPLbdYFb1thGzfm1u5jUwy3Vv5z5plq+fpdY9/fd01e068fXl173Khfk7+d98JZv5/5i13bi/3O792259bbN+G6qy7n7s7P2q+t0kfzg8PJVk71TXy5M8Mtxfqv1LSS6qqgu7+8w5/QGATXJ6z3yZpQ12pw2Foqq6tLsfHR7+WJLPDPfvTPJ7VfWeTCZa2J/k45kcEdo/zDT3xUwmY/iJ7u6q+miSH89kBrqDST600Y0Bzj/e0AEwRgL2fK1lSu7fT7KQ5JKqOpXkxiQLVfXCTE51eyjJTydJd99fVXck+WySM0mu7+5vD+t5S5K7MpmS+0h33z/8irclOVpVv5Tkz5K8d8u2DgAAYBVrmX3utUs0LxtcuvtdSd61RPuxJMeWaP98npyhDgBgVY4iA1tpZ1yZC4yaNzcAwHYSimAXER4AALaeUAQAALuMiRi2llAEAADnmZVCk8D0VELRyDkdCwCAsXvadg8AAABgOwlFAADAqDl9DgBgTjZ7cbzrRGA2hCIAiGss2RnUIWwPoeg8Z+cKAAArc00RAAAwao4UsSs5AgYwe0vtaw9feSbX2QcD5xmhCEbCN18DACzN6XMAAMCoCUUAAMCoCUUAAMCoCUUAAMComWgBAHYxs3FyllqAjXOkCAAAGDWhCAAAGDWnzwEAc+dUL2AncaQIAAAYNaEIAAAYNafPAbBr7NRTrnbquABYG0eKAACAUROKAACAUROKAACAUXNNEZDENREAcC5/G8fDkSIAAGDUhCIAAGDUhCIAAGDUhCIAAGDUVg1FVXWkqh6vqs9MtT27qo5X1YPD7cVDe1XVzVV1sqo+XVUvmlrm4ND/wao6ONX+/VV1Yljm5qqqrd5IAACA5azlSNH7klxzTtsNSe7u7v1J7h4eJ8krkuwffg4luSWZhKgkNyZ5cZKrktx4NkgNfQ5NLXfu7wIAAJiZVafk7u4/rqp95zRfm2RhuH9bksUkbxvab+/uTnJPVV1UVZcOfY939xNJUlXHk1xTVYtJvqu7/3Rovz3Jq5J8ZDMbBQAAbMxqU5E/dNMPz2kk87PRa4r2dPejSTLcPmdovyzJw1P9Tg1tK7WfWqIdAABgLrb6y1uXuh6oN9C+9MqrDmVyql327NmTxcXFNQ/s9OnT6+q/HoevPDOT9bJ77XmGumB+dlK9rbaf3SnjZON2Ur1x/lNvs7HZffWs3lNvp42Goseq6tLufnQ4Pe7xof1Ukr1T/S5P8sjQvnBO++LQfvkS/ZfU3bcmuTVJDhw40AsLC8t1fYrFxcWsp/96XOfbjjnH4SvP5N0ntvozB1jaTqq3h163sOLz9pe7306qN85/6m02Nr2vPvH15de9S0+t2+jpc3cmOTuD3MEkH5pqf8MwC93VSb4ynF53V5KXVdXFwwQLL0ty1/Dc16rq6mHWuTdMrQsAAGDmVo3eVfX7mRzluaSqTmUyi9xNSe6oqjcl+UKSVw/djyV5ZZKTSb6R5I1J0t1PVNU7k9w79PvFs5MuJHlzJjPcPSOTCRZMsgAAAMzNWmafe+0yT/3gEn07yfXLrOdIkiNLtN+X5AWrjQMAAGAWNnr6HAAAwHnBlWsAbJnVvtsCAHYiR4oAAIBRE4oAAIBRE4oAAIBRE4oAAIBRE4oAAIBRE4oAAIBRE4oAAIBRE4oAAIBRE4oAAIBRE4oAAIBRE4oAAIBRE4oAAIBRu3C7BwAAAMzPvhs+vN1D2HEcKQIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZNKAIAAEZtU6Goqh6qqhNV9amqum9oe3ZVHa+qB4fbi4f2qqqbq+pkVX26ql40tZ6DQ/8Hq+rg5jYJAABg7bbiSNFLu/uF3X1geHxDkru7e3+Su4fHSfKKJPuHn0NJbkkmISrJjUlenOSqJDeeDVIAAACzNovT565Ncttw/7Ykr5pqv70n7klyUVVdmuTlSY539xPd/eUkx5NcM4NxAQAAPMWFm1y+k/xRVXWSf9PdtybZ092PJkl3P1pVzxn6Xpbk4allTw1ty7U/RVUdyuQoU/bs2ZPFxcU1D/T06dPr6r8eh688M5P1snvteYa6YH7UG/Ok3pgn9bb7zOr99qxtNhS9pLsfGYLP8ar6ixX61hJtvUL7UxsnoevWJDlw4EAvLCyseaCLi4tZT//1uO6GD89kvexeh688k3ef2OzLC9ZGvTFP6o15Um+7z0OvW9juIWzIpk6f6+5HhtvHk/xBJtcEPTacFpfh9vGh+6kke6cWvzzJIyu0AwAAzNyGQ1FVPbOq/trZ+0leluQzSe5McnYGuYNJPjTcvzPJG4ZZ6K5O8pXhNLu7krysqi4eJlh42dAGAAAwc5s5HrknyR9U1dn1/F53/+equjfJHVX1piRfSPLqof+xJK9McjLJN5K8MUm6+4mqemeSe4d+v9jdT2xiXAAAAGu24VDU3Z9P8veWaP9fSX5wifZOcv0y6zqS5MhGxwIAALBRs5iSGwAAYNcQigAAgFETigAAgFETigAAgFETigAAgFETigAAgFETigAAgFETigAAgFETigAAgFETigAAgFETigAAgFETigAAgFETigAAgFETigAAgFETigAAgFETigAAgFETigAAgFETigAAgFETigAAgFETigAAgFETigAAgFETigAAgFETigAAgFETigAAgFETigAAgFETigAAgFETigAAgFETigAAgFETigAAgFETigAAgFETigAAgFETigAAgFHbMaGoqq6pqs9V1cmqumG7xwMAAIzDjghFVXVBkt9K8ookVyR5bVVdsb2jAgAAxmBHhKIkVyU52d2f7+5vJTma5NptHhMAADACOyUUXZbk4anHp4Y2AACAmbpwuwcwqCXa+imdqg4lOTQ8PF1Vn1vH77gkyZc2MDZYt59Rb8yRemOe1BvzpN52n/rl7R7BU/zttXTaKaHoVJK9U48vT/LIuZ26+9Ykt27kF1TVfd19YGPDg/VRb8yTemOe1BvzpN6Yl51y+ty9SfZX1XOr6ulJXpPkzm0eEwAAMAI74khRd5+pqrckuSvJBUmOdPf92zwsAABgBHZEKEqS7j6W5NgMf8WGTruDDVJvzJN6Y57UG/Ok3piL6n7KfAYAAACjsVOuKQIAANgW50UoqqojVfV4VX1mqu2FVXVPVX2qqu6rqquG9qqqm6vqZFV9uqpetH0jZzeqqr1V9dGqeqCq7q+qnx3an11Vx6vqweH24qFdzbFhK9Tbr1bVXww19QdVddHUMm8f6u1zVfXy7Rs9u81y9Tb1/D+tqq6qS4bH9m9s2Er1VlX/ZNiH3V9VvzLVbv/GTJwXoSjJ+5Jcc07bryT5l939wiT/YnicJK9Isn/4OZTkljmNkfPHmSSHu/t5Sa5Ocn1VXZHkhiR3d/f+JHcPjxM1x+YsV2/Hk7ygu783yX9L8vYkGZ57TZLnZ7Jf/O2qumBbRs5utFy9par2JvmhJF+Y6m//xmYsWW9V9dIk1yb53u5+fpJfS+zfmK3zIhR19x8neeLc5iTfNdz/7jz5vUfXJrm9J+5JclFVXTqfkXI+6O5Hu/uTw/2vJXkgyWWZ1NZtQ7fbkrxquK/m2LDl6q27/6i7zwzd7snk+92SSb0d7e5vdvdfJjmZ5Kp5j5vdaYX9W5L8epJ/nr/65er2b2zYCvX25iQ3dfc3h+ceHxaxf2NmzotQtIy3JvnVqno4k08Y3j60X5bk4al+p/LkDh/Wpar2Jfm+JB9Lsqe7H00mO/okzxm6qTm2xDn1Nu0nk3xkuK/e2BLT9VZVP5rki9395+d0U29siXP2b9+T5B9U1ceq6r9W1d8fuqk3ZuZ8DkVvTvJz3b03yc8lee/QXkv0NQUf61ZVz0rygSRv7e6vrtR1iTY1x7osV29V9fOZnILy/rNNSyyu3liX6XrLpL5+PpNT0Z/SdYk29ca6LLF/uzDJxZmcUvfPktxRVRX1xgydz6HoYJIPDvf/Q548vHoqyd6pfpfnyVPrYE2q6jsy2YG/v7vP1tljZ08bGW7PHu5Xc2zKMvWWqjqY5EeSvK6f/H4F9camLFFvfyfJc5P8eVU9lElNfbKq/mbUG5u0zP7tVJIPDqdlfjzJ/0tySdQbM3Q+h6JHkvzD4f4PJHlwuH9nkjcMM+ZcneQrZ095grUYPq16b5IHuvs9U0/dmUkYz3D7oal2NceGLFdvVXVNkrcl+dHu/sbUIncmeU1VfWdVPTeTC+A/Ps8xs3stVW/dfaK7n9Pd+7p7XyZvTF/U3f8j9m9swgp/T/9TJu/dUlXfk+TpSb4U+zdm6MLtHsBWqKrfT7KQ5JKqOpXkxiQ/leQ3qurCJP83k1lxkuRYkldmcnHeN5K8ce4DZrd7SZLXJzlRVZ8a2t6R5KZMDvG/KZPZmV49PKfm2Izl6u3mJN+Z5PjkfUXu6e5/3N33V9UdST6byWlP13f3t7dh3OxOS9Zbdx9bpr/9G5ux3P7tSJIjNfmqlW8lOTgcDbd/Y2bqyTMuAAAAxud8Pn0OAABgVUIRAAAwakIRAAAwakIRAAAwakIRAAAwakIRAAAwakIRAAAwakIRAAAwav8frdqj8/YD6hAAAAAASUVORK5CYII=\n", "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df.day.hist(figsize=(14,4), bins=92);"]}, {"cell_type": "code", "execution_count": 11, "metadata": {"scrolled": false}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0UAAAD8CAYAAAC4qg+VAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAGIRJREFUeJzt3X+MZWd5H/DvEzuAAwWbONlQ2+o6ZZXGYZuErIzbtNUGErz8EOYPqIysYKeuLEWkJdVWwZS2KAlIjtqEEBWoLOxioiiGkqRY4NS1DKOoUgy2Q4IxDvUGXLzg4kQ2DksSyCZP/7jvJsMyuzP7Y+aenfP5SFd7z3vee/e988yZud95z3lvdXcAAADm6luWPQAAAIBlEooAAIBZE4oAAIBZE4oAAIBZE4oAAIBZE4oAAIBZE4oAAIBZE4oAAIBZE4oAAIBZO3vZAzhZ559/fu/cuXPZw0iSfPWrX83Tn/70ZQ+DqMVUqMN0qMV0qMV0qMU0qMN0bOda3HfffX/S3d+xXr8zNhTt3Lkz995777KHkSRZWVnJ3r17lz0MohZToQ7ToRbToRbToRbToA7TsZ1rUVX/dyP9nD4HAADMmlAEAADMmlAEAADMmlAEAADMmlAEAADMmlAEAADMmlAEAADMmlAEAADMmlAEAADM2tnLHgAAwBTtvP7Dx9z38A0v28KRAJvNTBEAADBrQhEAADBrQhEAADBrQhEAADBrQhEAADBrQhEAADBrQhEAADBrQhEAADBrQhEAADBrQhEAADBrQhEAADBrQhEAADBrQhEAADBrQhEAADBrQhEAADBrQhEAADBrQhEAADBrQhEAADBrGw5FVXVWVX2iqj40ti+uqo9V1UNV9b6qespof+rYPjD271z1HG8c7Z+pqstXte8bbQeq6vrT9/IAAACO70Rmil6f5MFV27+Q5G3dvSvJE0muHe3XJnmiu5+b5G2jX6rqkiRXJvm+JPuSvHMErbOSvCPJS5JckuQ1oy8AAMCm21AoqqoLk7wsybvHdiV5YZIPjC63JHnluH/F2M7Y/6LR/4okt3b317r7c0kOJLl03A5092e7++tJbh19AQAANt3ZG+z3y0l+JsnfGdvfnuTL3X14bB9McsG4f0GSR5Kkuw9X1ZOj/wVJ7l71nKsf88hR7S9YaxBVdV2S65Jkx44dWVlZ2eDwN9ehQ4cmM5a5U4tpUIfpUIvpUIvp2Ggt9u8+fMx9annqHBPToRYbCEVV9fIkj3X3fVW190jzGl17nX3Hal9rtqrXaEt335jkxiTZs2dP7927d61uW25lZSVTGcvcqcU0qMN0qMV0qMV0bLQW11z/4WPue/iq9R/P8TkmpkMtNjZT9MNJXlFVL03ytCTPzGLm6NyqOnvMFl2Y5Iuj/8EkFyU5WFVnJ3lWksdXtR+x+jHHagcAANhU615T1N1v7O4Lu3tnFgslfKS7r0ry0SSvGt2uTvLBcf+2sZ2x/yPd3aP9yrE63cVJdiX5eJJ7kuwaq9k9Zfwft52WVwcAALCOjV5TtJY3JLm1qt6S5BNJbhrtNyX51ao6kMUM0ZVJ0t0PVNX7k3w6yeEkr+vuv0qSqvqpJHckOSvJzd39wCmMCwAAYMNOKBR190qSlXH/s1msHHd0n79I8upjPP6tSd66RvvtSW4/kbEAAACcDqcyUwQAMEs7j7MIQ5I8fMPLtmgkwOlwIh/eCgAAsO0IRQAAwKwJRQAAwKwJRQAAwKwJRQAAwKwJRQAAwKwJRQAAwKwJRQAAwKz58FYAgNPseB/u6oNdYXrMFAEAALNmpggAYAuZRYLpMVMEAADMmlAEAADMmlAEAADMmlAEAADMmlAEAADMmtXnAIBt7ejV3vbvPpxrjrMCHDA/ZooAAIBZE4oAAIBZE4oAAIBZE4oAAIBZE4oAAIBZE4oAAIBZE4oAAIBZE4oAAIBZE4oAAIBZE4oAAIBZE4oAAIBZE4oAAIBZE4oAAIBZO3vZAwAAYGHn9R8+5r6Hb3jZFo4E5sVMEQAAMGtCEQAAMGtOnwMAOAM4tQ42j5kiAABg1oQiAABg1tYNRVX1tKr6eFX9QVU9UFU/O9ovrqqPVdVDVfW+qnrKaH/q2D4w9u9c9VxvHO2fqarLV7XvG20Hqur60/8yAQAA1raRmaKvJXlhd39/kh9Isq+qLkvyC0ne1t27kjyR5NrR/9okT3T3c5O8bfRLVV2S5Mok35dkX5J3VtVZVXVWknckeUmSS5K8ZvQFAADYdOuGol44NDa/ddw6yQuTfGC035LkleP+FWM7Y/+LqqpG+63d/bXu/lySA0kuHbcD3f3Z7v56kltHXwAAgE23odXnxmzOfUmem8Wszh8l+XJ3Hx5dDia5YNy/IMkjSdLdh6vqySTfPtrvXvW0qx/zyFHtLzjGOK5Lcl2S7NixIysrKxsZ/qY7dOjQZMYyd2oxDeowHWoxHWqxPPt3H/6G7R3nfHPbme5M/N5yTEyHWmwwFHX3XyX5gao6N8lvJfnetbqNf+sY+47VvtZsVa/Rlu6+McmNSbJnz57eu3fv8Qe+RVZWVjKVscydWkyDOkyHWkyHWizPNUctZb1/9+H84v3b61NJHr5q77KHcMIcE9OhFie4+lx3fznJSpLLkpxbVUd+olyY5Ivj/sEkFyXJ2P+sJI+vbj/qMcdqBwAA2HQbWX3uO8YMUarqnCQ/muTBJB9N8qrR7eokHxz3bxvbGfs/0t092q8cq9NdnGRXko8nuSfJrrGa3VOyWIzhttPx4gAAANazkbnj5yS5ZVxX9C1J3t/dH6qqTye5tarekuQTSW4a/W9K8qtVdSCLGaIrk6S7H6iq9yf5dJLDSV43TstLVf1UkjuSnJXk5u5+4LS9QgAAgONYNxR19yeT/OAa7Z/NYuW4o9v/Ismrj/Fcb03y1jXab09y+wbGCwAAcFptr6sMAYBZ2nnUYgoAJ+KEFloAAADYboQiAABg1oQiAABg1oQiAABg1oQiAABg1oQiAABg1izJDQCcESy7DWwWM0UAAMCsCUUAAMCsCUUAAMCsuaYIAJgM1w2dnON93R6+4WVbOBI4M5kpAgAAZk0oAgAAZk0oAgAAZk0oAgAAZk0oAgAAZs3qcwDAaWc1NOBMYqYIAACYNaEIAACYNafPAQBsY05lhPUJRQAAMyUwwYJQBLAObxoAYHtzTREAADBrQhEAADBrTp8DALbU8U5JBVgGM0UAAMCsCUUAAMCsOX0OmIX1Ttexihxr8X0DMA9CEUBc48CZwfLwAJvD6XMAAMCsmSkCgC1mxgdgWoQiAJixkw1oTjkFthOhCIBtz8wMAMcjFAGcAm+2AeDMJxQBwEkSigG2B6EI2DZc48CUHP39uH/34Vyzid+jAhrAyVs3FFXVRUnem+S7kvx1khu7++1V9ewk70uyM8nDSf55dz9RVZXk7UlemuTPklzT3b83nuvqJP9+PPVbuvuW0f5DSd6T5Jwktyd5fXf3aXqNAHBMUwvTmzGek33OqX1t2FqCNnOykc8pOpxkf3d/b5LLkryuqi5Jcn2Su7p7V5K7xnaSvCTJrnG7Lsm7kmSEqDcneUGSS5O8uarOG4951+h75HH7Tv2lAQAArG/dUNTdjx6Z6enuryR5MMkFSa5IcsvodkuSV477VyR5by/cneTcqnpOksuT3Nndj3f3E0nuTLJv7Htmd//umB1676rnAgAA2FR1ImepVdXOJL+T5HlJPt/d567a90R3n1dVH0pyQ3f/79F+V5I3JNmb5Gnd/ZbR/h+S/HmSldH/R0f7P03yhu5++Rr//3VZzChlx44dP3Trrbee4MvdHIcOHcoznvGMZQ+DqMVULKsO93/hyS3/P49n9wXPWvYQZnVMTK3+R9txTvKlP1/2KEjU4nQ4HT/f5vTzaeq2cy1+5Ed+5L7u3rNevw0vtFBVz0jyG0l+urv/dHHp0Npd12jrk2j/5sbuG5PcmCR79uzpvXv3rjPqrbGyspKpjGXu1GIallWHzbyI/WQ8fNXeZQ/hjDwmTvY6hqnV/2j7dx/OL95vfaMpUItTdzp+vp2JP5+2K7XYYCiqqm/NIhD9Wnf/5mj+UlU9p7sfHafAPTbaDya5aNXDL0zyxdG+96j2ldF+4Rr9AeAbuPAfgM2w7jVFYzW5m5I82N2/tGrXbUmuHvevTvLBVe2vrYXLkjzZ3Y8muSPJi6vqvLHAwouT3DH2faWqLhv/12tXPRcAAMCm2shM0Q8n+fEk91fV74+2f5fkhiTvr6prk3w+yavHvtuzWI77QBZLcv9EknT341X180nuGf1+rrsfH/d/Mn+7JPdvjxsAAMCmWzcUjQUTjnUB0YvW6N9JXneM57o5yc1rtN+bxeINAABMnM8wYrvZyOcUAQAAbFuWXgHOKC60B5i29X5Om0liiswUAQAAsyYUAQAAsyYUAQAAsyYUAQAAsyYUAQAAsyYUAQAAsyYUAQAAs+ZzioDJ2S6fRTT3T3yf++sH4MwhFAGw5bZL8AVge3D6HAAAMGtCEQAAMGtOnwMAYMscOX12/+7DueaoU2ldb8iymCkCAABmzUwRAACTYNVKlsVMEQAAMGtmigCWwF9DAWA6hCIATprPGwJgO3D6HAAAMGtmigBmzmwPAHNnpggAAJg1oQgAAJg1oQgAAJg11xQBbBNrXRu0f/fhXHP9hy3zDQDHIRQBADB5Pt+NzeT0OQAAYNaEIgAAYNacPgdwBjnZzxTyWUQAcGxCEcDECDAAsLWEImApvPEHAKZCKAIAYNuyah0bIRQBm8ZsEABbwe8bTpXV5wAAgFkTigAAgFkTigAAgFlzTREAALNkEQaOWHemqKpurqrHqupTq9qeXVV3VtVD49/zRntV1a9U1YGq+mRVPX/VY64e/R+qqqtXtf9QVd0/HvMrVVWn+0UCAAAcy0Zmit6T5L8kee+qtuuT3NXdN1TV9WP7DUlekmTXuL0gybuSvKCqnp3kzUn2JOkk91XVbd39xOhzXZK7k9yeZF+S3z71lwYAACfHLNK8rDtT1N2/k+Txo5qvSHLLuH9Lkleuan9vL9yd5Nyqek6Sy5Pc2d2PjyB0Z5J9Y98zu/t3u7uzCF6vDAAAwBY52YUWdnT3o0ky/v3O0X5BkkdW9Ts42o7XfnCNdgAAgC1xuhdaWOt6oD6J9rWfvOq6LE61y44dO7KysnISQzz9Dh06NJmxzJ1aTMOROuzffXjZQ5m9HedEHSZCLaZDLabhTK7Ddnuv4f3TyYeiL1XVc7r70XEK3GOj/WCSi1b1uzDJF0f73qPaV0b7hWv0X1N335jkxiTZs2dP792791hdt9TKykqmMpa5U4tpOFKHa3zC+NLt3304v3i/hUanQC2mQy2m4Uyuw8NX7V32EE4r759O/vS525IcWUHu6iQfXNX+2rEK3WVJnhyn192R5MVVdd5Yqe7FSe4Y+75SVZeNVedeu+q5AAAANt268byqfj2LWZ7zq+pgFqvI3ZDk/VV1bZLPJ3n16H57kpcmOZDkz5L8RJJ09+NV9fNJ7hn9fq67jyze8JNZrHB3Tharzll5Ds4ga63Os3/3YbNEAHCU461ol1jVbpnWDUXd/Zpj7HrRGn07yeuO8Tw3J7l5jfZ7kzxvvXEAAMDUrRd8mKYz80ROAABYEsFn+znZa4oAAAC2BaEIAACYNaEIAACYNaEIAACYNQstAOtyQSkAbL7j/b61XPfmMlMEAADMmpkiAACYOLNIm8tMEQAAMGtCEQAAMGtCEQAAMGtCEQAAMGtCEQAAMGtWnwOS+CwiAGC+hCIAADiDWa771Dl9DgAAmDUzRQAAsE2ZRdoYM0UAAMCsmSkCAIAZOjKLtH/34Vxz1IzS3GaRzBQBAACzJhQBAACzJhQBAACz5poiAADgG8xt1TqhCLaR4/0AS7bnDzEAYGttx8Dk9DkAAGDWzBSdBvd/4clvWsbwiDM1LbM9rTeTBAAwR2aKAACAWROKAACAWXP63CbbjheiAQDAdiIULZHABAAAy+f0OQAAYNaEIgAAYNacPjdRTq0DAICtIRSdgU7ls2aOF6gEsTODzxoCADi9hKKZ8YYaAAC+kVDEhphF2lrCKwDA1hGKOGUCEwAAZ7LJhKKq2pfk7UnOSvLu7r5hyUPiNDjZwDSHoGU2CABgGiYRiqrqrCTvSPJjSQ4muaeqbuvuTy93ZGymkw0Fx3vc/t2Hc81JPu9mhDTBBwBg+iYRipJcmuRAd382Sarq1iRXJBGK2DKbEdIAAJi+qXx46wVJHlm1fXC0AQAAbKrq7mWPIVX16iSXd/e/HNs/nuTS7v5XR/W7Lsl1Y/N7knxmSwd6bOcn+ZNlD4IkajEV6jAdajEdajEdajEN6jAd27kWf6+7v2O9TlM5fe5gkotWbV+Y5ItHd+ruG5PcuFWD2qiqure79yx7HKjFVKjDdKjFdKjFdKjFNKjDdKjFdE6fuyfJrqq6uKqekuTKJLcteUwAAMAMTGKmqLsPV9VPJbkjiyW5b+7uB5Y8LAAAYAYmEYqSpLtvT3L7ssdxkiZ3St+MqcU0qMN0qMV0qMV0qMU0qMN0zL4Wk1hoAQAAYFmmck0RAADAUghFp6iq9lXVZ6rqQFVdv+zxbGdVdVFVfbSqHqyqB6rq9aP92VV1Z1U9NP49b7RXVf3KqM0nq+r5y30F209VnVVVn6iqD43ti6vqY6MW7xsLp6Sqnjq2D4z9O5c57u2mqs6tqg9U1R+O4+MfOS62XlX9m/Gz6VNV9etV9TTHxNaoqpur6rGq+tSqthM+Bqrq6tH/oaq6ehmv5Ux3jFr8p/Hz6ZNV9VtVde6qfW8ctfhMVV2+qt37q1O0Vi1W7fu3VdVVdf7Ynv1xIRSdgqo6K8k7krwkySVJXlNVlyx3VNva4ST7u/t7k1yW5HXj6319kru6e1eSu8Z2sqjLrnG7Lsm7tn7I297rkzy4avsXkrxt1OKJJNeO9muTPNHdz03yttGP0+ftSf5nd/+DJN+fRU0cF1uoqi5I8q+T7Onu52WxaNCVcUxslfck2XdU2wkdA1X17CRvTvKCJJcmefORIMUJeU++uRZ3Jnled//DJP8nyRuTZPwOvzLJ943HvHP8sc37q9PjPfnmWqSqLkryY0k+v6p59seFUHRqLk1yoLs/291fT3JrkiuWPKZtq7sf7e7fG/e/ksUbvwuy+JrfMrrdkuSV4/4VSd7bC3cnObeqnrPFw962qurCJC9L8u6xXUlemOQDo8vRtThSow8kedHozymqqmcm+WdJbkqS7v56d385jotlODvJOVV1dpJvS/JoHBNbort/J8njRzWf6DFweZI7u/vx7n4iizfy3/SGkuNbqxbd/b+6+/DYvDuLz6NMFrW4tbu/1t2fS3Igi/dW3l+dBsc4LpLFH2J+JsnqhQVmf1wIRafmgiSPrNo+ONrYZONUkx9M8rEkO7r70WQRnJJ85+imPpvrl7P4ofrXY/vbk3x51S++1V/vv6nF2P/k6M+p++4kf5zkv41TGd9dVU+P42JLdfcXkvznLP7y+mgW3+P3xTGxTCd6DDg2tsa/SPLb475abLGqekWSL3T3Hxy1a/a1EIpOzVp/1bOc3yarqmck+Y0kP93df3q8rmu0qc9pUFUvT/JYd9+3unmNrr2BfZyas5M8P8m7uvsHk3w1f3ua0FrUYhOM00muSHJxkr+b5OlZnI5yNMfE8h3ra68mm6yq3pTFqfC/dqRpjW5qsUmq6tuSvCnJf1xr9xpts6qFUHRqDia5aNX2hUm+uKSxzEJVfWsWgejXuvs3R/OXjpz+M/59bLSrz+b54SSvqKqHszit4YVZzBydO04dSr7x6/03tRj7n5W1p/Q5cQeTHOzuj43tD2QRkhwXW+tHk3yuu/+4u/8yyW8m+cdxTCzTiR4Djo1NNC7Qf3mSq/pvPw9GLbbW38/iDzd/MH5/X5jk96rqu6IWQtEpuifJrrG60FOyuFjwtiWPadsa59vflOTB7v6lVbtuS3JkNZSrk3xwVftrx4oqlyV58sipFJya7n5jd1/Y3Tuz+L7/SHdfleSjSV41uh1diyM1etXovy3/0rTVuvv/JXmkqr5nNL0oyafjuNhqn09yWVV92/hZdaQOjonlOdFj4I4kL66q88bM34tHG6eoqvYleUOSV3T3n63adVuSK2uxGuPFWVzk//F4f7Upuvv+7v7O7t45fn8fTPL88XvEcdHdbqdwS/LSLFZS+aMkb1r2eLbzLck/yWLK9pNJfn/cXprFefh3JXlo/Pvs0b+yWL3mj5Lcn8WqUEt/HdvtlmRvkg+N+9+dxS+0A0n+e5Knjvanje0DY/93L3vc2+mW5AeS3DuOjf+R5DzHxVLq8LNJ/jDJp5L8apKnOia27Gv/61lcy/WXWbzRu/ZkjoEsrnc5MG4/sezXdSbejlGLA1lcl3Lkd/d/XdX/TaMWn0nyklXt3l9tQi2O2v9wkvPH/dkfFzVeLAAAwCw5fQ4AAJg1oQgAAJg1oQgAAJg1oQgAAJg1oQgAAJg1oQgAAJg1oQgAAJg1oQgAAJi1/w9eZ2Y/J7rQ4QAAAABJRU5ErkJggg==\n", "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}], "source": ["df.time.apply(lambda t: t.minute + t.hour*60).hist(figsize=(14,4), bins=100);"]}, {"cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0UAAAD8CAYAAAC4qg+VAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHcdJREFUeJzt3X+QZWV95/H3Z0Et1omCi3ZwhmTI7mAtMAlKL7Jl6TZBATG7aComEAsGNTVqQSrWzm4ck63F0rWWzYpWQSzccZkSKoSRWjRMKSwZKTsmVaL8CDIgEgacSMMslIwBRi1SQ777xz2TXMY7/ft29+V5v6q6+t7vfc7p586X090fzjlPp6qQJEmSpFb9s+WegCRJkiQtJ0ORJEmSpKYZiiRJkiQ1zVAkSZIkqWmGIkmSJElNMxRJkiRJapqhSJIkSVLTDEWSJEmSmmYokiRJktS0w5d7AvN19NFH19q1a5d7GgD8+Mc/5uUvf/lyT0NLwF63wT63w163wT63w163YS59vuuuu35YVa+eadzIhqK1a9dy5513Lvc0AJicnGRiYmK5p6ElYK/bYJ/bYa/bYJ/bYa/bMJc+J/nb2Yzz8jlJkiRJTTMUSZIkSWrajKEoybFJvp7kgST3J/m9rv6qJDuSPNR9PqqrJ8kVSXYluTfJG/r2taEb/1CSDX31U5Ls7La5IkmG8WYlSZIk6WCzOVO0H9hUVf8aOA24OMkJwGbgtqpaB9zWPQd4O7Cu+9gIXAW9EAVcCrwROBW49ECQ6sZs7Nvu7IW/NUmSJEma2YyhqKr2VNXd3eNngQeA1cC5wDXdsGuAd3aPzwWurZ7bgSOTHAOcBeyoqr1V9SNgB3B299orquqbVVXAtX37kiRJkqShmtM9RUnWAq8HvgWMVdUe6AUn4DXdsNXAo32bTXW16epTA+qSJEmSNHSzXpI7ySrgRuDDVfXMNLf9DHqh5lEfNIeN9C6zY2xsjMnJyRlmvTT27du3Yuai4bLXbbDP7bDXbbDP7bDXbRhGn2cVipK8hF4guq6qvtSVn0hyTFXt6S6Be7KrTwHH9m2+Bni8q08cVJ/s6msGjP8ZVbUF2AIwPj5eK2UdetfEb4e9boN9boe9boN9boe9bsMw+jyb1ecCXA08UFWf7ntpO3BgBbkNwE199Qu7VehOA57uLq+7FTgzyVHdAgtnArd2rz2b5LTua13Yty9JkiRJGqrZnCl6E3ABsDPJPV3tD4DLgBuSvB/4AfDu7rWbgXOAXcBPgPcCVNXeJJ8A7ujGfbyq9naPPwR8ATgCuKX70IvA2s1fHer+d1/2jqHuX5IkSS9+M4aiqvorBt/3A3DGgPEFXHyIfW0Ftg6o3wmcNNNcJEmSJGmxzWn1OUmSJEl6sTEUSZIkSWqaoUiSJElS0wxFkiRJkppmKJIkSZLUNEORJEmSpKYZiiRJkiQ1zVAkSZIkqWmGIkmSJElNMxRJkiRJapqhSJIkSVLTDEWSJEmSmmYokiRJktQ0Q5EkSZKkphmKJEmSJDXNUCRJkiSpaYYiSZIkSU0zFEmSJElq2oyhKMnWJE8mua+v9sUk93Qfu5Pc09XXJvlp32uf69vmlCQ7k+xKckWSdPVXJdmR5KHu81HDeKOSJEmSNMjhsxjzBeCPgWsPFKrqtw48TnI58HTf+Ier6uQB+7kK2AjcDtwMnA3cAmwGbquqy5Js7p5/ZG5vQwuxdvNXl3sKkiRJ0rKZ8UxRVX0D2Dvote5sz28C10+3jyTHAK+oqm9WVdELWO/sXj4XuKZ7fE1fXZIkSZKGLr2MMsOgZC3wlao66aD6W4BPV9V437j7gb8BngH+S1X9ZZJx4LKqems37s3AR6rq15L8XVUd2bfPH1XVwEvokmykd7aJsbGxU7Zt2za3dzsk+/btY9WqVcs9jXnb+djTMw9aodavfuWSfr1R77Vmxz63w163wT63w163YS59Pv300+86kFWmM5vL56ZzPi88S7QH+IWqeirJKcCfJTkRyIBtZ05jB29QtQXYAjA+Pl4TExNzn/EQTE5OslLmMh8XjfLlczt/PNTd777sHS94Puq91uzY53bY6zbY53bY6zYMo8/zDkVJDgd+HTjlQK2qngOe6x7fleRh4HhgCljTt/ka4PHu8RNJjqmqPd1ldk/Od06SJEmSNFcLWZL7rcD3qmrqQCHJq5Mc1j3+JWAd8EhV7QGeTXJadx/ShcBN3WbbgQ3d4w19dUmSJEkautksyX098E3gdUmmkry/e+k8fnaBhbcA9yb5DvB/gA9W1YFFGj4E/G9gF/AwvZXnAC4D3pbkIeBt3XNJkiRJWhIzXj5XVecfon7RgNqNwI2HGH8ncNKA+lPAGTPNQ5Ikzc+w//TCwfdfStKoWcjlc5IkSZI08gxFkiRJkppmKJIkSZLUNEORJEmSpKYZiiRJkiQ1zVAkSZIkqWkzLsmt5TfspVQlSZKklnmmSJIkSVLTDEWSJEmSmublc5IkrQBeKi1Jy8dQJElaMsP8xX/3Ze8Y2r41vWEHOnsradgMRZK0yPzF/8XJMzmS9OLlPUWSJEmSmmYokiRJktQ0L5+TJEkaUV6uKy0OQ5EkjRBvaJckafEZiiRJ/8jFBCRJLZrxnqIkW5M8meS+vtrHkjyW5J7u45y+1z6aZFeSB5Oc1Vc/u6vtSrK5r35ckm8leSjJF5O8dDHfoCRJkiRNZzZnir4A/DFw7UH1z1TVp/oLSU4AzgNOBF4LfC3J8d3LnwXeBkwBdyTZXlXfBf5Ht69tST4HvB+4ap7vR5JmNNPZkE3r93ORZ0xGznzOctlreUmqJJhFKKqqbyRZO8v9nQtsq6rngO8n2QWc2r22q6oeAUiyDTg3yQPArwK/3Y25BvgYhiJJkvQi4CWp0mhIVc08qBeKvlJVJ3XPPwZcBDwD3AlsqqofJflj4Paq+pNu3NXALd1uzq6q3+nqFwBvpBeAbq+qf9XVjwVuOfB1BsxjI7ARYGxs7JRt27bN+Q0Pw759+1i1atXQ9r/zsaeHtm9Nb/3qV77g+bB7raUx0zE1dgQ88dMlmoyWlb0eDQd/L56r6b53+zP20Bb6774c/Dndhrn0+fTTT7+rqsZnGjffhRauAj4BVPf5cuB9QAaMLQbfu1TTjB+oqrYAWwDGx8drYmJiTpMelsnJSYY5Fy/tWD673zPxgufD7rWWxkzH1Kb1+7l8p+vQtMBej4aDvxfP1XTfu/0Ze2gL/XdfDv6cbsMw+jyvnwRV9cSBx0k+D3ylezoFHNs3dA3wePd4UP2HwJFJDq+q/QeNlyRJkqShm1coSnJMVe3pnr4LOLAy3XbgT5N8mt5CC+uAb9M7I7QuyXHAY/QWY/jtqqokXwd+A9gGbABumu+bkRbbwdeCL+ZN2d58K0mStDLMGIqSXA9MAEcnmQIuBSaSnEzvUrfdwAcAqur+JDcA3wX2AxdX1fPdfi4BbgUOA7ZW1f3dl/gIsC3JfwP+Grh60d6dJEmS5sWV+dSS2aw+d/6A8iGDS1V9EvjkgPrNwM0D6o/wTyvUSZIkSdKS8u7SRbDzsae9UVOSJEkaUYNWhZMkSZKkZhiKJEmSJDXNUCRJkiSpaYYiSZIkSU1zoQVJkiQtuWEs+b2Yf09wOi4n/uLjmSJJkiRJTTMUSZIkSWqaoUiSJElS0wxFkiRJkprmQgvSMhnGDab9hn0T6DDn7w2skiRpKRmKpBepYYcuSZKkFwsvn5MkSZLUNEORJEmSpKYZiiRJkiQ1zVAkSZIkqWmGIkmSJElNmzEUJdma5Mkk9/XV/meS7yW5N8mXkxzZ1dcm+WmSe7qPz/Vtc0qSnUl2JbkiSbr6q5LsSPJQ9/moYbxRSZIkSRpkNmeKvgCcfVBtB3BSVf0y8DfAR/tee7iqTu4+PthXvwrYCKzrPg7sczNwW1WtA27rnkuSJEnSkpgxFFXVN4C9B9X+vKr2d09vB9ZMt48kxwCvqKpvVlUB1wLv7F4+F7ime3xNX12SJEmShm4x7il6H3BL3/Pjkvx1kr9I8uauthqY6hsz1dUAxqpqD0D3+TWLMCdJkiRJmpX0TtzMMChZC3ylqk46qP6HwDjw61VVSV4GrKqqp5KcAvwZcCLwOuC/V9Vbu+3eDPx+Vf37JH9XVUf27fNHVTXwvqIkG+ldgsfY2Ngp27Ztm/MbHoYn9z7NEz9d7lloKYwdgb1eAutXv3Ko+9/52NPTvm6f22GvR8NCvyfs27ePVatWDXxtpu8HGi1LdUwP++eUpjfdMX2w008//a6qGp9p3OHznUySDcCvAWd0l8RRVc8Bz3WP70ryMHA8vTND/ZfYrQEe7x4/keSYqtrTXWb35KG+ZlVtAbYAjI+P18TExHynv6iuvO4mLt85739KjZBN6/fb6yWw+z0TQ93/RZu/Ou3r9rkd9no0LPR7wuTkJIf6nWGm7wcaLUt1TA/755SmN90xPV/z+q8mydnAR4B/V1U/6au/GthbVc8n+SV6Cyo8UlV7kzyb5DTgW8CFwJXdZtuBDcBl3eeb5v1uJL0orPWXFEmStIRmDEVJrgcmgKOTTAGX0ltt7mXAjm5l7du7lebeAnw8yX7geeCDVXVgkYYP0VvJ7gh69yAduA/pMuCGJO8HfgC8e1HemSRJkiTNwoyhqKrOH1C++hBjbwRuPMRrdwInDag/BZwx0zwkSZIkaRgWY/U5SZIkSRpZhiJJkiRJTTMUSZIkSWqaoUiSJElS0wxFkiRJkppmKJIkSZLUNEORJEmSpKYZiiRJkiQ1zVAkSZIkqWmGIkmSJElNO3y5JyBJkjSdtZu/uqDtN63fz0UL3IekFzfPFEmSJElqmqFIkiRJUtMMRZIkSZKaZiiSJEmS1DRDkSRJkqSmGYokSZIkNW1WoSjJ1iRPJrmvr/aqJDuSPNR9PqqrJ8kVSXYluTfJG/q22dCNfyjJhr76KUl2dttckSSL+SYlSZIk6VBme6boC8DZB9U2A7dV1Trgtu45wNuBdd3HRuAq6IUo4FLgjcCpwKUHglQ3ZmPfdgd/LUmSJEkailn98daq+kaStQeVzwUmusfXAJPAR7r6tVVVwO1JjkxyTDd2R1XtBUiyAzg7ySTwiqr6Zle/FngncMt835QkSZI0qhb6B4tnsvuydwx1/6NoIfcUjVXVHoDu82u6+mrg0b5xU11tuvrUgLokSZIkDd2szhTN0aD7gWoe9Z/dcbKR3mV2jI2NMTk5Oc8pLq6xI2DT+v3LPQ0tAXvdBvvcDnvdBvvcjqXq9bB/Bx32e1gpv0PP1759+xb9PSwkFD2R5Jiq2tNdHvdkV58Cju0btwZ4vKtPHFSf7OprBoz/GVW1BdgCMD4+XhMTE4OGLbkrr7uJy3cOI19qpdm0fr+9boB9boe9boN9bsdS9Xr3eyaGuv+Lhnz5HDt/PNTdD/vyvMnJSRY7Byzk8rntwIEV5DYAN/XVL+xWoTsNeLq7vO5W4MwkR3ULLJwJ3Nq99myS07pV5y7s25ckSZIkDdWsonSS6+md5Tk6yRS9VeQuA25I8n7gB8C7u+E3A+cAu4CfAO8FqKq9ST4B3NGN+/iBRReAD9Fb4e4IegssuMiCJEmSpCUx29Xnzj/ES2cMGFvAxYfYz1Zg64D6ncBJs5mLJEmSJC2mhVw+J0mSJEkjz1AkSZIkqWmGIkmSJElNMxRJkiRJapqhSJIkSVLTDEWSJEmSmmYokiRJktQ0Q5EkSZKkphmKJEmSJDXNUCRJkiSpaYYiSZIkSU0zFEmSJElqmqFIkiRJUtMMRZIkSZKaZiiSJEmS1DRDkSRJkqSmGYokSZIkNW3eoSjJ65Lc0/fxTJIPJ/lYksf66uf0bfPRJLuSPJjkrL762V1tV5LNC31TkiRJkjRbh893w6p6EDgZIMlhwGPAl4H3Ap+pqk/1j09yAnAecCLwWuBrSY7vXv4s8DZgCrgjyfaq+u585yZJkiRJszXvUHSQM4CHq+pvkxxqzLnAtqp6Dvh+kl3Aqd1ru6rqEYAk27qxhiJJkiRJQ7dYoeg84Pq+55ckuRC4E9hUVT8CVgO3942Z6moAjx5Uf+MizUuSJElaVGs3f3W5p6BFlqpa2A6SlwKPAydW1RNJxoAfAgV8Ajimqt6X5LPAN6vqT7rtrgZupndf01lV9Ttd/QLg1Kr63QFfayOwEWBsbOyUbdu2LWjui+XJvU/zxE+XexZaCmNHYK8bYJ/bYa/bYJ/bYa9XhvWrXznU/e/bt49Vq1bNauzpp59+V1WNzzRuMc4UvR24u6qeADjwGSDJ54GvdE+ngGP7tltDL0wxTf0FqmoLsAVgfHy8JiYmFmH6C3fldTdx+c7FOummlWzT+v32ugH2uR32ug32uR32emXY/Z6Joe5/cnKSxc4Bi7Ek9/n0XTqX5Ji+194F3Nc93g6cl+RlSY4D1gHfBu4A1iU5rjvrdF43VpIkSZKGbkFROsk/p7dq3Af6yn+U5GR6l8/tPvBaVd2f5AZ6CyjsBy6uque7/VwC3AocBmytqvsXMi9JkiRJmq0FhaKq+gnwLw6qXTDN+E8CnxxQv5ne/UWSJEmStKQW4/I5SZIkSRpZhiJJkiRJTTMUSZIkSWqaoUiSJElS0wxFkiRJkppmKJIkSZLUNEORJEmSpKYZiiRJkiQ1zVAkSZIkqWmGIkmSJElNMxRJkiRJapqhSJIkSVLTDEWSJEmSmmYokiRJktQ0Q5EkSZKkphmKJEmSJDXNUCRJkiSpaYYiSZIkSU1bcChKsjvJziT3JLmzq70qyY4kD3Wfj+rqSXJFkl1J7k3yhr79bOjGP5Rkw0LnJUmSJEmzsVhnik6vqpOrarx7vhm4rarWAbd1zwHeDqzrPjYCV0EvRAGXAm8ETgUuPRCkJEmSJGmYhnX53LnANd3ja4B39tWvrZ7bgSOTHAOcBeyoqr1V9SNgB3D2kOYmSZIkSf/o8EXYRwF/nqSA/1VVW4CxqtoDUFV7krymG7saeLRv26mudqj6CyTZSO8ME2NjY0xOTi7C9Bdu7AjYtH7/ck9DS8Bet8E+t8Net8E+t8NerwzD/h193759i/41FiMUvamqHu+Cz44k35tmbAbUapr6Cwu9wLUFYHx8vCYmJuYx3cV35XU3cfnOxfin1Eq3af1+e90A+9wOe90G+9wOe70y7H7PxFD3Pzk5yWLngAVfPldVj3efnwS+TO+eoCe6y+LoPj/ZDZ8Cju3bfA3w+DR1SZIkSRqqBYWiJC9P8nMHHgNnAvcB24EDK8htAG7qHm8HLuxWoTsNeLq7zO5W4MwkR3ULLJzZ1SRJkiRpqBZ6fnEM+HKSA/v606r6v0nuAG5I8n7gB8C7u/E3A+cAu4CfAO8FqKq9ST4B3NGN+3hV7V3g3CRJkiRpRgsKRVX1CPArA+pPAWcMqBdw8SH2tRXYupD5SJIkSdJcDWtJbkmSJEkaCYYiSZIkSU0zFEmSJElqmqFIkiRJUtMMRZIkSZKaZiiSJEmS1DRDkSRJkqSmGYokSZIkNc1QJEmSJKlphiJJkiRJTTMUSZIkSWqaoUiSJElS0wxFkiRJkppmKJIkSZLUNEORJEmSpKYZiiRJkiQ1zVAkSZIkqWnzDkVJjk3y9SQPJLk/ye919Y8leSzJPd3HOX3bfDTJriQPJjmrr352V9uVZPPC3pIkSZIkzd7hC9h2P7Cpqu5O8nPAXUl2dK99pqo+1T84yQnAecCJwGuBryU5vnv5s8DbgCngjiTbq+q7C5ibJEmSJM3KvENRVe0B9nSPn03yALB6mk3OBbZV1XPA95PsAk7tXttVVY8AJNnWjTUUSZIkSRq6RbmnKMla4PXAt7rSJUnuTbI1yVFdbTXwaN9mU13tUHVJkiRJGrqFXD4HQJJVwI3Ah6vqmSRXAZ8Aqvt8OfA+IAM2LwYHszrE19oIbAQYGxtjcnJyodNfFGNHwKb1+5d7GloC9roN9rkd9roN9rkd9nplGPbv6Pv27Vv0r7GgUJTkJfQC0XVV9SWAqnqi7/XPA1/pnk4Bx/ZtvgZ4vHt8qPoLVNUWYAvA+Ph4TUxMLGT6i+bK627i8p0LzpcaAZvW77fXDbDP7bDXbbDP7bDXK8Pu90wMdf+Tk5Msdg5YyOpzAa4GHqiqT/fVj+kb9i7gvu7xduC8JC9LchywDvg2cAewLslxSV5KbzGG7fOdlyRJkiTNxUKi9JuAC4CdSe7pan8AnJ/kZHqXwO0GPgBQVfcnuYHeAgr7gYur6nmAJJcAtwKHAVur6v4FzEuSJEmSZm0hq8/9FYPvE7p5mm0+CXxyQP3m6baTJEmSpGFZlNXnJEmSJGlUGYokSZIkNc1QJEmSJKlphiJJkiRJTTMUSZIkSWqaoUiSJElS0wxFkiRJkppmKJIkSZLUNEORJEmSpKYZiiRJkiQ1zVAkSZIkqWmGIkmSJElNMxRJkiRJapqhSJIkSVLTDEWSJEmSmmYokiRJktQ0Q5EkSZKkpq2YUJTk7CQPJtmVZPNyz0eSJElSG1ZEKEpyGPBZ4O3ACcD5SU5Y3llJkiRJasGKCEXAqcCuqnqkqv4e2Aacu8xzkiRJktSAlRKKVgOP9j2f6mqSJEmSNFSpquWeA0neDZxVVb/TPb8AOLWqfvegcRuBjd3T1wEPLulED+1o4IfLPQktCXvdBvvcDnvdBvvcDnvdhrn0+Rer6tUzDTp8YfNZNFPAsX3P1wCPHzyoqrYAW5ZqUrOV5M6qGl/ueWj47HUb7HM77HUb7HM77HUbhtHnlXL53B3AuiTHJXkpcB6wfZnnJEmSJKkBK+JMUVXtT3IJcCtwGLC1qu5f5mlJkiRJasCKCEUAVXUzcPNyz2OeVtwlfRoae90G+9wOe90G+9wOe92GRe/zilhoQZIkSZKWy0q5p0iSJEmSloWhaBaSHJvk60keSHJ/kt876PX/lKSSHN09n0jydJJ7uo//ujwz11wcqs9JPpbksb5+ntO3zUeT7EryYJKzlm/2mq259jnJ2iQ/7at/bnnfgWZruu/dSX63O27vT/JHfXWP6REz1z57TI+uab5/f7Gvn7uT3NO3jcf0iJlrnxfrmF4x9xStcPuBTVV1d5KfA+5KsqOqvpvkWOBtwA8O2uYvq+rXlnymWoiBfe5e+0xVfap/cJIT6K2UeCLwWuBrSY6vqueXdNaaqzn1ufNwVZ28dFPUIjlUr8eAc4FfrqrnkrwGPKZH2Jz63PGYHk2H+n3stw4MSHI58HT32GN6NM2pz50FH9OeKZqFqtpTVXd3j58FHgBWdy9/Bvh9wJuzRtwMfR7kXGBbVT1XVd8HdgGnDn+mWoh59Fkjappefwi4rKqe6157stvEY3oEzaPPGlEzff9OEuA3geu7ksf0CJpHnxeFoWiOkqwFXg98K8l/AB6rqu8MGPpvk3wnyS1JTlzKOWrh+vvclS5Jcm+SrUmO6mqrgUf7NpvCX65Hyiz7DHBckr9O8hdJ3rzU89TCHdTr44E3J/lW19N/0w3zmB5xs+wzeEyPvAHfvwHeDDxRVQ91zz2mR9ws+wyLcEwbiuYgySrgRuDD9E7t/SEw6H6hu4FfrKpfAa4E/mzJJqkF6+9zVT0DXAX8S+BkYA9w+YGhAzb3jOGImEOf9wC/UFWvB/4j8KdJXrEMU9Y8Dej14cBRwGnAfwZu6P7Po8f0CJtDnz2mR9yAXh9wPi88e+AxPcLm0OdFOaYNRbOU5CX0GnNdVX2J3i9PxwHfSbIbWAPcneTnq+qZqtoH//j3l16SbhEGrWwD+kxVPVFVz1fVPwCf559OvU8Bx/ZtvgZ4fCnnq/mZS5+7yy6e6h7fBTxM7/9AawQM6jW9Y/dL1fNt4B+Ao/GYHllz6bPH9Gg7RK9Jcjjw68AX+4Z7TI+oufR5sY5pQ9EsdP9n6Wrggar6NEBV7ayq11TV2qpaS+/Ae0NV/b8kP99tQ5JT6f07P7VM09csDepzVz+mb9i7gPu6x9uB85K8LMlxwDrg20s1X83PXPuc5NVJDuse/xK9Pj+ydDPWfB2q1/TO3v9qN+Z44KXAD/GYHklz7bPH9OiaptcAbwW+V1VTfTWP6RE01z4v1jHt6nOz8ybgAmBn/mmZxz/ozgIN8hvAh5LsB34KnFf+ldxRMLDPwPlJTqZ3yn038AGAqro/yQ3Ad+ldTnmxK9qMhDn1GXgL8PHueH4e+GBV7V3aKWueDtXrrcDWJPcBfw9s6L5He0yPpjn1OYnH9Oia7vex8zjoxnt/To+sOfWZRfo5HX9XlyRJktQyL5+TJEmS1DRDkSRJkqSmGYokSZIkNc1QJEmSJKlphiJJkiRJTTMUSZIkSWqaoUiSJElS0wxFkiRJkpr2/wHp9JqyOttHyAAAAABJRU5ErkJggg==\n", "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}], "source": ["sept = df[(df.dtstart >= datetime(2016,9,1)) & (df.dtstart < datetime(2016,10,1))]\n", "sept.day.hist(figsize=(14,4), bins=30);"]}, {"cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": ["sept16 = sept[(sept.dtstart >= datetime(2016,9,12)) & (sept.dtstart < datetime(2016,9,17))].copy()"]}, {"cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [{"data": {"text/html": ["
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
trip_id
from_station_id
351674
911298
771110
174991
192898
177892
75844
76814
133718
81705
90705
85700
195686
268658
287624
36614
283588
49561
43550
52532
\n", "
"], "text/plain": [" trip_id\n", "from_station_id \n", "35 1674\n", "91 1298\n", "77 1110\n", "174 991\n", "192 898\n", "177 892\n", "75 844\n", "76 814\n", "133 718\n", "81 705\n", "90 705\n", "85 700\n", "195 686\n", "268 658\n", "287 624\n", "36 614\n", "283 588\n", "49 561\n", "43 550\n", "52 532"]}, "execution_count": 15, "metadata": {}, "output_type": "execute_result"}], "source": ["sept16[[\"from_station_id\", \"trip_id\"]].groupby(\"from_station_id\") \\\n", " .count().sort_values(\"trip_id\", ascending=False) \\\n", " .head(n=20)"]}, {"cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAzIAAAD8CAYAAACsP5F0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHaRJREFUeJzt3X+sZGd93/H3Fy8Gs4Dtxfh2a6Ne01huUa74oSsXShVdcACDEXYlbJladDdxtFJ/IGi2CusilVbKH0sLCamFgBUQr6oNtutA17KTUMthhPKPC+bXGoxjx9nA2osXAhgukUJu+u0fc+569vrOvWd+nXOe2fdLurozZ+bMfObcmXnuc57veU5kJpIkSZJUkue0HUCSJEmSRmVHRpIkSVJx7MhIkiRJKo4dGUmSJEnFsSMjSZIkqTh2ZCRJkiQVx46MJEmSpOJs25GJiCsi4usDPz+NiPdFxK6IuC8iHq1+X9hEYEmSJEmKUU6IGRHnAE8A/wz4d8CPMvNgRBwALszM988mpiRJkiQ9Y9SOzJuBD2bm6yPiEWAlM09GxG6gl5lXbLX+RRddlIuLi7Wf7+c//zk7d+6sff+uMHezSsxdYmYwd9NmlfvBBx/8YWa+dOoPPAdGbafW+R5rVom5S8wM5m5SiZlhNrnrtlM7RnzcG4HPVpcXMvMkQNWZuXizFSJiH7APYGFhgQ9/+MO1n2x1dZUXvvCFI0Zsn7mbVWLuEjODuZs2q9xveMMb/mrqDzonFhcX+cpXvjLyer1ej5WVlekHmjFzN6fEzGDuJpWYGWaTOyJqtVO1OzIRcS7wDuCWUYJk5iHgEMDy8nKO8kL9gzbL3M0pMTOYu2ml5pYkqQmjzFr2VuCrmflUdf2pqqSM6vepaYeTJEmSpM2M0pF5F8+UlQHcDeypLu8Bjk4rlCRJkiRtpVZHJiJeALwJ+NzA4oPAmyLi0eq2g9OPJ0mSJEnPVusYmcz8G+AlG5b9NXDVLEJJkiRJ0lZGKS2TJEmSpE6wIyNJkiSpOHZkJEmSJBXHjowkSZKk4tQ+IaYkTcPigXtPXz5+8JoWk0iS9Gy2U+VwREaSJElScezISJIkSSqOHRlJkiRJxbEjI0mSJKk4dmQkSZIkFceOjCRJkqTi2JGRJEmSVBw7MpIkSZKK4wkxJU3F4AnEwJOIqVkRcQHwKeCXgQR+HXgEuANYBI4DN2Tmj1uKKEmaMkdkJEnz4PeAP8nMfwK8EngYOADcn5mXA/dX1yVJc8KOjCSpaBHxYuBXgE8DZOYvMvMnwLXA4epuh4Hr2kkoSZoFOzKSpNK9HPgB8PsR8bWI+FRE7AQWMvMkQPX74jZDSpKmy2NkJEml2wG8BnhPZj4QEb/HCGVkEbEP2AewsLBAr9cbOcDq6upY67XN3M0pMTOcnbn3L62dvtzkaz8bt/Wk7MhIkkp3AjiRmQ9U1++i35F5KiJ2Z+bJiNgNnNps5cw8BBwCWF5ezpWVlZED9Ho9xlmvbeZuTomZ4ezMvXdg8prjN433GOM4G7f1pCwtkyQVLTO/D3wvIq6oFl0FfBu4G9hTLdsDHG0hniRpRhyRkSTNg/cARyLiXOBx4Nfo76y7MyJuBr4LXN9iPknSlNmRkSQVLzO/DixvctNVTWeRJDWjVmlZRFwQEXdFxHci4uGIeF1E7IqI+yLi0er3hbMOK0mSJElQ/xgZTzQmSZIkqTO27ch4ojFJkiRJXVPnGJnBE429EngQeC8bTjQWEZueaGyS+fmdT7tZ5m5OiZlh69yD8+7D8Ln325iffx63tyRJZ7s6HZmJTjQ2yfz8zqfdLHM3p8TMsHXuwXn3Yfjc+23Mzz+P21uSpLNdnWNkNjvR2GuoTjQGsNWJxiRJkiRp2rbtyHiiMUmSJEldU/c8Mp5oTJIkSVJn1OrIeKIxSZIkSV1S9zwykiRJktQZdmQkSZIkFceOjCRJkqTi2JGRJEmSVBw7MpIkSZKKY0dGkiRJUnHsyEiSJEkqjh0ZSZIkScWxIyNJkiSpOHZkJEmSJBXHjowkSZKk4tiRkSRJklQcOzKSJEmSirOj7QCS5tPigXtPXz5+8JoWk0iSpHlkR0aSVLyIOA78DPh7YC0zlyNiF3AHsAgcB27IzB+3lVGSNF2WlkmS5sUbMvNVmblcXT8A3J+ZlwP3V9clSXPCjowkaV5dCxyuLh8GrmsxiyRpyuzISJLmQQL/JyIejIh91bKFzDwJUP2+uLV0kqSp8xgZSdI8eH1mPhkRFwP3RcR36q5YdXz2ASwsLNDr9UZ+8tXV1bHWa5u5m1NiZigz97EnnmbhPLj1yFGWLjl/5PX3L62dvtzkay9xW0O7ue3ISJKKl5lPVr9PRcTngSuBpyJid2aejIjdwKkh6x4CDgEsLy/nysrKyM/f6/UYZ722mbs5JWaGMnPvPXAv+5fW+MixHRy/aWWs9deNs/64StzW0G5uS8skSUWLiJ0R8aL1y8CbgYeAu4E91d32AEfbSShJmgVHZCRJpVsAPh8R0G/X/iAz/yQivgzcGRE3A98Frm8xo6SO8Xxn5avVkXF+fklSV2Xm48ArN1n+18BVzSeSJDVhlNIy5+eXJEmS1AmTHCPj/PySJEmSWlH3GJn1+fkT+GQ1w8sZ8/NXU14+yyTTWjoNXbPM3ZzSMh974mkAFs47cyrK9eUA+5eGrz+4ThvTWpa2vdeVmluSpCbU7ciMPT//JNNaOg1ds8zdnNIyr09FuX9pjRsGcg9OUbmVwekr25jWsrTtva7U3JIkNaFWadng/PzAGfPzA2w1P78kSZIkTdu2HRnn55ckSZLUNXVKy5yfX5IkSVKnbNuRcX5+SZIkSV1T92B/SZIkqVGLgxPEHLymkedROSY5j4wkSZIktcKOjCRJkqTiWFomSZIkbWJjydksy9s0OkdkJEmSJBXHjowkSZKk4lhaJkmSpNMGy6luu3rnTB53nBIty7y0kR0ZSUVpaipOSZLUbZaWSZIkSSqOHRlJkiRJxbG0TJIkaU5Zjqt55oiMJEmSpOLYkZEkSZJUHEvLJM3cxikzJUnt6lrJWdfyqAyOyEiSJEkqjh0ZSZIkScWxIyNJmgsRcU5EfC0i7qmuXxYRD0TEoxFxR0Sc23ZGSdL02JGRJM2L9wIPD1z/EPC7mXk58GPg5lZSSZJmwo6MJKl4EXEpcA3wqep6AG8E7qruchi4rp10kqRZcNYySdI8+CjwW8CLqusvAX6SmWvV9RPAJZutGBH7gH0ACwsL9Hq9kZ98dXV1rPXaZu7mtJV5/9La6cuDzz9s+cbbJs197ImnBx73meVbPeewnBsNy7V/aY2F8/q/bz1y9PTypUvOH/qcdc3yb1ji+xrazW1HRpJUtIh4O3AqMx+MiJX1xZvcNTdbPzMPAYcAlpeXc2VlZbO7banX6zHOem0zd3Payrx3cFrjm1a2Xb7xttuu3jlR7r1Dpt/f6jmH5dzuMQbX2b+0xkeO7djy/ls99qjPOQ0lvq+h3dx2ZCRJpXs98I6IeBvwfODF9EdoLoiIHdWozKXAky1mlCRNWe1jZJwNRlKTFg/ce/pH2kpm3pKZl2bmInAj8KeZeRPwReCd1d32AEeHPIQkqUCjjMiszwbz4ur6+mwwt0fEJ+jPBvPxKeeTJGlc7wduj4jfBr4GfLrlPJJmpM5OL3eMzZ9aIzLOBiNJKkFm9jLz7dXlxzPzysz8pcy8PjP/tu18kqTpqTsi08psMM7e0CxzT2ZwZpaNM6Ns1JXMda3P7LJwXv3ZZOoYnE3m2c+5+f22mvVmmNK297pSc0uS1IRtOzJtzgbj7A3NMvdktpoBZqOuZK5r/bXtX1rjhoHc48z4Mk11Z48pbXuvKzW3JE3CEjDVVWdExtlgJEmSJHXKtsfIOBuMJEmSpK6Z5DwyzgYjSZJUuGmUcg0+xvGD10z8eFIdI3VkMrMH9KrLjwNXTj+SJEmSJG1tkhEZSWchD8KUJEldYEdGkiRpTrizSWeTWifElCRJkqQucURGGsHGPV1dPaCxlJyTOltepyRJejZHZCRJkiQVxxEZSZIkTY3H6agpjshIkiRJKo4jMpIAT2YmSZLKYkdGkiSpMO58kiwtkyRJklQgR2SkjnOKYUmSpGezIyNJknQWcDYxzRtLyyRJkiQVxxEZaU7U3dPmHjlJkjQP7MhIkiRJM+IMc7NjaZkkSZKk4jgiIxXMMjFJknS2siMjSSpaRDwf+BLwPPrt2l2Z+cGIuAy4HdgFfBV4d2b+or2kkqap7Z15w57f8rHmWFomSSrd3wJvzMxXAq8Cro6I1wIfAn43My8Hfgzc3GJGSdKUOSIjnQXa3mslzVJmJrBaXX1u9ZPAG4F/VS0/DPwX4ONN55MkzYYjMpKk4kXEORHxdeAUcB/wF8BPMnOtussJ4JK28kmSpm/bERlrjyVJXZeZfw+8KiIuAD4P/NPN7rbZuhGxD9gHsLCwQK/XG/n5V1dXx1qvbeZuzrQz719aO3158HEHl09D3dyjPu/Gx5x27oXzpv+YUG9bb/XattqWJb6vod3cdUrL1muPVyPiucCfRcQfA79Jv/b49oj4BP3aY4fspSnYqhTMMjFpuMz8SUT0gNcCF0TEjmpU5lLgySHrHAIOASwvL+fKysrIz9vr9RhnvbaZuznTzrx38NwkN61sunwabrt6Z63coz7vYOZx1t/O/qU1PnJs+kdQ1NnWW722jbcNKvF9De3m3ra0LPuG1R7fVS0/DFw3k4SSJG0hIl5ajcQQEecBvwo8DHwReGd1tz3A0XYSSpJmoVZXNSLOAR4Efgn4GNYeS5K6YzdwuGqrngPcmZn3RMS3gdsj4reBrwGfbjOkNE8mrQ4otbqg1NzzqlZHpq3aY2sFm2Xu7W2shx1WK3vrkWd2/C5dcv6zHme7zLOo6x3FsPreWdUcT8uwbep7e75l5jeBV2+y/HHgyuYTSZKaMFLxYNO1x9YKNsvc29tYDztOrSxsn3natcKjGlbfO6ua42kZVnvse1uSpPmz7TEy1h5LkiRJ6po6u1atPZZUhMHa5eMHr2kxiSRJmrVtOzLWHkuSJEnqmu4Wu0uSJGlbzqTVLf49mmNHRmpRV0uh/BKWJEldt+3B/pIkSZLUNXZkJEmSJBXH0jJJkqSO2FjaO1h2bNmvdCZHZCRJkiQVx46MJEmSpOJYWiZNYJxh/sUD97J/aY29lghIkrZhOZm6OsNpFzgiI0mSJKk4dmQkSZIkFceOjCRJkqTi2JGRJEmSVBw7MpIkSZKKY0dGkiRJUnHsyEiSJEkqjh0ZSZIkScWxIyNJkiSpODvaDiBJkjQv5u0s7MeeeJq91Wuah9ej+eKIjCRJkqTi2JGRJBUtIl4WEV+MiIcj4lsR8d5q+a6IuC8iHq1+X9h2VknS9FhaJlVmVQ4w+LjTuJ9GZ2nE3FsD9mfmVyPiRcCDEXEfsBe4PzMPRsQB4ADw/hZzSpKmyBEZSVLRMvNkZn61uvwz4GHgEuBa4HB1t8PAde0klCTNwrYdGYfsJUmliIhF4NXAA8BCZp6EfmcHuLi9ZJKkaatTWuaQvYozb7PGSNpeRLwQ+EPgfZn504iou94+YB/AwsICvV5v5OdeXV0da722mbvv2BNPn768dMn5Ez3W/qW105cHM9bNPLh+Fyyc90ymwfxdy7nRYO4u2eo9MOw9Muw91RVtfo9s25Gp9mKt79H6WUQMDtmvVHc7DPSwIyNJakFEPJd+J+ZIZn6uWvxUROzOzJMRsRs4tdm6mXkIOASwvLycKysrIz9/r9djnPXaZu6+vYM7v26a7HGHPVbdzHs7drzk/qU1PnKs/+/i4OvpWs6NBnN3yVbvr2HvkWm+P2ehze+RkY6RcchektQ10R96+TTwcGb+zsBNdwN7qst7gKNNZ5MkzU7trmobQ/YOeTdrnnKPMwxbZ51pDVN3dch7OyXlHvwbDiuN6LpSP5MteD3wbuBYRHy9WvafgIPAnRFxM/Bd4PqW8klzwdk11TW1OjJtDdk75N2seco9zjBsnXWmNZTe1SHv7ZSUe/BveOuRo5uWRnRdqZ/JpmXmnwHD9q5d1WQWSVJz6sxa5pC9JEmSpE6ps2vVIXud1RxKlyRJ6p46s5Y5ZC9JkiSpU0aatUySJEmSuqCMo3alKfFEmarL94okSd1mR0aSJGlE7uyQ2mdpmSRJkqTiOCKjmXOvlSRJkqbNERlJkiRJxbEjI0mSJKk4lpZp6qZ9AklL09QUT34qSVI57MhIkiQ1zJ10Zyf/7tNlaZkkSZKk4tiRkSRJklQcOzKSJEmSimNHRpIkSWrR4oF7OfbE0046MyI7MpIkSZKK46xlKtb6Xov9S2vsPXDvVGf/cI+I6nIGGkmS2mFHRpIkaRMbd2pNurPCnWRq27ztfLO0TJIkSVJxHJHR3HBPlyRJ0tnDjowkSSrasHKZeSuj0dnBHbP1WVomSZIkqTiOyKhRk+4dcy+FSjTtA4YlSZIdGUlS4SLiM8DbgVOZ+cvVsl3AHcAicBy4ITN/3FZGdU8TO8YGn2P/0hrD/u1yJ500nm1LyyLiMxFxKiIeGli2KyLui4hHq98XzjamJElD3QZcvWHZAeD+zLwcuL+6LkmaI3WOkbkNGwgVbPHAvad/JM2fzPwS8KMNi68FDleXDwPXNRpKkjRz25aWZeaXImJxw+JrgZXq8mGgB7x/irkkSZrEQmaeBMjMkxFx8bA7RsQ+YB/AwsICvV5v5CdbXV0da722zUvuftlWX53lG28bNGx9gFuPHB24rd466xbOG35bl5l7dja+b+pknvTzutVnYlxtfo+Me4xM7QZCkqQuy8xDwCGA5eXlXFlZGfkxer0e46zXtnnJvXdwIpmbtl++8bZBw9bfSp119i+t8ZFj5R2abO7Z2fi+qZN54/t4VFt9JsbV5vfIzP/Ck+zpmpc9RaWYVu66e0DqPtd2jzfuXpe6e+dmoYQ9RZspKffg33cw9+Ae1Y0G97AOGlxn6ZLzN6yz/d6trfbqbny8QaV+l3TEUxGxu9rZths41XYgSdJ0jduRqd1ATLKna172FJViWrnH2YM1yeONu9el7t65WShhT9FmSso9+Pe99cjRqeXe6n0z7D291Xtrq89Bqd8lHXE3sAc4WP0e3oOVJBVp3JbdBkKS1AkR8Vn6x21eFBEngA/Sb5/ujIibge8C17eXUCVxYhg1xffa5LbtyNhAqI5xPoyTnhxTkgAy811Dbrqq0SCSpEbVmbXMBkKSJElSp5RR7C5JklQ59sTTQ489s1xHOnvYkZGkEfhPkiRJ3fCctgNIkiRJ0qgckZEkSZIKMGyipI3VAmfLJEp2ZLStYaU0s/yQWL4jSZKkrVhaJkmSJKk4jshIkqS550i/dKZ5KEezIyNpLg1+Qe9fajGIJEmaCUvLJEmSJBXHjowkSZKk4lhapk6wdlnzZtrv6WFTbkrzrJT3vW2Y1A5HZCRJkiQVx46MJEmSpOJYWiagPyy+f2mNvQfurT1871C6dCY/E5KkpsyyhHnQOP8XNlUK6oiMJEmSpOLYkZEkSZJUHEvLJEkqTJdm86p7dvC6mYeVt3iSW0kb2ZEpTJ2GYKuaybYbPElnmrQmWZKks5WlZZIkSZKK44iMJEkd0aWSMUnlmuaMZl2uHCiqI9PGF/y8NSqTlqbNk7PldUqSJM0jS8skSZIkFWeijkxEXB0Rj0TEYxFxYFqhJEmaBtspSZpfY5eWRcQ5wMeANwEngC9HxN2Z+e1phdvKViVS45RP1Skbq/uct129c9vHmjbLpCTpTG20U10rR+5qSfY4bbCkbln/HO9fWmNvS/+HTjIicyXwWGY+npm/AG4Hrp1OLEmSJmY7JUlzbJKOzCXA9waun6iWSZLUBbZTkjTHIjPHWzHieuAtmfkb1fV3A1dm5ns23G8fsK+6egXwyAhPcxHww7ECtsvczSoxd4mZwdxNm1Xuf5SZL53B43ZKQ+3UOt9jzSoxd4mZwdxNKjEzzCZ3rXZqkumXTwAvG7h+KfDkxjtl5iHg0DhPEBFfyczl8eK1x9zNKjF3iZnB3E0rNXeHzLydWlfq38rczSkxM5i7SSVmhnZzT1Ja9mXg8oi4LCLOBW4E7p5OLEmSJmY7JUlzbOwRmcxci4h/D3wBOAf4TGZ+a2rJJEmagO2UJM23SUrLyMw/Av5oSlk2M9FQf4vM3awSc5eYGczdtFJzd0YD7dS6Uv9W5m5OiZnB3E0qMTO0mHvsg/0lSZIkqS2THCMjSZIkSa3obEcmIq6OiEci4rGIONB2nnUR8bKI+GJEPBwR34qI91bLd0XEfRHxaPX7wmp5RMT/qF7HNyPiNS3nPycivhYR91TXL4uIB6rcd1QHxBIRz6uuP1bdvthi5gsi4q6I+E613V9XwvaOiP9QvUceiojPRsTzu7i9I+IzEXEqIh4aWDby9o2IPdX9H42IPS1k/u/Ve+SbEfH5iLhg4LZbqsyPRMRbBpY3+j2zWe6B2/5jRGREXFRd78S21vZsr2aW3/aqmcy2Vc3n7nR7VVRblZmd+6F/UOZfAC8HzgW+Abyi7VxVtt3Aa6rLLwL+HHgF8N+AA9XyA8CHqstvA/4YCOC1wAMt5/9N4A+Ae6rrdwI3Vpc/Afyb6vK/BT5RXb4RuKPFzIeB36gunwtc0PXtTf+ke38JnDewnfd2cXsDvwK8BnhoYNlI2xfYBTxe/b6wunxhw5nfDOyoLn9oIPMrqu+Q5wGXVd8t57TxPbNZ7mr5y+gfkP5XwEVd2tb+bPs3tb2aXX7bq9nnta2a8ffnkNydbq82y1wt71xb1egHZoQN+DrgCwPXbwFuaTvXkKxHgTfRP4Ha7mrZbuCR6vIngXcN3P/0/VrIeilwP/BG4J7qTffDgQ/T6e1evVFfV13eUd0vWsj84upLNjYs7/T25pkziu+qtt89wFu6ur2BxQ1fsiNtX+BdwCcHlp9xvyYyb7jtXwJHqstnfH+sb+u2vmc2yw3cBbwSOM4zjUNntrU/W/49ba9mk9X2qpnMtlUNfH9u9r0/cFsn26vNMtPBtqqrpWXrH6x1J6plnVINqb4aeABYyMyTANXvi6u7dem1fBT4LeD/VddfAvwkM9eq64PZTueubn+6un/TXg78APj9qsTgUxGxk45v78x8Avgw8F3gJP3t9yDd397rRt2+ndjuA36d/h4i6HjmiHgH8ERmfmPDTZ3OrdOK+HvYXjWiuPbKtqoTn9ci2quutlVd7cjEJsuy8RRbiIgXAn8IvC8zf7rVXTdZ1vhriYi3A6cy88HBxZvcNWvc1qQd9Ic3P56ZrwZ+Tn/4eJhO5K7qdK+lPzT8D4GdwFs3uWvXtvd2huXsTP6I+ACwBhxZX7TJ3TqROSJeAHwA+M+b3bzJsk7k1hk6//ewvWpMce2VbdXp5a0opb3qclvV1Y7MCfp1eOsuBZ5sKcuzRMRz6TcKRzLzc9XipyJid3X7buBUtbwrr+X1wDsi4jhwO/3h+o8CF0TE+vmEBrOdzl3dfj7woyYDD+Q4kZkPVNfvot9QdH17/yrwl5n5g8z8O+BzwD+n+9t73ajbtxPbvTqY8O3ATVmNZW+RrQuZ/zH9fyC+UX02LwW+GhH/YIt8XcitZ3T672F71agS2yvbqpY+r4W1V51tq7rakfkycHk1a8a59A8ou7vlTEB/dgbg08DDmfk7AzfdDeypLu+hX4u8vvxfV7M6vBZ4en0YtEmZeUtmXpqZi/S3559m5k3AF4F3Dsm9/nreWd2/8b0Wmfl94HsRcUW16Crg23R8e9Mfpn9tRLyges+s5+709h4w6vb9AvDmiLiw2sP35mpZYyLiauD9wDsy828GbrobuDH6s+1cBlwO/F868D2Tmccy8+LMXKw+myfoH5z9fTq8rXWG1t9Hw9heNavQ9sq2qoXvz9Laq063VdM+6GZaP/RnQfhz+rM0fKDtPAO5/gX9obFvAl+vft5Gv0b0fuDR6veu6v4BfKx6HceA5Q68hhWemQXm5fQ/JI8B/wt4XrX8+dX1x6rbX95i3lcBX6m2+f+mP/tF57c38F+B7wAPAf+T/iwkndvewGfp10b/Hf0vp5vH2b7063wfq35+rYXMj9Gvx13/XH5i4P4fqDI/Arx1YHmj3zOb5d5w+3GeOYCyE9van1p/V9ur2b2GFWyvZp3Ztqr53J1urzbLvOH243SkrYrqiSRJkiSpGF0tLZMkSZKkoezISJIkSSqOHRlJkiRJxbEjI0mSJKk4dmQkSZIkFceOjCRJkqTi2JGRJEmSVBw7MpIkSZKK8/8BaPAF+Md9ZLQAAAAASUVORK5CYII=\n", "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}], "source": ["import matplotlib.pyplot as plt\n", "fig, ax = plt.subplots(1, 2, figsize=(14,4))\n", "sept16[sept16.from_station_id == 35][\"time\"].apply(lambda t: t.minute + t.hour*60).hist(bins=100, ax=ax[0])\n", "sept16[sept16.to_station_id == 35][\"time\"].apply(lambda t: t.minute + t.hour*60).hist(bins=100, ax=ax[1]);"]}, {"cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAzIAAAD8CAYAAACsP5F0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3X+sZGd93/H3N/4BDlBsx+Zma1u9prUirKywkyvk1FV1awhxMAIjkQhrRXeL003aUEG7SViD1EJ+SKbFOG0akWxih03l8KMGassmTS3jEbJULYlh8dpZiB3YEtuLNyjYcKlEc8m3f8y5y3g8c++5M3PmnGfu+yWN9sz5MfOZ59w7zz73Oc9zIjORJEmSpJL8QNsBJEmSJGm7bMhIkiRJKo4NGUmSJEnFsSEjSZIkqTg2ZCRJkiQVx4aMJEmSpOLYkJEkSZJUHBsykiRJkopjQ0aSJElScc6c55tdcMEFuby8PPHx3/nOd3jRi140u0BzUmLuEjNDmblLzAxl5i4xM8w+90MPPfSNzLxwZi+4QHZiPWXm+TDzfJh5PprOXLueysy5PX78x388p/HAAw9MdXxbSsxdYubMMnOXmDmzzNwlZs6cfW7gz3KO3/0lPXZiPWXm+TDzfJh5PprOXLee8tIySZIkScWxISNJkiSpODZkJEmSJBXHhowkSZKk4tiQkSRJklQcGzKSJEmSimNDRpIkSVJxbMhIkiRJKo4NGUmSJEnFObPtANpZlg/ee3r5xM3XtZhEkqTNDdZZYL0ldU3tHpmIOCMivhAR91TPL42IIxHxWER8LCLObi6mJEmSJH3fdi4tewdwfOD5+4FbM/My4JvAjbMMJkmSJEnj1GrIRMTFwHXA71fPA7gGuLPa5TBwfRMBJUmSJGlY3R6Z3wR+Bfi76vkPAc9k5nr1/AngohlnkyRJkqSRthzsHxGvB05l5kMRsbqxesSuOeb4/cB+gKWlJXq93mRJgbW1tamOb0uJuZvKfGD3+unlJl7fsp6fEnOXmBnKzS11iQP3pcVTZ9ayq4E3RMTrgBcCf49+D825EXFm1StzMfDUqIMz8xBwCGBlZSVXV1cnDtvr9Zjm+LaUmLupzPsGZy3bM/vXt6znp8TcJWaGcnNLktSkLS8ty8ybMvPizFwG3gJ8JjP3AA8Ab6522wvc1VhKSZLGiIgXRsTnIuKLEfFoRLyvWv/hiPhqRBytHle0nVWSNDvT3EfmXcBHI+LXgS8At80mkiRJ2/Jd4JrMXIuIs4AHI+KPq22/nJl3bnKsJKlQ22rIZGYP6FXLXwFeNftIkiTVl5kJrFVPz6oeI8dtSpIWx3buIyNJE1k+eO/ph9SE6qbNR4FTwH2ZeaTa9BsR8XBE3BoRL2gxoiRpxqa5tEySpE7IzO8BV0TEucCnIuJHgZuArwNn05905l3Arw4fu9Nn19wpmQdnzYR6M2dOcsw4O6Wc22bm+ehKZhsykqSFkZnPREQPuDYzP1Ct/m5E/AHwS2OO2dGza+6UzPuGp1+uMXPmJMeMs1PKuW1mno+uZPbSMklS0SLiwqonhog4B3gN8KWI2FWtC+B64JH2UkqSZs0eGUlS6XYBhyPiDPp/oPt4Zt4TEZ+JiAvp38T5KPALbYaUJM2WDRlJUtEy82HgyhHrr2khjiRpTry0TJIkSVJxbMhIkiRJKo4NGUmSJEnFsSEjSZIkqTg2ZCRJkiQVx4aMJEmSpOLYkJEkSZJUHBsykiRJkopjQ0aSJElScWzISJIkSSrOlg2ZiHhhRHwuIr4YEY9GxPuq9R+OiK9GxNHqcUXzcSVJkiQJzqyxz3eBazJzLSLOAh6MiD+utv1yZt7ZXDxJkiRJer4tGzKZmcBa9fSs6pFNhpIkSZKkzdQaIxMRZ0TEUeAUcF9mHqk2/UZEPBwRt0bECxpLKUmSJEkD6lxaRmZ+D7giIs4FPhURPwrcBHwdOBs4BLwL+NXhYyNiP7AfYGlpiV6vN3HYtbW1qY5vS4m5m8p8YPf66eUmXt+ynp/t5G76vNe1E8pakqSdolZDZkNmPhMRPeDazPxAtfq7EfEHwC+NOeYQ/YYOKysrubq6OnHYXq/HNMe3pcTcTWXed/De08sn9sz+9S3r+dlO7qbPe107oawlSdop6sxadmHVE0NEnAO8BvhSROyq1gVwPfBIk0ElSZIkaUOdHpldwOGIOIN+w+fjmXlPRHwmIi4EAjgK/EKDOSVJkiTptDqzlj0MXDli/TWNJJIkSZKkLdSatUySpK7a5MbNl0bEkYh4LCI+FhFnt51VkjQ7NmQkSaXbuHHzK4ErgGsj4irg/cCtmXkZ8E3gxhYzSpJmzIaMJKlo2Tfqxs3XAHdW6w/Tn5hGkrQgbMhIkoo3fONm4C+BZzJz4yZGTwAXtZVPkjR727qPjCRJXTR842bgFaN2G3XsTr9x807JPHhjXqh3c95Jjhlnp5Rz28w8H13JbENGUiOWB26CKc3LwI2brwLOjYgzq16Zi4Gnxhyzo2/cvFMy7xv6Tqpzc95Jjhlnp5Rz28w8H13J7KVlkqSijblx83HgAeDN1W57gbvaSShJaoI9MpKk0o27cfOfAx+NiF8HvgDc1mZISdJs2ZCRJBVtkxs3fwV41fwTSZLmwYaMJEnacQbH8Z24+boWk0ialGNkJEmSJBXHhowkSZKk4tiQkSRJklQcGzKSJEmSimNDRpIkSVJxbMhIkiRJKo4NGUmSJEnF2bIhExEvjIjPRcQXI+LRiHhftf7SiDgSEY9FxMci4uzm40qSJElSvR6Z7wLXZOYrgSuAayPiKuD9wK2ZeRnwTeDG5mJKkiRJ0vdt2ZDJvrXq6VnVI4FrgDur9YeB6xtJKEmSJElDzqyzU0ScATwE/CPgt4G/BJ7JzPVqlyeAi8Ycux/YD7C0tESv15s47Nra2lTHt6XE3E1lPrB7/fRyE69vWc/PVrkHz/WgNj/ropa1JEk7Ua2GTGZ+D7giIs4FPgW8YtRuY449BBwCWFlZydXV1cmS0v8P0DTHt6XE3E1l3nfw3tPLJ/bM/vUt6/nZKvfguR7UxHmva1HLWtLsLI/57pLUPduatSwznwF6wFXAuRGx0RC6GHhqttEkSZIkabQ6s5ZdWPXEEBHnAK8BjgMPAG+udtsL3NVUSEmSJEkaVOfSsl3A4WqczA8AH8/MeyLiz4GPRsSvA18AbmswpyRJkiSdtmVDJjMfBq4csf4rwKuaCCVJkiRJm9nWGBlJkiRJ6gIbMpIkSZKKY0NGklS0iLgkIh6IiOMR8WhEvKNa/96IeDIijlaP17WdVZI0O7XuIyNJUoetAwcy8/MR8RLgoYi4r9p2a2Z+oMVskqSG2JCRJBUtM08CJ6vlb0fEceCidlNJkprmpWWSpIUREcv0Z9o8Uq16e0Q8HBG3R8R5rQWTJM2cPTKSpIUQES8GPgG8MzO/FREfAn4NyOrfW4C3jThuP7AfYGlpiV6vN3GGtbW1qY5vw07JfGD3+thtg69Vd7/t2inl3DYzz0dXMtuQkSQVLyLOot+IuSMzPwmQmU8PbP894J5Rx2bmIeAQwMrKSq6urk6co9frMc3xbdgpmfcdvHfsthN7Vre933btlHJum5nnoyuZvbRMklS0iAjgNuB4Zn5wYP2ugd3eBDwy72ySpObYIyNJKt3VwFuBYxFxtFr3buCGiLiC/qVlJ4CfbyeeJKkJNmQkSUXLzAeBGLHp0/POIkmaHxsykiRpR1veZFyMpO5yjIwkSZKk4tiQkSRJklQcGzKSJEmSimNDRpIkSVJxtmzIRMQlEfFARByPiEcj4h3V+vdGxJMRcbR6vK75uJIkSZJUb9aydeBAZn4+Il4CPBQR91Xbbs3MDzQXT5IkSZKeb8uGTGaeBE5Wy9+OiOPARU0HkyRJkqRxtjVGJiKWgSuBI9Wqt0fEwxFxe0ScN+NskiRJkjRS7RtiRsSLgU8A78zMb0XEh4BfA7L69xbgbSOO2w/sB1haWqLX600cdm1tbarj21Ji7qYyH9i9fnq5ide3rOdnq9yD53pQm591UctakqSdqFZDJiLOot+IuSMzPwmQmU8PbP894J5Rx2bmIeAQwMrKSq6urk4cttfrMc3xbSkxd1OZ9w3cPfnEntm/vmU9P1vl3jfmTtlNnPe6FrWsJUnaierMWhbAbcDxzPzgwPpdA7u9CXhk9vEkSZIk6fnq9MhcDbwVOBYRR6t17wZuiIgr6F9adgL4+UYSSpIkdcDy4FUFN1/XYhJJUG/WsgeBGLHp07OPI0mSJElb29asZZIkSZLUBTZkJEmSJBXHhowkSZKk4tiQkSRJklQcGzKSJEmSilPrhpiSNMry0E0vnY5UbYiIS4A/BH4Y+DvgUGb+54g4H/gYsEz/NgE/m5nfbCunJGm27JGRJJVuHTiQma8ArgJ+MSIuBw4C92fmZcD91XNJ0oKwISNJKlpmnszMz1fL3waOAxcBbwQOV7sdBq5vJ6EkqQk2ZCRJCyMiloErgSPAUmaehH5jB3hZe8kkSbPmGBlJ0kKIiBcDnwDemZnfioi6x+0H9gMsLS3R6/UmzrC2tjbV8W3YKZkP7F6faYbtvv9OKee2DWc+9uSzz9m++6KXzjnR1hahnNtiQ0bSzAwP/pfmJSLOot+IuSMzP1mtfjoidmXmyYjYBZwadWxmHgIOAaysrOTq6urEOXq9HtMc34adknnfjL+fTuzZ3vvvlHJu23Dm4fO+3fM2D4tQzm3x0jJJUtGi3/VyG3A8Mz84sOluYG+1vBe4a97ZJEnNsUdGklS6q4G3Asci4mi17t3AzcDHI+JG4GvAz7SUT5LUABsykqSiZeaDwLgBMa+eZxZJ0vx4aZkkSZKk4tgjI2lbNgb092cA2v5XyOCEACduvm5WsSRJ0g6zZY9MRFwSEQ9ExPGIeDQi3lGtPz8i7ouIx6p/z2s+riRJkiTVu7RsHTiQma8ArgJ+MSIuBw4C92fmZcD91XNJkiRJatyWDZnMPJmZn6+Wvw0cBy4C3ggcrnY7DFzfVEhJkiRJGrStwf4RsQxcCRwBljLzJPQbO8DLZh1OkiRJkkapPVI3Il5M/67J78zMb/XvP1bruP3AfoClpSV6vd4EMfvW1tamOr4tJeZuKnN/gHhfE69vWTdv4xwunfPc8zmJeX/u0sp6Q6m5JUlqUq2GTEScRb8Rc0dmfrJa/XRE7MrMkxGxCzg16tjMPAQcAlhZWcnV1dWJw/Z6PaY5vi0l5m4q877BGav2zP71Levm7RuYteyWY9NNfNjEz8BmSivrDaXmliSpSXVmLQvgNuB4Zn5wYNPdwN5qeS9w1+zjSZIkSdLz1flz6tXAW4FjEXG0Wvdu4Gbg4xFxI/A14GeaiShJkiRJz7VlQyYzHwTGDYh59WzjSJIkSdLWtjVrmSRJkiR1gQ0ZSZIkScWxISNJkiSpODZkJEmSJBXHhowkSZKk4kx3NztJRVsevEHpzde1mESSJGl77JGRJEmSVBwbMpIkSZKKY0NGklS0iLg9Ik5FxCMD694bEU9GxNHq8bo2M0qSZs+GjCSpdB8Grh2x/tbMvKJ6fHrOmSRJDbMhI0kqWmZ+FvibtnNIkubLhowkaVG9PSIeri49O6/tMJKk2XL6ZUnSIvoQ8GtAVv/eArxt1I4RsR/YD7C0tESv15v4TdfW1qY6vg07JfOB3eszzbDd998p5dy24czD5/237rjr9PLui146r1ibWoRybosNGUnSwsnMpzeWI+L3gHs22fcQcAhgZWUlV1dXJ37fXq/HNMe3Yadk3jdw36xZOLFne++/U8q5bcOZNzvv2z2HTVmEcm6Ll5ZJkhZOROwaePom4JFx+0qSymSPjBq3POO/gknSoIj4CLAKXBARTwD/AViNiCvoX1p2Avj51gJKkhqxZUMmIm4HXg+cyswfrda9F/iXwF9Xu73bqS0lSW3IzBtGrL5t7kEkSXNVp0fmw8B/Bf5waP2tmfmBmSeSJEmStmHj6o8Du9dZbTeK5mjLMTLOzy9JkiSpa6YZ7O/8/JIkSZJaMelgf+fn34YSc88y87i5+zd7/WNPPnt6eTvzvHelrLeTfx6Zx+UZPDd1M2wcs3TO9PdlmPe56srPx3aVmluSpCZN1JBxfv7tKTH3LDOPm8N9s/nbB4/ZzjzvXSnr7eSfR+ZxeSYp530D1yHfcmy6iQ/nPYd/V34+tqvU3JIkNWmiS8ucn1+SJElSm+pMv+z8/JIkqbMG71d24ubrRq6XtHi2bMg4P78kSZKkrpnuAndJczHur42SJEk71TTTL0uSJElSK2zISJIkSSqODRlJkiRJxXGMjCRJ6gzHBEqqy4aMOsNpMrvLcyNJkrrGS8skSZIkFceGjCRJkqTi2JCRJEmSVBwbMpIkSZKK42B/aQtdnkGny9kkSZKaZI+MJKl4EXF7RJyKiEcG1p0fEfdFxGPVv+e1mVGSNFs2ZCRJi+DDwLVD6w4C92fmZcD91XNJ0oKwISNJKl5mfhb4m6HVbwQOV8uHgevnGkqS1CgbMpKkRbWUmScBqn9f1nIeSdIMOdhfkrSjRcR+YD/A0tISvV5v4tdaW1ub6vg2dC3zgd3rp5fH5RrOPO6YwfWztt0y61o511FS5o1zvXRO/Z+Brny2ksp5Q1cy25CRJC2qpyNiV2aejIhdwKlRO2XmIeAQwMrKSq6urk78hr1ej2mOb0PXMu8bnI1xz+rIfYYzjztmcP2sjcs2TtfKuY6SMm+c6wO71/nZMT8bw7Z7DptSUjlv6ErmLS8tcyYYSVKh7gb2Vst7gbtazCJJmrE6Y2Q+jDPBSJI6LCI+Avxv4Eci4omIuBG4GfjJiHgM+MnquSRpQWx5aVlmfjYilodWvxFYrZYPAz3gXTPMJUlSbZl5w5hNr55rEEnS3Ew6RuY5M8FExNiZYHb6IEooM/csM48baDf8+nX2O/bks6eXd1/00uft20RZ1xl4Os0xdTLXGci62WtMcvxgWR/Y/fzXXDpn+oG08/69KPF3EcrNLbVhucFxMePe58TN183lPRdNU2U4r58Bta/xwf47fRAllJl7lpnHDbQbHmRXZ7+tBoE2UdZ1Bp5Oc0ydzHUGsm72PpMcv9Ug2QO717nl2HRfIfMeaFni7yKUm1uSpCZNeh+Zp6sZYNhsJhhJkiRJasKkDRlngpEkSZLUmjrTLzsTjCRJkqROqTNrmTPBaKTNBtPVGbTnYDwNc/CsJEmqq/HB/pIkSYvMP8JI7Zh0jIwkSZIktcaGjCRJkqTi2JCRJEmSVBzHyEgNG57UYPD66eWD93Jg9/rzbj7ZxjXWTr4gSZJKYo+MJEmSpOLYIyNJktQRm/Xid0kbOWd95YCzzZXPHhlJkiRJxbEhI0mSJKk4Xlq2g9ml2o46XeMOvPfnc5jlIUnSc9kjI0mSJKk49shIkqROsieyOV2eVKDt8961smm7PLrMHhlJkiRJxbFHRpK0sCLiBPBt4HvAemautJtIkjQrNmS0pdK7NOvmn3aA/bwG6DsRwHONK48Sf1bVmH+Wmd9oO4Qkaba8tEySJElScabqkbHLXpLUcQn8r4hI4Hcz81DbgSRJszGLS8vsspckddXVmflURLwMuC8ivpSZnx3cISL2A/sBlpaW6PV6E7/Z2traVMe3oWuZD+xeH7l+MOPa2hq/dcddA8c0naq+wVyDls6hVjkPf/5ZnptjTz478D7P3TbqfYbLefdFLx04fvs5B99/OMPg8YOvPW79OEvn1Ntv2GbvM7ht8DMMlsc0tvodHFceberK94ZjZCRJCyszn6r+PRURnwJeBXx2aJ9DwCGAlZWVXF1dnfj9er0e0xzfhq5l3jdu3Nue1dPLvV6PWx78zpwSzcaB3ev8bI1yHv78g597WuPKdtz7DJfz4D6T5Kz7/oP7bfaeoxzYvc4tx7b/39u6n21ctmls9TvYxHtOqyvfG9OOkdnosn+o+ouWJEmdEBEvioiXbCwDrwUeaTeVJGlWpu2Rscu+hq7m3qyrcjDzJF28s+zyr9PdvGEj97ju87pdt+MMXzKwWTd7XZN2gw+r+9lmdW5mkXs4c51LSja7NGHQqMshhi+TGNzWZWtraxzY/b3Tz7v4fdJRS8CnIgL69d0fZeb/bDeSJGlWpmrI2GVfT1dzb9ZVOZh5mi7eWdhOl+5G7jqXJgyb5PPMojwm7QbfLMuwJs7VLHIPZ65z3qY5T6MuR+lKN/1mNru8Q+Nl5leAV7adQ5LUjIn/F1J10/9AZn57oMv+V2eWTJIkjVT6/b002Tmc5L5Zde89VifPLF9r0tcuXdu/u22//6xN8+dUu+wlSZIktWLihoxd9pIkSZLaUuz0y8NdkIvQPabRxnU3z+JnYFG7shf1c01qozz6kwlM/7W3aF3zkiSVaNrplyVJkiRp7mzISJIkSSpOsZeWSZLUNceefPb0FOFedqi6pr0c2MuJp9dGGQ5e9rw693evr8uXU9sjI0mSJKk4RfXIDP6lSxq2fPBeDuxen+vPiH8Fmw/LWZIkDbNHRpIkSVJxbMhIkiRJKo4NGUmSJEnFKWqMjCRJWjx1xsEN7jOrm9vOWynj/Sa5iXDdm1eXqM5nG5zNq2s37G7yHIx77XnNblbet4AaUXdqvdK/kErPv2hKOR91c272e7Td6SsX4T9tkiQ1yUvLJEmSJBXHhowkSZKk4tiQkSRJklQcL7qWJKlF2x0/1XV1Pk8p4+PUvkX4WWnqM7QxiL9rbMg0bPhu87OspOrOljHJ6w5mVhlK+dJZNIs8U48kSV021aVlEXFtRHw5Ih6PiIOzCiVJ0ixYT0nS4pq4IRMRZwC/Dfw0cDlwQ0RcPqtgkiRNw3pKkhbbND0yrwIez8yvZOb/Az4KvHE2sSRJmpr1lCQtsGkaMhcBfzXw/IlqnSRJXWA9JUkLLDJzsgMjfgb4qcz8uer5W4FXZea/GdpvP7C/evojwJcnj8sFwDemOL4tJeYuMTOUmbvEzFBm7hIzw+xz/4PMvHCGr9dJ1lO1mXk+zDwfZp6PpjPXqqemmbXsCeCSgecXA08N75SZh4BDU7zPaRHxZ5m5MovXmqcSc5eYGcrMXWJmKDN3iZmh3NwdYD1Vg5nnw8zzYeb56ErmaS4t+1Pgsoi4NCLOBt4C3D2bWJIkTc16SpIW2MQ9Mpm5HhFvB/4EOAO4PTMfnVkySZKmYD0lSYttqhtiZuangU/PKEsdM+n6b0GJuUvMDGXmLjEzlJm7xMxQbu7WWU/VYub5MPN8mHk+OpF54sH+kiRJktSWacbISJIkSVIrimnIRMS1EfHliHg8Ig62nWdDRFwSEQ9ExPGIeDQi3lGtPz8i7ouIx6p/z6vWR0T8l+pzPBwRP9Zi9jMi4gsRcU/1/NKIOFJl/lg1OJaIeEH1/PFq+3KLmc+NiDsj4ktVmf9EIWX9b6ufj0ci4iMR8cKulXdE3B4RpyLikYF12y7biNhb7f9YROxtKfd/qn5GHo6IT0XEuQPbbqpyfzkifmpg/Vy/Y0blHtj2SxGREXFB9bwz5a3RrKMayV5UHVVi/VRC3VS9d3H1U4l1U5H1UmZ2/kF/kOZfAi8Hzga+CFzedq4q2y7gx6rllwB/AVwO/EfgYLX+IPD+avl1wB8DAVwFHGkx+78D/gi4p3r+ceAt1fLvAP+qWv7XwO9Uy28BPtZi5sPAz1XLZwPndr2s6d+A76vAOQPlvK9r5Q38U+DHgEcG1m2rbIHzga9U/55XLZ/XQu7XAmdWy+8fyH159f3xAuDS6nvljDa+Y0blrtZfQn9w+v8BLuhaefsYeS6to5rJXlQdRWH1E4XUTdX7FVc/jcnc6bppVOZqfWfrpbn+0kxRsD8B/MnA85uAm9rONSbrXcBP0r+h2q5q3S7gy9Xy7wI3DOx/er8557wYuB+4Brin+kH8xsAv2Okyr354f6JaPrPaL1rI/PeqL90YWt/1st64u/j5VfndA/xUF8sbWB760t1W2QI3AL87sP45+80r99C2NwF3VMvP+e7YKOu2vmNG5QbuBF4JnOD7FUanytvH886jddTscxZVR1Fg/URBdVP1ns/5vtxu2bbxfTnqO35gWyfrplGZ6XC9VMqlZRu/bBueqNZ1StXNeiVwBFjKzJMA1b8vq3brymf5TeBXgL+rnv8Q8Exmro/IdTpztf3Zav95eznw18AfVJcb/H5EvIiOl3VmPgl8APgacJJ++T1E98sbtl+2nSjzIW+j/1cj6HjuiHgD8GRmfnFoU6dzq4zzYB3VqOLqp8LrJii/fiqibup6vVRKQyZGrMu5p9hERLwY+ATwzsz81ma7jlg3188SEa8HTmXmQ4OrR+yaNbbN05n0uzw/lJlXAt+h3508TidyV9ftvpF+d/HfB14E/PSIXbtW3psZl7FT2SPiPcA6cMfGqhG7dSJ3RPwg8B7g34/aPGJdJ3ILKOA8WEc1rrj6aUHrJijg+7KUuqmEeqmUhswT9K/P23Ax8FRLWZ4nIs6iX0HckZmfrFY/HRG7qu27gFPV+i58lquBN0TECeCj9LvufxM4NyI27i00mOt05mr7S4G/mWfggRxPZOaR6vmd9CuOLpc1wGuAr2bmX2fm3wKfBP4x3S9v2H7ZdqXMqQYYvh7Yk1X/Nt3O/Q/p/4fii9Xv5sXA5yPihzfJ14Xc6vh5sI6aixLrp5LrJii0fiqsbup8vVRKQ+ZPgcuqmTTOpj/I7O6WMwH9WRuA24DjmfnBgU13A3ur5b30r0veWP/Pq9kergKe3eganZfMvCkzL87MZfpl+ZnM3AM8ALx5TOaNz/Lmav+5/xUjM78O/FVE/Ei16tXAn9Phsq58DbgqIn6w+nnZyN3p8h6RpU7Z/gnw2og4r/pr32urdXMVEdcC7wLekJn/d2DT3cBboj/7zqXAZcDn6MB3TGYey8yXZeZy9bv5BP1B2l+n4+Wt9n9+xrGOmo9C66eS66bhPEXUT6XVTUXUS00Nvpn1g/7sCH9Bf/aG97SdZyDXP6HfZfYwcLR6vI7+daP3A49V/55f7R/Ab1ef4xiw0nL+Vb4/I8zL6f/iPA78d+AF1foXVs8fr7a/vMW8VwB/VpX3/6A/I0bnyxp4H/Al4BEVrEGZAAAAuUlEQVTgv9GfmaRT5Q18hP510n9L/8vqxknKlv51v49Xj3/RUu7H6V+ju/E7+TsD+7+nyv1l4KcH1s/1O2ZU7qHtJ/j+oMrOlLePsefTOqqZ/KsUUkdRYP1EAXVT9d7F1U9jMne6bhqVeWj7CTpWL0X1hpIkSZJUjFIuLZMkSZKk02zISJIkSSqODRlJkiRJxbEhI0mSJKk4NmQkSZIkFceGjCRJkqTi2JCRJEmSVBwbMpIkSZKK8/8BaTXkfU0vzoAAAAAASUVORK5CYII=\n", "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}], "source": ["fig, ax = plt.subplots(1, 2, figsize=(14,4))\n", "sept16[sept16.from_station_id == 36][\"time\"].apply(lambda t: t.minute + t.hour*60).hist(bins=100, ax=ax[0])\n", "sept16[sept16.to_station_id == 36][\"time\"].apply(lambda t: t.minute + t.hour*60).hist(bins=100, ax=ax[1]);"]}, {"cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAzIAAAD8CAYAAACsP5F0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHsFJREFUeJzt3XuMZFed2PHvDz/Aa4gfsd1MxlbaZC2EtS1s1LJMHEUd81jzEAYJEJZFZoJ3h2yWCJJOwmCkDSwbySQYdoMQMMRez0azgGPs2LLZEMvrEkKKzGKwPTaD1wZmWY8HGwQeaCKRbfjlj7o9rilXdVdXV917T833I5X61r33VP3OqcfpX91zz43MRJIkSZJK8rymA5AkSZKkzTKRkSRJklQcExlJkiRJxTGRkSRJklQcExlJkiRJxTGRkSRJklQcExlJkiRJxTGRkSRJklQcExlJkiRJxTmxzic766yzcn5+ftPlfvGLX3DqqadOPqApM+76lBgzGHfdSox7GjHff//9P87Msyf6oDNi3H6qKSW+pwexHu0xC3UA69Em49Rh1H6q1kRmfn6eb3zjG5su1+l0WFpamnxAU2bc9SkxZjDuupUY9zRijoi/megDzpBx+6mmlPieHsR6tMcs1AGsR5uMU4dR+ymHlkmSJEkqjomMJEmSpOKYyEiSJEkqjomMJEmSpOKYyEiSJEkqjomMJEmSpOKYyEiSJEkqjomMJEmSpOKYyEiSJEkqzolNByBpNs3vvuvo8sHr3tBgJJJmkd8xkjwiI0mSJKk4JjKSpKJFxAsi4usR8WBEPBIRH67W3xQR34+IB6rbRU3HKkmaHIeWSZJK90vg8sxciYiTgK9FxF9U2/59Zt7SYGySpCkxkZEkFS0zE1ip7p5U3bK5iCRJdTCRkSQVLyJOAO4HfhP4VGbeFxG/B/yniPgD4B5gd2b+ckDZXcAugLm5OTqdTn2Bb9HKykpR8Q4zTj2WF1aPLrelDWbh9ZiFOoD1aJNp1sFERpJUvMz8FXBRRJwO3BYRvwV8APghcDKwB3g/8IcDyu6ptrO4uJhLS0t1hb1lnU6HkuIdZpx67OydtezqzZWdlll4PWahDmA92mSadfBkf0nSzMjMZ4AOcEVmHs6uXwJ/ClzSaHCSpIkykZEkFS0izq6OxBARpwCvBr4TEduqdQG8GXi4uSglSZPm0DJJUum2AXur82SeB9ycmXdGxF9GxNlAAA8A/7LJICVJk2UiI0kqWmY+BFw8YP3lDYQjSaqJQ8skSZIkFcdERpIkSVJxTGQkSZIkFcdERpIkSVJxNkxkIuIFEfH1iHgwIh6JiA9X68+PiPsi4rGI+GJEnDz9cCVJkiRptCMyvwQuz8yXAxcBV0TEpcBHgU9k5gXAT4FrphemJEmSJD1rw0SmuirySnX3pOqWwOXALdX6vXQvNiZJkiRJUzfSOTIRcUJEPAA8DdwNfBd4JjNXq12eALZPJ0RJkiRJOtZIF8TMzF8BF0XE6cBtwMsG7TaobETsAnYBzM3N0el0Nh3kysrKWOWaZtz1KTFmmO24lxdWjy737rv/0JGjywvbT5t0aOsqsb1LjFmSpDqMlMisycxnIqIDXAqcHhEnVkdlzgWeHFJmD7AHYHFxMZeWljYdZKfTYZxyTTPu+pQYM8x23Dt333V0+eDVSxuur0OJ7V1izJIk1WGUWcvOro7EEBGnAK8GDgD3Am+tdtsB3D6tICVJkiSp1yhHZLYBeyPiBLqJz82ZeWdEfBv4QkT8EfAt4IYpxilJkiRJR22YyGTmQ8DFA9Z/D7hkGkFJkiRJ0npGmrVMkiRJktrEREaSJElScUxkJEmSJBXHREaSJElScUxkJEmSJBXHREaSJElScUxkJEmSJBXHREaSVLSIeEFEfD0iHoyIRyLiw9X68yPivoh4LCK+GBEnNx2rJGlyTGQkSaX7JXB5Zr4cuAi4IiIuBT4KfCIzLwB+ClzTYIySpAkzkZEkFS27Vqq7J1W3BC4HbqnW7wXe3EB4kqQpObHpACRJ2qqIOAG4H/hN4FPAd4FnMnO12uUJYPuQsruAXQBzc3N0Op2pxzspKysrRcU7zDj1WF5YPbrcljaYhddjFuoA1qNNplkHExlJUvEy81fARRFxOnAb8LJBuw0puwfYA7C4uJhLS0vTCnPiOp0OJcU7zDj12Ln7rqPLB6/eXNlpmYXXYxbqANajTaZZB4eWSZJmRmY+A3SAS4HTI2LtB7tzgSebikuSNHkmMpI2ZX73Xew/dIT5nl9DpSZFxNnVkRgi4hTg1cAB4F7grdVuO4Dbm4lQkjQNDi2TJJVuG7C3Ok/mecDNmXlnRHwb+EJE/BHwLeCGJoOUJE2WiYwkqWiZ+RBw8YD13wMuqT8iSVIdHFomSZIkqTgmMpIkSZKKYyIjSZIkqTgmMpIkSZKKYyIjSZIkqTgmMpIkSZKKs+H0yxFxHvBnwIuBXwN7MvNPIuJDwO8CP6p2vTYzvzytQCVJ0vHLi/BK6jfKdWRWgeXM/GZEvAi4PyLurrZ9IjM/Nr3wJEmSJOm5NkxkMvMwcLha/nlEHAC2TzswSZIkSRpmU+fIRMQ83asn31etek9EPBQRN0bEGROOTZIkSZIGGmVoGQAR8ULgS8D7MvNnEfFp4CNAVn+vB941oNwuYBfA3NwcnU5n00GurKyMVa5pxl2fEmOGMuNeXlhl7pTu3/ViX15YPbr8yX2396x/dp+6615ie5cYsyRJdRgpkYmIk+gmMfsy81aAzHyqZ/vngDsHlc3MPcAegMXFxVxaWtp0kJ1Oh3HKNc2461NizFBm3Dt338XywirX7z+Rg1cvrbvfRtYrPw0ltneJMUuSVIcNh5ZFRAA3AAcy8+M967f17PYW4OHJhydJkiRJzzXKEZnLgHcC+yPigWrdtcBVEXER3aFlB4F3TyVCSZIkSeozyqxlXwNiwCavGSNJkiSpEZuatUySJEmS2sBERpIkSVJxTGQkSZIkFcdERpIkSVJxTGQkSUWLiPMi4t6IOBARj0TEe6v1H4qIQxHxQHV7fdOxSpImZ6QLYkqS1GKrwHJmfjMiXgTcHxF3V9s+kZkfazA2SdKUmMhIkoqWmYeBw9XyzyPiALC92agkSdPm0DJJ0syIiHngYuC+atV7IuKhiLgxIs5oLDBJ0sR5REaSNBMi4oXAl4D3ZebPIuLTwEeArP5eD7xrQLldwC6Aubk5Op1ObTFv1crKSlHxDjNKPZYXVoduG6UN9h86csz9he2njRLapszC6zELdQDr0SbTrIOJjCSpeBFxEt0kZl9m3gqQmU/1bP8ccOegspm5B9gDsLi4mEtLS1OPd1I6nQ4lxTvMKPXYufuuodsOXr1+2UHlRymzWbPwesxCHcB6tMk06+DQMklS0SIigBuAA5n58Z7123p2ewvwcN2xSZKmxyMykqTSXQa8E9gfEQ9U664FroqIi+gOLTsIvLuZ8CRJ02AiI0kqWmZ+DYgBm75cdyySpPo4tEySJElScUxkJEmSJBXHREaSJElScUxkJEmSJBXHREaSJElScUxkJEmSJBXHREaSJElScUxkJEmSJBXHREaSJElScUxkJEmSJBVnw0QmIs6LiHsj4kBEPBIR763WnxkRd0fEY9XfM6YfriRJkiSNdkRmFVjOzJcBlwK/HxEXAruBezLzAuCe6r4kSZIkTd2GiUxmHs7Mb1bLPwcOANuBK4G91W57gTdPK0hJkiRJ6nXiZnaOiHngYuA+YC4zD0M32YmIc4aU2QXsApibm6PT6Ww6yJWVlbHKNc2461NizFBO3PsPHTm6vLwAc6fA8sLqurEvL6xu+Lh1172U9u5VYsySJNVh5EQmIl4IfAl4X2b+LCJGKpeZe4A9AIuLi7m0tLTpIDudDuOUa5px16fEmKGcuHfuvuuY+8sLq1y//0QOXr00cplB1is/DaW0d68SY5YkqQ4jzVoWESfRTWL2Zeat1eqnImJbtX0b8PR0QpQkSZKkY40ya1kANwAHMvPjPZvuAHZUyzuA2ycfniRJkiQ91yhDyy4D3gnsj4gHqnXXAtcBN0fENcAPgLdNJ0RJkiRJOtaGiUxmfg0YdkLMqyYbjiRJkiRtbKRzZCRJkiSpTTY1/bKk2TLfM7PYwevesKXy4z6GtFURcR7wZ8CLgV8DezLzTyLiTOCLwDxwEHh7Zv60qTglSZPlERlJUulWgeXMfBlwKfD7EXEhsBu4JzMvAO6p7kuSZoSJjCSpaJl5ODO/WS3/HDgAbAeuBPZWu+0F3txMhJKkaTCRkSTNjIiYBy4G7gPmMvMwdJMd4JzmIpMkTZrnyEiSZkJEvJDuxZvfl5k/614GbaRyu4BdAHNzc3Q6nanFOGkrKytFxTvMKPVYXlgdum2UNugv/8l9z17+bmH7aRuWH8UsvB6zUAewHm0yzTqYyEiSihcRJ9FNYvZl5q3V6qciYltmHo6IbcDTg8pm5h5gD8Di4mIuLS3VEfJEdDodSop3mFHqsbNvcpFeB69ev+wkyo9iFl6PWagDWI82mWYdHFomSSpadA+93AAcyMyP92y6A9hRLe8Abu8vK0kql0dkJEmluwx4J7A/Ih6o1l0LXAfcHBHXAD8A3tZQfJKkKTCRkSQVLTO/Bgw7IeZVdcYiSaqPQ8skSZIkFcdERpIkSVJxTGQkSZIkFcdERpIkSVJxTGQkSZIkFcdERpIkSVJxnH5ZkiS1xvzuu44uH7zuDQ1GIqntPCIjSZIkqTgmMpIkSZKK49AyaQqO16ERvfWWJEmaJo/ISJIkSSqOiYwkSZKk4mw4tCwibgTeCDydmb9VrfsQ8LvAj6rdrs3ML08rSEmSpGk5XocDS6Ub5YjMTcAVA9Z/IjMvqm4mMZIkSZJqs2Eik5lfBX5SQyySJEmSNJKtnCPznoh4KCJujIgzJhaRJEmSJG1g3OmXPw18BMjq7/XAuwbtGBG7gF0Ac3NzdDqdTT/ZysrKWOWaZtz1aVvMywurR5fXi6vpuEeNs3c/gLlTnrtuHP3Puf/QkaPLC9tP2/Lj92u6vcdRYsySJNVhrEQmM59aW46IzwF3rrPvHmAPwOLiYi4tLW36+TqdDuOUa5px16dtMe/sPXH06qWh+zUd96hx7uy7PszywirX79/6Zaj6n3PUeMbVdHuPo8SYJUmqw1j/iUTEtsw8XN19C/Dw5EKSJEkajzOQScePUaZf/jywBJwVEU8A/xFYioiL6A4tOwi8e4oxSpIkSdIxNkxkMvOqAatvmEIskiRtmtc7k6Tj01ZmLZMkqQ1uwuudSdJxZ+tn60qaCfN9J/TXMba8/zmlcWTmVyNivuk4JEn18oiMJGlWeb0zSZphHpGRJM2iWq931pRZuc5Qbz2GXd9qvWtXDdtv1PLDHmuzZuH1mIU6gPVok2nWwURGkjRz6r7eWVNm5TpDvfUYdj2p/utZ9Rq236jlhz3WZs3C6zELdQDr0SbTrINDyyRJMycitvXc9XpnkjSDPCIjSSqa1zuTpOOTiYy0Bc66VQ+v1K31eL0zSTo+mchIkqRW2uqPRf7YJM02z5GRJEmSVBwTGUmSJEnFMZGRJEmSVBwTGUmSJEnF8WR/STNv7YTf5YVVlpoNRZIkTYiJjCRJatT+Q0fY2ZIZxpzuXSqHQ8skSZIkFcdERpIkSVJxTGQkSZIkFcdERpIkSVJxTGQkSZIkFcdZy6RNmG/JrDqSpGf53bx1TlOvEnlERpIkSVJxNkxkIuLGiHg6Ih7uWXdmRNwdEY9Vf8+YbpiSJEmS9KxRjsjcBFzRt243cE9mXgDcU92XJEmSpFpsmMhk5leBn/StvhLYWy3vBd484bgkSZIkaahxz5GZy8zDANXfcyYXkiRJkiStb+qzlkXELmAXwNzcHJ1OZ9OPsbKyMla5phl3feqKeXlhddNl+uPaf+jI0eXzTzuh9rbuff7lheH7fXLf7UP3mztlvLbYjN526X2ucdprrfzcKeOVb1KJn0dJkuowbiLzVERsy8zDEbENeHrYjpm5B9gDsLi4mEtLS5t+sk6nwzjlmmbc9akr5p1jTPF58OqloY9x0xWn1t7W49Sh3/LCKtfvn+7vIL3t1htzf3uOYmfPtKJv970tSdJMGHdo2R3Ajmp5B3D7OvtKkjRVzrApScefUaZf/jzwf4CXRsQTEXENcB3wmoh4DHhNdV+SpKbchDNsStJxZcOxIZl51ZBNr5pwLJIkjSUzvxoR832rr4SjFynfC3SA99cWlCRpqqZ+sr8kSQ05ZobNiBg4w+YkJqVpyqxMBlHHBCLjWG+yloXtpz1n/5Jej966wLOTupQ4KcogJb0W65mFekyzDiYymnnzvSeKX/eGLZWvy3rPOU4dJA03iUlpmjIrk0F8ct/tU59AZBzrTdYyaOKRkl6PYRO/lDgpyiAlvRbrmYV6TLMO457sL0lS2z1VzazJRjNsSpLKYyIjSZpVzrApSTPMREaSVDxn2JSk40/7BqRKkrRJzrApSccfExlJklSr/glN1mbMOl5tdVKacZ6nRP3xT7Kt6noNNFkOLZMkSZJUHI/ISFNW+i9gkiRJbeQRGUmSJEnFMZGRJEmSVBwTGUmSJEnF8RwZSZKkwow6y9ZWz9Oc5Gxe05x1TMcnj8hIkiRJKo5HZNQaTc/h3sTz7z90hJ3V8476nOPEWeLMacNiXq8uve0xanl/EZQkqUwekZEkSZJUHBMZSZIkScUxkZEkSZJUHM+RkSRJ2qRxZg0b5Tw+1cfXoHwekZEkSZJUHI/IqFZNz0zWz19j1Lb3pCRJGo1HZCRJkiQVx0RGkiRJUnG2NLQsIg4CPwd+Baxm5uIkgpIkSWraqMOP1/ZbXlhlacLP2dYhr6XEqdk2iXNk/llm/ngCjyNJkiRJI/Fkf0nSzHLkgCTNrq0mMgn874hI4LOZuad/h4jYBewCmJubo9PpbPpJVlZWxirXNON+ruWF1aPL/c+x3rY1+w8dObq8sP20o8vrxTzqc/bq3W/YPpMwd8qzjz/Oc/aW6W2bfssLY4U3VG/cbbJRG24Udxs/r6V+j7SMIwckaQZtNZG5LDOfjIhzgLsj4juZ+dXeHarkZg/A4uJiLi0tbfpJOp0O45RrmnE/187eqW6vXhp520b7rBfzqM/Zq3e/YftMwvLCKtfvP3Hs56wrzn69cbfJRu2xUdzD3ndNKvV7RJKkadvSrGWZ+WT192ngNuCSSQQlSdKErI0cuL8aISBJmhFj/6QaEacCz8vMn1fLrwX+cGKRSZK0dRuOHJjEEOimlDT0sHf4a/9w17YOV92suVNGHzY9an0/ue/2o8u9Q6rXGza9XltvpL8Oo8Y/yvtwnDLrlR/WNjD8szFK26zXnv3PM20lfcaHmWYdtjI2ZA64LSLWHufPM/N/TSQqSZImoHfkQESsjRyY+BDoppQ09HC94a9tHa66WcsLq7y97/UYNrx5nOHAw8qPOmx6FP11GDX+UYbmjlNmvfLrPdawz8YobTPO0PdpKekzPsw06zD2t0Zmfg94+QRjkSRpYhw5IEmzrfyfPyRJGsyRA5I0w0xkNLbeq/qOc0XfUa+YPEr5Ua+mvNmrNOv4stX3tNrFkQOSNNu2NGuZJEmSJDXBIzKSJEkTMstH9McZ1TDq0e1JjtKA7kiNcSc9mOXXcNZ4REaSJElScUxkJEmSJBXHREaSJElScTxH5jjTxKxM44w1nfRY2RI00U6zpq72GPY80/xMOaOaJEnH8oiMJEmSpOJ4REaSJKkAw44GT/potCME6tfffsOOvDd9dH7UOOviERlJkiRJxTGRkSRJklQcExlJkiRJxfEcGT3H/kNHjrka7ijjH9s2ZlJqwiTHLq891lauTi1J0iwzkZEkSVLtSpwgYJzp95s+QX+WObRMkiRJUnFMZCRJkiQVx0RGkiRJUnFMZCRJkiQVx0RGkiRJUnGKmrXMWR+aN+oMI03MRFLi7Cdqr61+36z3fux9PN+3s6WJfmrS79VR3p+jztCkYx2PbXO81HnS9RxnCv5RPq/T/I5q4vvPIzKSJEmSirOlRCYiroiIRyPi8YjYPamgJEmaBPspSZpdYycyEXEC8CngdcCFwFURceGkApMkaSvspyRptm3liMwlwOOZ+b3M/H/AF4ArJxOWJElbZj8lSTNsK4nMduBve+4/Ua2TJKkN7KckaYZFZo5XMOJtwG9n5u9U998JXJKZ/7pvv13AruruS4FHx3i6s4AfjxVos4y7PiXGDMZdtxLjnkbM/zAzz57wY7ZOzf1UU0p8Tw9iPdpjFuoA1qNNxqnDSP3UVqZffgI4r+f+ucCT/Ttl5h5gzxaeh4j4RmYubuUxmmDc9SkxZjDuupUYd4kxt0ht/VRTZuX9YT3aYxbqANajTaZZh60MLfsr4IKIOD8iTgbeAdwxmbAkSdoy+ylJmmFjH5HJzNWIeA/wFeAE4MbMfGRikUmStAX2U5I027YytIzM/DLw5QnFsp4iD/lj3HUqMWYw7rqVGHeJMbdGjf1UU2bl/WE92mMW6gDWo02mVoexT/aXJEmSpKZs5RwZSZIkSWpE6xOZiLgiIh6NiMcjYnfT8ayJiPMi4t6IOBARj0TEe6v1Z0bE3RHxWPX3jGp9RMR/rerxUES8ouH4T4iIb0XEndX98yPiviruL1YnxhIRz6/uP15tn28w5tMj4paI+E7V7q9se3tHxL+p3h8PR8TnI+IFbWzriLgxIp6OiId71m26bSNiR7X/YxGxo6G4/0v1HnkoIm6LiNN7tn2givvRiPjtnvW1fs8Mirtn27+LiIyIs6r7rWlv1a/0vqZXif1OvxL7oUFK6ZsGxF1kXzVCHVrfb41Sj55t9fVjmdnaG92TM78LvAQ4GXgQuLDpuKrYtgGvqJZfBPw1cCHwn4Hd1frdwEer5dcDfwEEcClwX8Px/1vgz4E7q/s3A++olj8D/F61/K+Az1TL7wC+2GDMe4HfqZZPBk5vc3vTvfDe94FTetp4ZxvbGvinwCuAh3vWbaptgTOB71V/z6iWz2gg7tcCJ1bLH+2J+8LqO+T5wPnVd8sJTXzPDIq7Wn8e3RPT/wY4q23t7a3+G4X3NX11Ka7fGVCHovqhIXUopm8aEHuRfdUIdWh9vzVKPar1tfZjjX+gNmikVwJf6bn/AeADTcc1JNbbgdfQvZDatmrdNuDRavmzwFU9+x/dr4FYzwXuAS4H7qzeWD/u+RAdbffqzfjKavnEar9oIOa/V33xRt/61rY3z15V/Myq7e4EfrutbQ3M932xbqptgauAz/asP2a/uuLu2/YWYF+1fMz3x1p7N/U9Myhu4Bbg5cBBnu0AWtXe3pq9ldTX9MVdXL8zoA7F9UND6lFU3zQg/iL7qvXq0Lettf3WKPWoux9r+9CytQ/bmieqda1SHWa9GLgPmMvMwwDV33Oq3dpUlz8G/gPw6+r+3weeyczV6n5vbEfjrrYfqfav20uAHwF/Wg1N+G8RcSotbu/MPAR8DPgBcJhu291P+9t6zWbbtvE2H+BddH8FgpbHHRFvAg5l5oN9m1odt+pTYF/Tq8R+p19x/dAgM9A39ZuFvqpXMf1Wvyb6sbYnMjFgXdYexToi4oXAl4D3ZebP1tt1wLra6xIRbwSezsz7e1cP2DVH2FanE+kewvx0Zl4M/ILuIeRhGo+7Gqd7Jd3Dwf8AOBV43TpxNR7ziIbF2ar4I+KDwCqwb23VgN1aEXdE/AbwQeAPBm0esK4Vcas+pfU1vQrud/oV1w8NMsN9U7/ivjtL6rf6NdWPtT2ReYLuWLs15wJPNhTLc0TESXQ7ln2ZeWu1+qmI2FZt3wY8Xa1vS10uA94UEQeBL9A9zP/HwOkRsXZdod7YjsZdbT8N+EmdAffE8URm3lfdv4Vuh9Lm9n418P3M/FFm/h1wK/CPaX9br9ls27ahzYHuyYPAG4GrszpeTbvj/kd0/6l4sPpsngt8MyJevE58bYhbNSi0r+lVar/Tr8R+aJDS+6Z+xfZVvQrst/o10o+1PZH5K+CCaiaNk+meZHZHwzEB3RkYgBuAA5n58Z5NdwA7quUddMczr63/59XMDZcCR9YOhdYpMz+Qmedm5jzd9vzLzLwauBd465C41+rz1mr/2rP+zPwh8LcR8dJq1auAb9Pu9v4BcGlE/Eb1flmLudVt3WOzbfsV4LURcUb1i99rq3W1iogrgPcDb8rM/9uz6Q7gHdGdged84ALg67TgeyYz92fmOZk5X302n6B7gvcPaXl7a7pK7Wt6ldrv9Cu0Hxqk9L6pX5F9Va8S+61+jfVjdZwMtJUb3ZkO/pru7AwfbDqenrj+Cd3DXw8BD1S319MdN3oP8Fj198xq/wA+VdVjP7DYgjos8ezsMS+h++F4HPgfwPOr9S+o7j9ebX9Jg/FeBHyjavP/SXeGi1a3N/Bh4DvAw8B/pzvzSOvaGvg83bHSf0f3y+eacdqW7tjex6vbv2go7sfpjrld+1x+pmf/D1ZxPwq8rmd9rd8zg+Lu236QZ0+SbE17e6v/xgz0NX31WaKgfmdA/MX1Q0PqUUTfNCDuIvuqEerQ+n5rlHr0bT9IDf1YVA8iSZIkScVo+9AySZIkSXoOExlJkiRJxTGRkSRJklQcExlJkiRJxTGRkSRJklQcExlJkiRJxTGRkSRJklQcExlJkiRJxfn/kj0s2g5YzMUAAAAASUVORK5CYII=\n", "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}], "source": ["fig, ax = plt.subplots(1, 2, figsize=(14,4))\n", "sept16[sept16.from_station_id == 49][\"time\"].apply(lambda t: t.minute + t.hour*60).hist(bins=100, ax=ax[0])\n", "sept16[sept16.to_station_id == 49][\"time\"].apply(lambda t: t.minute + t.hour*60).hist(bins=100, ax=ax[1]);"]}, {"cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": []}], "metadata": {"kernelspec": {"display_name": "Python 3", "language": "python", "name": "python3"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.0"}}, "nbformat": 4, "nbformat_minor": 2}