{"cells": [{"cell_type": "markdown", "metadata": {}, "source": ["# 1A.1 - Tracer une pyramide bigarr\u00e9e\n", "\n", "Cet exercice est inspir\u00e9e de l'article [2015-04-07 Motif, optimisation, biodiversit\u00e9](http://www.xavierdupre.fr/app/code_beatrix/helpsphinx/blog/2015/2015-04-07_optimisation_et_biodiversite.html). Il s'agit de dessiner un motif."]}, {"cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": ["%matplotlib inline"]}, {"cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [{"data": {"text/html": ["
run previous cell, wait for 2 seconds
\n", ""], "text/plain": [""]}, "execution_count": 3, "metadata": {}, "output_type": "execute_result"}], "source": ["from jyquickhelper import add_notebook_menu\n", "add_notebook_menu()"]}, {"cell_type": "markdown", "metadata": {}, "source": ["## Probl\u00e8me\n", "\n", "Il faut dessiner la pyramide suivante \u00e0 l'aide de [matplotlib](https://matplotlib.org/)."]}, {"cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAATkAAAEzCAIAAADFGOPAAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAJ1LSURBVHhe7b2Jd1XV+f//+w8+39Zaa63WWrVq1WqdUKQOVayKCiqKqFgcEUFARAZxrCCToAVEqQqKMosKBMKMDDIWCKAMIYTkZk5IcpOQgQD7934/zz77npubxEQSvCnnWXux7j25IXet93k9095n7//PBBZYYC3BAlYDC6xlWMBqYIG1DAtYDSywlmEBq4EF1jIsYDWwwFqGBawGFljLsIDVwAJrGRaw+j9h5akme4bJmWlSR5n9/zKpQ8yBoSb0b1PwtSn4xlSm248F1pItYLXF2pEyk7/E7H/XbH3YbLnPbHvAbO9kdjxsvn/U7Pqn2f242fuk2fuUSX7a7HvGpPYxeZ+aknXmaLn99cBamgWstkxLn2I23m82tDOb7jH/vdds60hQdz5sfuhidnU1e54gpUA05Vmzv7tJ7cFxoCcHXuRPMRV77f8TWMuxgNWWZjmJZuPD5rt/mPV3mo13E9St0aAinCKWOkrTnjfpvUx676iR1ssUL7D/YWAtxAJWW45Vl5ptvcyqm83atmbd7WbjXWZzB7P1fpP0oKS+HqgaTi2lvU3oBZPR12S+aDL7yXiRbzNeMKE+JnesORakxC3GAlZbiJXuNd91NN/eaFbfYoOqzX5Rpna2NSpSX4Cq4RSxVCnN6mey+5ucATIG8t/sASbrJXILYjPfNIcz7J8ILL4tYLUlWOZ8s7KtWfE3BtU1t0YHVc1+HyOomvoqqORQKR1o8l42eYNNvjfwNnegJRYwhwaasvX2DwUWxxawGvdWsscsucYsa21W3mBW/Z0JsKtUI0FVst+Ubib1OdaiiKgEdYDJHUQ4C141B18zhW9wHHzdFLxm8l8hscBYcUWqHOAa9xawGt+GGnXpjWZJK7P8erPSS4C1/bvlPlup/tDFBlVkvwd6EjwUpQAVNIJJwFn0pil+iyM8hP/iLaAFwAi2xFWSYRAeNIfj2wJW49vWP2kWXWWWXmuWtzHf3mQTYLCqCTDbv4+wUtWWEoIqs9++JvslZrkW1H8R0ZK3TekwO8JDSazF9WVSDbZBeNawYPY1ni1gNY5t7wSz8K9m0dVm6XVmRRtfsYoEuIPMqT7kJcBPeZWqL6gi10UIBajg89BIUz7KlL/DF2UjiK7iCp5BNTJhpM1pz5uiBPunA4s/C1iNV6suMYmtyepiZVUaSyxW74guVruY3V0jCTCQQ06LzBYQAkUAqaBWjDZV73JUjiGxwBXRFSTb0NpfqtZeJu3FILTGrQWsxqvtHm/mX2oWXkFWl10njaUYVnd0ZrG6+3HLKgIjKk8EydxBhFCDKrCseMdUvWeqx5kj48zhfxNX0Kuh9eBrNg3WDhMic+E8+wUCizMLWI1LO1xiEq6pg1XXBH6wdlZZrDpWhwqro4no0ffNsQkktvJd5sOIt2T1dXaYXMkKVlP7BKE1Pi1gNS5t36fmm4uaIq56rCKuIqgeGW8Oj42Jq8Kqi6sp3UzREvs1AosnC1iNS1vX3WNV6lWwWl+96rHq6lVtAqNeRQ6M+IkoCj6BKwaCKlLiSL2qObBXr6Y+x35y5jj7NQKLJwtYjT9DAjzn/Air/j4wWK2nD2wnV/txISGiJWImJ2wQWodLe+kdDnALUGP7wJxifZ7Ag9U9T5ijh+yXCSxuLGA1/ixzsZlzHlmdd4lZcHkt86t2gaE+XuPNr3LRkq4u1PlVSYO1FQxcEV1BLCjFC4CKeOuCKsAG3oAcqAN4hOjdXU3Jf+2XCSxuLGA1/uz7d8nq1xdaVhOvNEvA6vWRhft23ZI8YeNfDGzT4D52gSGnWAVXYElih9ihEZUrDXXdkgRVJsBSrAJ7wJ83x36ZwOLGAlbjz9Y8bb4813x9gZl3sUm4TFi9xiy73lsPfFttD9m49cDewn3OsnrLDIEl4HQDuTEYRpLMFfzeemBADtQBPLAH/Gmj7ZcJLG4sYDX+bMWDZvYfzVd/MnP/bBL+Iq1gsOprL8Wmwf7nbLRqBYF8Gm4AgSSxgwXaV/kvKGXq64GKOIxKVbtKDKpdCX/Kv+yXCSxuLGA1/mzedWb2OZH2EkvWq72SNWb5/rYHo0KrPr9qcX1B1hu+RGJBJqDFwAs+wtpfluxLRFVQmf0+xZbyD10kr+5pv0xgcWMBq/Fn0880s/4QKVlrSYPdzI33CKs+bbPbhyuSYT4c18cSiwoWcOrAW4ZT1KiS+hJUaSkhMqNSBfbbH2J2HVicWcBq/NmXF5mZZ7NkjUqDvZkb7Qa70MqqVSZvNBN2uOpSfqAIYsEkoAWcHH34lkt/EU57kGpEVD+oOzozVid1sV8msLixgNX4s6X3mxm/j6TBkW5wq6jQaqvW9t6Go9G4snbtJgH2OQutG3hrKX3W1qhIfR2oSQ8yVu8ZbL9MYHFjAavxZ0vvtWmwdoNrCa1StWpDGJnw5g6cv2Hhqrh2IXiIk0osY2w3YukfuIgfoUDFx8A2CI+A2pGxevfL9ssEFjcWsBp/tn2UmXaGmVlraHWbucizrLpJWgRXRFdvO2/gt6srA6ZCCywBp/LJt09aShlOu5Dw7T5QkVpnTLVfJrC4sYDV+LOU6Wbqb830s2JCq6w31HURteOKZLgjW00Ab6cSKzGWA9x6A69xhbFUKEU4BeHgHKnvfzsQVFTC2V/ZLxNY3FjAavxZWbr54jdm2u8iVWukIexlwsvbcPslFK5RuLZnVARyAE+JRYwFjYC2xiCiD/MDpFTCKTgH7fhPACoq4coc+2UCixsLWI1Lm3+TmXp6pGr96k+RuVZkwouvqQ3XO2xnGMhZYjtKRxfQYjwkZOrA607MeBlLhVINpwAVzAPUzY/arxFYPFnAalxa0gjzOULrGWYGMmGE1vNsJuxwZeHqcJVkeO1txIwB9q4IseAQ0AJIcusNvMVF1Lf4gKMUnIN2ML+2rUkZb79GYPFkAatxaYU7zJRTzRenMxO2TSZdGnGxLVwVVxtdpXZdLRM5gM0RCwIJbXvhVofAiYEr+BEpvSuKUjCP/6psn/0agcWTBazGqyXebab8WppMZ3JpxOw/eoWrD1cmw9dy0nXF3ziRQ2Jv8RF7B6EFiuRW0LVD+CSikvFGKP07F1ps62W/QGBxZgGr8Wo5a8xnv2ImPPWMSE8YhavD1dau0hle1toGWEcss2KBVrmtMfQ60mZHKX4L6fSKNqZoq/0CgcWZBazGsS1/xHx2qi1cY3G1tesVfBid+bAEWD+xIBCJsXKr6CqZOnBdEcWH8SuIzMuvN0n97Z8OLP4sYDWOrarYzP6LFK6uzyS4MhmWVpNO5Nh8GAG2lRCLGIusWKBFqASKyGyJrjfwlnw6RNsQcq6IupVHcgQWrxawGt92cIf59BQWroqrRlfWrtIZ1iVNGmAXXkFiuVjiGmbFYA/QMtJKsAW6/oEruM4PXEe8ATlQLwz2bYlrC1iNe0ueGsFVa1e2mqQzrPmwDbBSwWqMRVYM9hYD2lbCrQ5gKWQSTuETVONj+DB+JflD++cCi1cLWG0Jtrq74Cq1K3E9kxM5Nh/2AqwSixiLrNhCK5FW0UW8jQy8FT7xAURjfDjpVfuHAotjC1htIbZ1mPn0l9JqOo1LmrgC0QuwroK1MfZiD9q/WG5rHfgRBj62d4L9E4HFtwWsthxLm2+mns2JHObDp9sAO0MCrCVWs2IJszbSCrc6gKUOe+Vis6CVyV5m//PA4t4CVluUlaaZNf58GAHWIxYxdtY5bDs5aJVbBFsMpVeHXtky0JRn2v82sJZgAast0ErTTeJdNsBGiNWsWMIsoZVIq9zWGIk3mqzgxJqWZwGrLday15g1z5kvL7fEMiv+LetYhNnpZ0mk1WALdGUktDEb+5m89fbXA2tpFrDa8q1wh/nhA7P4HrO4vZlxvoUW1ezsi8zyjhw7R5ui7+2HA2uxFrAaWGAtwwJWAwusZVjAamCBtQwLWA0ssJZhAauBBdYyLGD1Z7N9JeazFDNlv3lzhxmwzQxMMi/vMG/vMtNDZkbIpP5MB4tXp1ccmpdXnpBfMjEUHpde8n56yYRQ2adZFUsLK5YVHs2usp8L7IRbwOoJtdJqszBkhiWZu5eaW5eYfywzd6ww7b41d6827deae9eZ+9ab+zeYjhvNA5tM163m/VSzssAcOmJ/vZns2KEjFasKwx+l5/f4Pv+ZnQXP/VDw/K6DfXYXvri3sH9y0aB9xYNTil/ZX/za/vDrqeFhaeXf5B/eVmoqj9rfD+yEWMDqibOPd5vbF5gbE8zNiebWxeY2BXWVuWeN6fCdpRSIPrjZPLTFdN7K8fA2Drz4IM380DzPgZfOys59cnvuY0l5T+zIf3pnQXcB9YU9hf32Fg1ILnqZlBLRN1NL3jpQMjSN420ZQ9Mq5hUcSau0/1FgzWwBqyfC5h8wHRLN9d+YG+abmxaaWwDq0pqgIpY6Sh9JMo9u5+iyww68xsUvm3SH7fLlBXnP7sh5aGvuo0l5XbcD1Pxnv/eDynCKWOpRWjo8vXREqHRkqHSUN/B6eHrVmrD9HwNrTgtYbV4rPWyeWWGu+dJc97VpM8/cuMD8fZFpu9Tcvtymvgoqwmmn/0YofWyn+ef3pusPkYG3uAhoh6SYQ8edex4rO5I/aFfWvZuzH9yS8/C23H8m5T25g6D2sKmvghp+fX/4Xx6lI0Nl72SUjckoezez7D0ZeDEms2x0RumojPJpeabymP3fA2seC1htRttdaNrNM1fPMtfOsUH15oXMflGm3rnS3LWKNaofVEfp47vME7vNk3s4ntprX+AioMUH+uwyaRX2T/wEO5xyKOfxrVntN2Xf/18bVB9nUEWZerDX7sK+e4pQo77sA3WEUpp56N9Zh8ZlHxrPUf6+fYGL5HZ0RtmHWUdzD+ufCKw5LGC1uezrFNNmlrlyhrlmtrnuq+ig6mW/965j6usHFTSCUvD5dLJ5Zp/p5o1nki20IBYwd/verCq0f6hRdmhRXuZ9mzLv2pjVYXP2A9FBtadkvy9JM+lVH6jg8L1MUAo+yz/IKZ+YW+GN8g9zyyfkWGLHZJSOzTi8o8z+pcCa2gJWm8UQUS/93Fw+zVw107T60rT+2vzNq1Q1qGr2e/8GW6Mi9VVQQSMoBZzP7jfdU81zB2Skmu77TbcUS6ziCrYbi+vhfWWhW9dl3L4+8+5NWfcxAc59dJtWqjaoavb7Skr4jdSSIUx9GVEBKgLpBznk8+O8ik/yKyfLmJRf8XF+xX/ySCzCrOI6MnR4e4Brs1jAatNbSZW5dpr5yxfmr9PNVS4B1vbvElup+oPqw9tYiEZATSGcPdLM8+nm+ZDpFeK/PdMILQBGsFVcwTYIb3hz+FjpkVC79aG26zLv3JB1j5cAd5H27zM7baXaby+D6msSVIell44KoSi1oP4nD3BWflpQNeVg1ecHq74oxL+VnxUAWgCMYGtxRfk6PD1oDjeHBaw2vXVZaC7+zFw21Vwxw1w921yLBHgup2o0Ab5jRVSliqCKCIk4qamvgtoz3fTKMH0yzQtZHH2yTO8MEttDcU0m1WAbhA/c09DZ15yeO0I3r824bV1muw1ZHTZld/xvTuetnKrRBFjbv/21pSRBFdnvmIxDY7OQ5VpQQenUwsPTiw7PsANvSezkAuL6YS6oBtsk/OOsoNXU5Baw2sQ2dou5aLK5ZIpl1RWrNy0wtyySOdXoBBiVqguqgBC5LkIoQAWiL+aYfrmmX555Mdf0zTa9MxlpEV3Bsz+0zs62f7oeK/4oLf1va0J//y7jH+sz2/mL1e15T3FO9WCvXV4CLJM0qFRdUP0QqW8+QihBnVFUPTtcPSdc/VW4+svw4VnFVdMKEWkZXZEMo3ZFaH2HobVqVbH924E1kQWsNqUh+71ySoRVNpZktuZvYDWmWHUJMJADeDaoHmD8RCAFn/3zzYCDHP0LSCxxzSDJCK1IlRGHtWp9IulHQuvR0iPpbddGWL1ro52teSSmWB3odZWGsVIFeMhsGVQn5yN+EtQvw0e+KTkyr5RjbimIJa5TC0EyQ+sHOYfGZbNqHREqGZUeLGxqWgtYbUp7b7P508eW1cunmStnklU2loRVO1sTXaxqVwmsAr9nU1imIqgCy5fyzMCD5uViM7jYDCokrgizyIoRWrun2jRYWUVknlXvJmdFEw+kXbcq/QZhlY2l2ljtHVWssqs0WlhFpfpRHstUBNVZxdVflRyZX3Y08RBHQhlxnR1GVozQWvFJvk2Dx2SWjgwhMleuLLLfILCmsIDVJjME1csm1cGqNIHJ6vIoVl0HGEGSrEoCjODZN4dBFYi+UmJeLSWxAxBacxlvmQaD1X22ZFVWu26tM7QeLa1Ou3FNraxGmsA9olgtectjFcUqWP04zybAs4sRVIHosSXlx5ZWAFeyOifMwhVp8KT88oleySqshoelmYogtDaZBaw2mX2SZP74YePiqmPVxtX9jKtkFXE13wwsZFAdHDaDiiSuglUXV4VVF1dR986vo2oNfxFKvXJlo+JqhFWNq2DVxdWvS44kSFxdVH50gcRVVK0uriqrXlwNv5Fa9V1QtTaZBaw2mT29MIbVuutV/4SNv17tcYCTNC9kMYqCT6TBIBZBFSmxq1e7R9erAP6BTWb4Hvs1alhO7+2WVa1XwWo99apbBeHqVW0CTy6o+kIaS3PC4BNpMIiVerXEV6/mR9WrQ9LCr6eWfd6AxldgDbOA1aaxcJU5+32yev5Hkd6S7QPLSuC6+sD+yVVES8TMnulk8oVsBlIgigFukRUzqIZq6QMrq4C/LCYNPlpSvf8vy8HqgWs9Vl0f2K4ErqMP/Lb0gXUVxMRcrn/QCZuZxQikQJQD2e/sYgZVTtv4+sAyxYrgHH59P+A/FqTBTWQBq01jiSnm9+MtqxdOippf5ZzNXLvAUB+vcfOrOmeD2Kjzq9peYitYcEV1CmIRThFme2cy3iJDRlD1z68CdQRnhGjAv77Afhlnh5bm7b9UWG31bVqbNVHzqw9s4fyqW2Ao86tFOr/6hszZuPlVbS9NzucqCJm2AbEIpyxTpxUi3iJDZlDVxtJ7nF8F6gjOCNFFA/cd3hksY2oaC1htGhu9gaye84E57z+WVV23ZBfuz7XrltrquqXoxcBRodXDFbkuFy1lyAiRXqTHXGnoW7fkilWEaMA/Nc1+GWeF41L2X7os9YoVB64Bq6vTb1qboeuWdOE+WNV1S93kCRu3GDiybslbYPhhruLKJtPnJJbjC51ZJahcG+zWLSEBlmK1+JUUwF+xKMaFBPaTLGC1aezxeeasceYPE8jqBZ+YP3/K9cBcY6jrgb9hK9j/kE2N5RCgTqtW4IroiiwXWIJY8ImBF8iN3QJDrVT9QRXYA/63Yvbrzn5u2/5LlqVeLqy2Xp1+41quB75jg64HzukkrWD/Qzb+9cDewn0QSFxlmSEXRXAxcIGMfOTGdoEhst+xWewquaD6GhNgwF/ySXBqTtNYwGrT2H2zzZljyeq5E217Sdfuu/aSe87GpcE1QqtmwoorgESA5RM2KQyz+BeUgmE/qK5SBfDAHvAP2Ga/jLPMRzen/Hlp6uXLD1zltYJviW4v+Z+z0WWG/tCKqnWkZMKK64QcBliUr4D2ozwWqKD0gxxGVAuqVKrSVWJQHZAM+MNj0+23Cez4LGC1aeyqT8iqay8hDXbtpRppMLdZWh4Jre75VcUV0RXJMIBUYt3AW1wEyX5QNfvVoIq8+rF19ss4O3DTKrDq2kssWf/+nS1Za6TBXL7vC63uQXPFdTQfMQeQJPZ9gRZDH2Ed5z1hM4p7RBBUZr8SVPvtJfyv7bPfJrDjs4DVprHfjDG/+3ekZK0lDdaZG+kG20dYZaJVM2HFFckwIASKSiwG4NSB16BUa1RQraBq9otKFVH6jpXMrmvYvnMXpVy4JFKyXl8zDdaZG+0G20dY9WmbgfuYCb+eSlyRDA+X2lWIZQWLMCuDb8dkcAHwyBDqW4L6ZipbSgC1f3Jh3z0He+1Cdm2/TWDHZwGrTWPnjzdnvGdLVpcGR0KrPG1jQ6tUrTp5o5lwDVyBIogFkwotBl5g4Aqu4wM1QEV8vvNbxuoOK+yXcbb/smUpFyzZfzFK1uUHrv42siLCztx4T9sgtGrVKpM3NhO2uEp0HZrGVpPs5EJo3xE+kfEilo6QcIoPvHWAEVVALQKoL+492Hs3YnVBn1322wR2fBaw2jTWfob57bs102DXDdbQGqlaNROOxhXJMPADhCAWNCq0buCto1RrVD+oty9nrO670X4ZZxmdNu47f3EkDebMDbvBobbRoVWrVs2E2WTy4TpYtkd7QwLsEG8TQ4RQHbqtISh9MxVUs0bViGpB3YVYXTQy1X6bwI7PAlabxu6ZwTS4vtAqVas2hJEJ81lWKVwdrgAP+AFCEAsaFVo3FFH8CB8A1WAbv4JfVFBvW8pFUX022C/jLKPTBqbBCK3aDY4NrVq1SkOYmfCTOn/j4YpkWPcHfkWIRUos0EYGEU3Fj1igvpwCtkE4U18PVMTqouEp9tsEdnwWsNo0NmKtOe2d2kOrbQjP5BomZsLezqMWV90lWPY01AALYkEjmFRulU9FFD/CBzScEtSVEVCRWk/ea7+Ms4Ojk5PPSdz3pyW1hFa7mYusYUIm7O08anH1b+eNADuAxMpewbKp96sy8AJvBzOWklINpy+gRo2AitS67Ksm3Sj1JLaA1aaxaTvMr0eZ06XDFBtaXSbM+RstXL3oimQYtevtKwheu1WWWNCIASz9A1fwI0vptyQcnCP1vWURQb0xwczcb7+Ms/DMjOSzE/edt5gdJn9o1fWGsi6CmfC98ug5CtdHk2x0RTLc/Qe2mnrtZoAFsf1kD34McDuQcHLgNRBFLFVKEU6fZzMJoOY9RVBzH0s6tDDffpvAjs8CVpvG0sPmVyPNaaMjodXfEHaZ8FWzpHAVXG0ynMioCOQAniX2W9KIASzd0Cv4ET5ASiWcgnPQjhB9QwIr4exy+2WcVYfK9561MPmPiyJVa6Qh7DJhbr/EwtXiKsmw7MHPzjACrBLbR6DtK9y6gXQXiOJHiKWgtAcpBeegHSE6t0sSKuEjecEROE1jAatNZjdMMqeOiqpaXSas8zc1cUXtOk+OzJB8+FYhFjEWHAJaAIlSFmTqwGtcQcYLpJVShtNE0o4Q3WauuW+x/Ro1LK3t6uSzF9qqVRrC3lyrzN/cEoPrQ1s5i/MYO8MMsEosYmwPQsvEGKUs0LWDV5DxaiwlpQinT+wA7QjRID+vx077PQI7bgtYbTIbttr8agSr1tPfjcy1aibsL1wVVyTDqF1bf8N4CNhuXGCJRYwFh4RWuI2MpbyI+hZIRyhNIO1g/rqvzZgk+zVqWMGovXvPXMiqFaH1oqWca/2rzYTT2qyJFK6KK5Jh1K6dpDPMfNhH7DOE1nLrDb2C+palqaMU4fSRbWA++8Et4Ukh+z0CO24LWG0y255rfjnMnOrLhN3SCC1cFVcbXaXV1GoOMQNsjlgktOAQiTG51SFwYuAKfsTS1FE6l0sswDzI31PHQ92VO8N7f5uQ/HvJhLXJdKmXCUvhanGV6MratcPm7Pv/y4kcBFhHbFdmxRxIbsHkUzstnBi4gusoTf+ZZCntTErBPMiv3h+Tlwf2Uy1gtSmt3RfmlOFsMmkm7C9ca+D61+lcKny1BlhHLIpYhTaBQBJdb/BtgiCKjNejFIk00umrZ/PInHos/d51e3+3gE0myYSjCleHK5Lh22TS9S5O5DDAOmI7S1YMaB8jtzJApg652CUJVS7AtpQ+sAXpdFaHTfmDdttvEFhTWMBqU9rqNPOLt5kJ/xqZsFe4+nHV2lU7w5oPXznTRyyyYoEWKIJbMBkZc3kRP0LaDLARS0EpIjPSafwnm/PsF6jVytcW7Dk9gZnwH6QnLIXr/ssiuDIZRu0qnWHNhzmX44h9YEsEWgww6YZewY868TOMpaR0M9LpzHYbq7aX2G8QWFNYwGoTW+dZ5hfDvMK1blz9ATZCLLLiL5kYg1vQCHSBJYe8xhVcV0TxYWTRiMz49T6r7J+uxzIf27Tnt4IrCtfacZXO8M2SD2uAdcSCvfsEWoyOFl2Nnxy4cr+HaPtNyKIRmTPv3FDwZh2bygT2Uy1gtYmtuNJcMp6FK6dwpM/kx/XciewMX/AJ82EXYEEsYqyDFqESKCKzBZNu4C359BDFJ/F5/OL1M01JAw5nOxquTrlyGQpXTuFon0lxRTIsrSaukWi9mvmwBFguQgSxiLF3AtqNhPaeTcKtoBsZchFRVBFttwGQs/TtsPFY7I4ygR2fBaw2vW3PMf9vqPnlcA9Xr3b9/Xg7keMCrFawIBYx1g+tchs7cB0fwMAn8Xn84qYGLwqq3BHec9r8vWcssLhKdLWtpstXcCLHBdgbpIIFsYixgPYf6wEtIy25FXSjBq/zAxi3rQPk+MXKbcHpyU1vAavNYp8nRXB1tavD1QVYR6xmxQ5a5bbG0Ov4AD6GD+NXxsc8XF6/haeFIrh6tavgKvOuyIc1wCqxGmORFQPaWyTSarDFAL0Y+hpwYtxKRPFh/Ep4UvBwebNYwGpzWbe5gqvUrsD1N2M4kaMrEF2ABbEaY5EVO2iVW0XXDb2iiOJj+PDABpSpsZbdYytx1doVuJ4rEzkXSj7sAiyI1RjberUHLbllsFV03cBb8HkTEF2DaJzWZk3BkKBMbS4LWG1GG7rK/N9QtppOGcElTaeNtuUrAqxWsC7GglgNs47bWgd+hIHPjN1i/8RPsIIRe4CrtJoWJJ/trUDUAHuJVLAgFjH2KmbFNsxiXE9uZZBJ31jNH4Hq61YVfxSzO1tgTWcBq81r83ebs0ZxIueU4Vwm4QKsI9ZlxQizLtIqujWGXr98sllywP7nP9lKE7KTz03kRM7vFnCZhAZYP7GMsWw7Icy6SKvocly7yg68luvpN68pXxnsV9i8FrDa7JZWbLrNi+TDDLA+YpEVO2hdpNWh9OrQK/1WmIwmmrOsTi/P7unLhxFgz/ERe9FSBy2ndpTbK2QIvXbIlfzXdlVnVdj/N7Bms4DVE2Qg9s4pDLBsODliJSuuAa1yW2O0/swsinnk7fgNxKa3X8cAe8aCCLGSFbOOddCimiW3gq5vpP/ju0PLg0feTpAFrJ5QW51mnp1nLn3fIxZZsdSxCLOnS6RVbhVdjFaTTJ8lZl2G/fVmsvK1BdnPb0u5arklFlnx2YmsYxFmz1sc4RbjQo60W9bkDfq+YmNwZOMJtYDVn8e255oJm8xdU83dU80571loUc2eN97cO9PcO8uMWmd21rtysDmscme4cGJq6L51oY7r9/15iYX2D4kply3L7Lwx8+GNhf/eV/VDsHLw57GA1cACaxkWsBpYYC3DAlYDC6xlWMBqYIG1DAtYDSywlmEBq42z6vSKQ/PyyhPySyaGwuPSS95PL5kQKvs0q2JpYcWywqPZP9OefeWpJnuGyZlpUkeZ/f8yqUPMgaEm9G9T8LUp+MZU/jyL6feVmM9SzJT95s0dPMNuYJJ5eYd5e5eZHjIzQib1kP1YYA20gNUft2OHjlSsKgx/lJ7fg1v1Re1zrdvSD5YdrnVn+mFp5d/kH95Waiqb+ez9I2Umf4nZ/67Z+rDZcp/Z9oDZ3snseNh8/6jZ9U+z+3Gz90mz9ymT/LTZ94xJ7WPyPjUl68zR5t0AqbTaLAyZYUnmbtls0b9TuR4soNuU69kCXbea91PNygJzKHjWtQEWsPojVjorO/dJ7kmdJ1vmcv8+gKrnRwxIlq3oBdE3U0vekjOa9MQXjKFpFfMKjqRV2v+oaS19itl4v9nQzmy6x/z3XrOtI0Hd+bD5oYvZ1dXseYKUAtGUZ83+7ia1B8eBnhx4kT/FVMRs0d8U9vFuc7vsC8WjK/V8LYDqO7AHlOrxH3pgjzuzBy8+SDM/lNr/J7BaLWC1TitfXpD37I4c7/AIu1OuD1R7LpNHKY9RGxGSk9S8gdfD06vWNOmD1zmJZuPD5rt/mPV3mo13E9St0aAinCKWOkrTnjfpvUx676iR1ssUL7D/YVPY/AOmQyK3g+J5Agu59+JtciS0H1TEUkepHoSnZ+H5T8H7MjhPo24LWK3FjpUdyR+0izuDuTPUnpSTv3vY1FdBdecd6mGHPOlwjD2hlINnk2aWjebZh+XT8kzlMfu//2SrLjXbeplVN5u1bc26283Gu8zmDmbr/SbpQUl9PVA1nFpKe5vQCyajr8l80WT2k/Ei32a8YEJ9TO5Yc+x4U+LSw9xFkWd/+M5ub7uU245r6qugIpx28g6YBZaP7eRxsnrGrA49XRbQDkkxh5q5emihFrBa0w6nHMp5fGuWHqCmQVXPJuVhh7sL++7hmS4v+0AdoZTKCcLj5KhvOfxbX/BAYXA7OqPsw6yjuQ3YGakuK91rvutovr3RrL7FBlWb/aJM7WxrVKS+AFXDKWKpUprVz2T3NzkDZAzkv9kDTNZL5BbEZr5pDv/01ca7C027edwI6to5NqjeLKfLoky9U86/Q43qB9VR+vgue3a7Ht+uL/RIaHygzy6TFjy3E2MBq1F2aFFe5n3c5iurgxwY4Q+qPb1TSQftK37VByo4fC8TlPJw/g9yyifmVnij/MPc8gk5ltgxGaVjMw7vKLN/qVGWOd+sbGtW/I1Bdc2t0UFVs9/HCKqmvgoqOVRKB5q8l03eYJPvDbzNHWiJBcyhgaZsvf1DjbGvU0ybWdyo7ZrZ3GYxKqh62e+965j6+kEFjaAUfD6dbJ7ZZ7p545lkCy2IBczdvjerCu0fCkwtYDVih/eV2QMjvEOEcx/dppWqDaqa/b6SEn4jtWQIU19GVICKQPpBDvn8OK/ik/zKyTIm5Vd8nF/xnzwSizCruI4MHd7eSFxL9pgl15hlrc3KG8yqvzMBdpVqJKhK9pvSzaQ+x1oUEZWgDjC5gwhnwavm4Gum8A2Og6+bgtdM/iskFhgrrkiVG4krIuqlcuSHHgPd+ms5SksqVQ2qmv3ev8HWqEh9FVTQCEoB57P7TfdU89wBGamm+37TLcUSq7iC7QBXvwWsWjtWeiTUbn1IjjnMusdLgLt4p31rpdpvL4PqaxJUh6WXjgqhKLWg/icPcFZ+WlA15WDV5wervijEv5WfFQBaAIxga3FF+To8vRHNYdSoS280S1qZ5deblV4CrO3fLffZSvWHLjaoIvs90JPgoSgFqKARTALOojdN8Vsc4SH8F28BLQBGsCWukgyD8AY3h0uqzLXTuFHbX6dzG1SbAGv7d4mtVP1B9eFtLEQjoKYQzh5p5vl083zI9Arx355phBYAI9gqrmAbhAfNYWcBq9Zyeu4I3bw247Z1me02ZHXYxCOYOm/lVI0mwNr+7a8tJQmqyH7HZBwam4Us14IKSqcWHp5edHiGHXhLYicXENcPc0E12CbhH2c1tNW0/kmz6Cqz9FqzvI359iabAINVTYDZ/n2Elaq2lBBUmf32NdkvMcu1oP6LiJa8bUqH2REeSmItri+TarANwrOGNXD2tctC7tJ2mZ7XLgdAt5nLqRpNgO9YEVWpIqgiQiJOauqroPZMN70yTJ9M80IWR58s0zuDxPZQXJNJNdgG4QP3BLOv1gJWacUfpaXr8cF6Mn+kWN2e9xTnVA/22uUlwDJJg0rVBdUPkfrmI4QS1BlF1bPD1XPC1V+Fq78MH55VXDWtEJGW0RXJMGpXhNZ3GFqrVtVxVpTf9k4wC/9qFl1tll5nVrTxFatIgDvInOpDXgL8lFep+oIqcl2EUIAKPg+NNOWjTPk7fFE2gugqruAZVCMTRtqc9rwpSrB/um4bu4UbKV7inSjritWbFvCALM6pRifAqFRdUAWEyHURQgEqEH0xx/TLNf3yzIu5pm+26Z3JSIvoCp79oXV2tv3TJ7kFrJqjpUfS266NsHrXRjtb80hMsTrQ6yoNY6UK8JDZMqhOzkf8JKhfho98U3JkXinH3FIQS1ynFoJkhtYPcg6Ny2bVOiJUMir9RxY2VZeYxNZkdbGyKo0lFqt3RBerXczurpEEGMghp0VmCwiBIoBUUCtGm6p3OSrHkFjgiugKkm1o7S9Vay+T9mL9oRXZ75VTIqyysSSzNX8DqzHFqkuAgRzAs0H1AOMnAin47J9vBhzk6F9AYolrBklGaEWqjDisVesTSUFopQWsmqKJB9KuW5V+g7DKxlJtrPaOKlbZVRotrKJS/SiPZSqC6qzi6q9KjswvO5p4iCOhjLjODiMrRmit+CTfpsFjMktHhhCZK1fWuwfK7vFm/qVm4RVkddl10liKYXVHZxarux+3rCIwovJEkMwdRAg1qALLindM1Xumepw5Ms4c/jdxBb0aWg++ZtNg7TAhMhfOs1+gNntvM3c8VVYvn8YTPcAqG0vCqp2tiS5WtasEVoHfsyksUxFUgeVLeWbgQfNysRlcbAYVEleEWWTFCK3dU20arKwiMs/KtF/gZLaTndWjpdVpN66pldVIE7hHFKslb3msolgFqx/n2QR4djGCKhA9tqT82NIK4EpW54RZuCINnpRfPtErWYXV8LA0U1FHaD1cYhKuqYNV1wR+sHZWWaw6VocKq6OJ6NH3zbEJJLbyXebDiLdk9XV2mFzJClZT+9QVWhFUL5tUB6vSBCary6NYdR1gBEmyKgkwgmffHAZVIPpKiXm1lMQOQGjNZbxlGgxW99mSVVntujUIrSc9q+EvQqlXrmxUXI2wqnEVrLq4+nXJkQSJq4vKjy6QuIqq1cVVZdWLq+E3Uqu+q6Nq3fep+eaipoirHquIqwiqR8abw2Nj4qqw6uJqSjdTtMR+jWj7JIm7nzYqrjpWbVzdz7hKVhFX883AQgbVwWEzqEjiKlh1cVVYdXEVde/8k75qPdlZzem93bKq9SpYradedasgXL2qTeDJBVVfSGNpThh8Ig0GsVKvlvjq1fyoenVIWvj11LLP67gB13X3WJV6FazWV696rLp6VZvAqFeRAyN+IoqCT+CKgaCKlDhSr2oO7NWrqc+xn5w5zn6NaHt6YQyrdder/gkbf73a4wAnaV7IYhQFn0iDQSyCKlJiV692j65XAfwDm8zwk/7wjZOa1aMl1TwS4sqVB671WHV9YLsSuI4+8NvSB9ZVEBNzuf5BJ2xmFiOQAlEOZL+zixlUOW3j6wPLFCuCc/j1/YD/WGwajAR4zvkRVv19YLBaTx/YTq7240JCREvETE7YILQOl/bSOxzgFqDG9oE5xfo8gQere54wR2s+XRqu4lbjYPX8jyK9JdsHlpXAdfWB/ZOriJaImT3TyeQL2QykQBQD3CIrZlAN1dIHVlYB/0l+TORJzeqhpXn7LxVWW32b1oYnBUfmVx/YwvlVt8BQ5leLdH71DZmzcfOr2l6anM9VEDJtA2IRTlmmTitEvEWGzKCqjaX3OL8K1BGcEaKLBu47vDNmGVPmYjPnPLI67xKz4PJa5lftAkN9vMabX+WiJV1dqPOrkgZrKxi4IrqCWFCKFwAV8dYFVYANvAE5UAfwCNG7u5qS/9ov41liCrcUV1YvnBQ1v8o5m7l2gaE+XuPmV3XOBrFR51e1vcRWsOCK6hTEIpwizPbOZLxFhoyg6p9fBeoIzgjRgH/9yX0Kx0nNauG4FB5nqGd7t1mdftPaDF23pAv3waquW+omT9i4xcCRdUveAsMPcxVXNpk+J7EcX+jMKkHl2mC3bgkJsBSrxa+kAP6KRTE34PfvktWvL7SsJl5ploDV6yML9+26JXnCxr8Y2KbBfewCQ06xCq7AksQOsUMjKlca6rolCapMgKVYBfaAP2+O/TKejd5AVs+R09mVVV23ZBfuz7XrltrquqXoxcBRodXDFbkuFy1lyAiRXqTHXGnoW7fkilWEaMA/9eQ+2uqkZjX7uW37L1mWermw2no1jxu9VY7fl/XAOZ2kFex/yMa/HthbuA8CiassM+SiCC4GLpCRj9zYLjBE9js2i10lF1RfYwIM+Es+iZmOWPO0+fJc8/UFZt7FJuEyYfUas+x6bz3wbbU9ZOPWA3sL9znL6i0zBJaA0w3kxmAYSTJX8HvrgQE5UAfwwB7wp422X8azx+fx8I4/TCCrF3zCoyUv/VzWGOp64G/YCvY/ZFNjOQSo06oVuCK6IssFliAWfGLgBXJjt8BQK1V/UAX2gP+t7+2XOTntpGY189HNKX9emnr58gNXea3gW6LbS/7nbHSZoT+0omodKZmw4johhwEW5Sug/SiPBSoo/SCHEdWCKpWqdJUYVAckA/7w2JjNkFY8aGb/0Xz1JzP3zybhL9IKBqu+9lJsGuxCq6taQSCfhhtAIEnsYIH2Vf4LSpn6eqAiDqNS1a4Sg2pXwp/yL/tlPLtvNo/bAavnTrTtJV2779pL7jkblwbXCK2aCSuuABIBlk/YpDDM4l9QCob9oLpKFcADe8A/oJFnQ/+P2UnN6oGbVvFgJa+9xJL179/ZkrVGGszl+77Q6h40V1xH8xFzAEli3xdoMfQR1nHeEzajuEcEQWX2K0G1317C/9o++22czbvOzD4n0l5iyXq1V7LGLN/f9mBUaNXnVy2uL8h6w5dILMgEtBh4wUdY+8uSfYmoCiqz36fYUv6hi+TVPe2X8eyqT8iqay8hDXbtpRppMLdZWh4Jre75VcUV0RXJMIBUYt3AW1wEyX5QNfvVoIq8+rF19sucnHZSs7rv3EU80tuVrNfXTIN15ka7wfYRVn3aZuA+ZsKvpxJXJMPDpXYVYlnBIszK4NsxGVwAPDKE+pagvpnKlhJA7Z9c2HfPwV67kF3bb+Ns+plm1h8iJWstabCbufEeYdWnbXb7cEUyzIfj+lhiUcECTh14y3CKGlVSX4IqLSVEZlSqwH77Q8yuo+03Y3gWlitZa0mDdeZGusH2EVaZaNVMWHFFMgwIgaISiwE4deA1KNUaFVQrqJr9olJFlL5jJbPrk9lOalb3X7Ys5QIev880+Goe4G1XRNiZG+9pG4RWrVpl8sZmwhZXia5D09hqkp1cCO07wicyXsTSERJO8YG3DjCiCqhFAPXFvQd770asLuizy34bZ19eZGaezZI1Kg32Zm60G+xCK6tWmbzRTNjhqkv5gSKIBZOAFnBy9OFbLv1FOO1BqhFR/aDu6MxYndTFfhnPzh/P0+u0ZHVpcCS0ytM2NrRK1aqTN5oJ18AVKIJYMKnQYuAFBq7gOj5QA1TE5zu/ZazusMJ+mZPTTmpWMzpt5NHALg3mzA27waG20aFVq1bNhNlk8uE6WLZHe0MC7BBvE0OEUB26rSEofTMVVLNG1YhqQd2FWF00MtV+G2dL7zczfh9JgyPd4FZRodVWre29DUejcWXt2k0C7HMWWjfw1lL6rK1Rkfo6UJMeZKzeM9h+Gc/az+B5kzXSYNcN1tAaqVo1E47GFckw8AOEIBY0KrRu4K2jVGtUP6i3L2es7rvRfpmT005yVjcwDUZo1W5wbGjVqlUawsyEn9T5Gw9XJMO6P/ArQixSYoE2MohoKn7EAvXlFLANwpn6eqAiVhcNT7HfxtnSe20arN3gWkKrVK3aEEYmvLkD529YuCquXQge4qQSyxjbjVj6By7iRyhQ8TGwDcIjoHZkrN79sv0ynt0zg2lwfaFVqlZtCCMT5rOsUrg6XAEe8AOEIBY0KrRuKKL4ET4AqsE2fgW/qKDetpSLovpssF/m5LSTmtWDo5N5jPefltQSWu1mLrKGCZmwt/OoxdW/nTcC7AASK3sFy6ber8rAC7wdzFhKSjWcvoAaNQIqUuuyr2K22dw+ykw7w8ysNbS6zVzkWVbdJC2CK6Krt5038NvVlQFToQWWgFP55NsnLaUMp11I+HYfqEitM6baL+PZiLU8iL3W0GobwjO5homZsLfzqMVVdwn+lhFSAyyIBY1gUrlVPhVR/Agf0HBKUFdGQEVqPblZdjVuMXZSsxqemZF8duK+8xazw+QPrbreUNZFMBO+Vx49R+H6aJKNrkiGu//AVlOv3QywILaf7MGPAW4HEk4OvAaiiKVKKcLp82wmAdS8pwhq7mNJhxbGnOGfMt1M/a2ZflZMaJX1hrouonZckQx3ZKsJ4O1UYiXGcoBbb+A1rjCWCqUIpyAcnCP1/W8HgopKOPsr+2U8m7aDpzmfLh2m2NDqMmHO32jh6kVXJMOoXW9fQfDarbLEgkYMYOkfuIIfWUq/JeHgHKnvLYsI6o0JZuZ++2VOTjupWa0Ole89ayEP23dVa6Qh7DJhbr/EwtXiKsmw7MHPzjACrBLbR6DtK9y6gXQXiOJHiKWgtAcpBeegHSE6t0sSKuEjeTFH4JSlmy9+Y6b9LlK1RhrCXia8vA23X0LhGoVre0ZFIAfwlFjEWNAIaGsMIvowP0BKJZyCc9CO/wSgohKurBnt08PmVyPNaaMjodXfEHaZ8FWzpHAVXG0ynMioCOQAniX2W9KIASzd0Cv4ET5ASiWcgnPQjhB9QwIr4ezmPd8j3u2kZhWW1nZ18tkLbdUqDWFvrlXmb26JwfWhrZzFeYydYQZYJRYxtgehZWKMUhbo2sEryHg1lpJShNMndoB2hGiQn9djp/0eNWz+TWbq6ZGq9as/ReZakQkvvqY2XO+wnWEgZ4ntKB1dQIvxkJCpA687MeNlLBVKNZwCVDAPUDc/ar9GtN0wyZw6KqpqdZmwzt/UxBW16zw5MkPy4VuFWMRYcAhoASRKWZCpA69xBRkvkFZKGU4TSTtCdJu55r7F9muctHays1owau/eMxeyakVovWgp51r/ajPhtDZrIoWr4opkGLVrJ+kMMx/2EfsMobXcekOvoL5laeooRTh9ZBuYz35wS3hSyH6PGpY0wnyO0HqGmYFMGKH1PJsJO1xZuDpcJRleexsxY4C9K0IsOAS0AJLcegNvcRH1LT7gKAXnoB3Mr21rUsbbrxFtw1abX41g1Xr6u5G5Vs2E/YWr4opkGLVr628YDwHbjQsssYix4JDQCreRsZQXUd8C6QilCaQdzF/3tRmTZL/GSWsnO6uVO8N7f5uQ/HvJhLXJdKmXCUvhanGV6MratcPm7Pv/y4kcBFhHbFdmxRxIbsHkUzstnBi4gusoTf+ZZCntTErBPMiv3l9HVle4w0w51XxxOjNh22TSpREX28JVcbXRVWrX1TKRA9gcsSCQ0LYXbnUInBi4gh+R0ruiKAXz+K/KYpZSiW3PNb8cZk71ZcJuaYQWroqrja7Samo1h5gBNkcsElpwiMSY3OoQODFwBT9iaeooncslFmAe5O9pwGZy/9t2srMKS7933d7fLWCTSTLhqMLV4Ypk+DaZdL2LEzkMsI7YzpIVA9rHyK0MkKlDLnZJQpULsC2lD2xBOp3VYVP+oN32G9RqiXebKb+WJtOZXBox+49e4erDlcnwtZx0XfE3TuSQ2Ft8xN5BaIEiuRV07RA+iahkvBFK/86FFtt62S9Qm7X7wpwynE0mzYT9hWsNXP86nUuFr9YA64hFEavQJhBIousNvk0QRJHxepQikUY6ffVsHpkTWMCqKV9bsOf0BGbCf5CesBSu+y+L4MpkGLWrdIY1H+ZcjiP2gS0RaDHApBt6BT/qxM8wlpLSzUinM9ttrNpeYr9BrZazxnz2K2bCU8+I9IRRuDpcbe0qneFlrW2AdcQyKxZoldsaQ68jbXaU4reQTq9oY4q22i9Qm61OM794m5nwr5EJe4WrH1etXbUzrPnwlTN9xCIrFmiBIrgFk5ExlxfxI6TNABuxFJQiMiOdxn+yOc9+gZPZAlZpmY9t2vNbwRWFa+24Smf4ZsmHNcA6YsHefQItRkeLrsZPDly530O0/SZk0YjMmXduKHizAVuSLH/EfHaqLVxjcbW16xV8GJ35sARYP7EgEImxcqvoKpk6cF0RxYfxK4jMy683Sf3tn67bOs8yvxjmFa514+oPsBFikRV/ycQY3IJGoAssOeQ1ruC6IooPI4tGZMav91ll//RJbgGrtKPh6pQrl6Fw5RSO9pkUVyTD0mriGonWq5kPS4DlIkQQixh7J6DdSGjv2STcCrqRIRcRRRXRdhsAOUvfDhuPNWQ/kqpiM/svUri6PpPgymRYWk3zZCLH5sMIsK2EWMRYZMUCLUIlUERmS3S9gbfk0yHahpBzRdStPJLjx6y40lwynoUrp3Ckz+TH9dyJ7Axf8AnzYRdgQSxirIMWoRIoIrMFk27gLfn0EMUn8Xn84vUzTclxHK/3v2QBq9Yqd4T3nDZ/7xkLLK4SXW2r6fIVnMhxAfYGqWBBLGIsoP3HekDLSEtuBd2owev8AMZt6wA5frFyW4NPTz64w3x6CgtXxVWjK2tX6QzrkiYNsAuvILFcLHENs2KwB2gZaSXYAl3/wBVc5weuI96AHKgX1ty3pS7bnmP+31Dzy+Eerl7t+vvxdiLHBVitYEEsYqwfWuU2duA6PoCBT+Lz+MVNwenJngWsRiw8LRTB1atdBVeZd0U+rAFWidUYi6wY0N4ikVaDLQboxdDXgBPjViKKD+NXwpNiHi6v35KnRnDV2pWtJukMaz5sA6xUsBpjkRWDvcWAtpVwqwNYCpmEU/gE1fgYPoxfSf7Q/rmG2edJEVxd7epwdQHWEatZsYNWua0x9Do+gI/hw/iV8Sf3w+U1LGA1yrJ7bCWuWrsC13NlIudCyYddgAWxGmNbr/agJbcMtoquG3gLPm8ComsQjdParCkY8pN2zlzdXXCV2pW4nsmJHJsPewFWiUWMRVZsoZVIq+gi3kYG3gqf+ACiMT6c9Kr9Q42xbnMFV6ldgetvxnAiR1cgugALYjXGIit20Cq3iq4bekURxcfw4YFBmRptAas1rWDEHuAqraYFyWd7KxA1wF4iFSyIRYy9ilmxDbMY15NbGWTSN1bzR6D6ulXFHx3H3l5bh5lPfymtptO4pIkrEL0A6ypYG2Mv9qD9i+W21oEfYeBjeyfYP9F4G7rK/N9QtppOGcElTaeNtuUrAqxWsC7GglgNs47bWgd+hIHPjN1i/0RgzgJWa7HShOzkcxM5kfO7BVwmoQHWTyxjLNtOCLMu0iq6HNeusgOv5Xr6zWvKVx73hplp883UszmRw3z4dBtgZ0iAtcRqVixh1kZa4VYHsNRhr1xsFrQy2ce71cL83easUZzIOWU4l0m4AOuIdVkxwqyLtIpujaHXL59slhyw/3lgfgtYrd2q08uze/ryYQTYc3zEXrTUQcupHeX2ChlCrx1yJf+1XdVZFfb/PU4rTTNr/PkwAqxHLGLsrHPYdnLQKrcIthhKrw69smWgKW+aE53Sik23eZF8mAHWRyyyYgeti7Q6lF4deqXfCpNR76zzyWwBq/UZiE1vv44B9owFEWIlK2Yd66BFNUtuBV3fSP/Hd4eWxzzydvxWmm4S77IBNkKsZsUSZgmtRFrltsZIvNFk1X5izfEYiL1zCgMsG06OWMmKa0Cr3NYYrT8zi07uR95+1AJWf9zK1xZkP78t5arlllhkxWcnso5FmD1vcYRbjAs50m5Zkzfo+4qN9R7ZePyWvcasec58ebklllnxb1nHIsxOP0sirQZboCsjoY3Z2M/krbe/3jy2Os08O89c+r5HLLJiqWMRZk+XSKvcKroYrSaZPkvMugz764HVYwGrjbDKneHCiamh+9aFOq7f9+clFto/JKZctiyz88bMhzcW/ntf1Q8nPIcr3GF++MAsvscsbm9mnG+hRTU7+yKzvCPHztGm6ERvg70910zYZO6aau6eas55z0KLava88ebemebeWWbUOrMzWDnYGAtYDSywlmEBq4EF1jIsYDWwwFqGBawGFljLsIDVwAJrGXZysFqearJnmJyZJnWU2f8vkzrEHBhqQv82BV+bgm9MZSMX0zeR7Ssxn6WYKfvNmzt4AtrAJPPyDvP2LjM9ZGaETGrNg8VPkFWnVxyal1eekF8yMRQel17yfnrJhFDZp1kVSwsrlhUezY7ZdfHEWFwqeILtf5fVI2Umf4nZ/67Z+rB3ioS3z/Wuf3KTa7fD9b5nTGofk/epKVlnjjbvtpal1WZhyAxLMnfLVn3+fa51W3rd5Fp3pu+61byfalYWmEPNfPb+sUNHKlYVhj9Kz+/BzRajdirXgwUGyx7lerbAsLTyb/IPbys1lUft7zeTxaWCP6P9j7KaPsVsvJ9bCm1ypzN1kqMKu3Ana25F/5QcHvGsPVLNnfiCF/lTTEWzbPD+8W5zu+wqxIMP9XQmgOo77gWU6uERetyLO/EFLz5IMz/8+HPgP8VKZ2XnPsldxfNk02PuwAhQ9QSQAclymIAg+mZqyVtyypae2YMxNK1iXsGRtEr7HzWtxaWCP6/9z7Gak2g2PszNhLiX392UeWu0zHDG8MRO47TneWgaj07zjbRepniB/Q+bwuYfMB0SuZkQd6NfyJ37bpMDhf2gIpY6SvUYNT1JzX+G2pdN+uB1+fKCvGd35HjHf9i9jn2g2pO1PEp5EN6IkJyF5w28Hp5etabBj843xOJSwXiw/yFWq0u5B9+qGid/389Nq5k4eTKrM7Ya9+Yxhxl97QmlHHI2aYacfZg71hw73oSq9DD34OPJEb6Tv9su5abVmvoqqAinnbzjSYHlYzt5GKmeUKpDzyYFtENSzKHjzj2PlR3JH7SLe7u5U/CelLPbe9jUV0F1J1bqcZU8q3KMPWOWg6fLZpaN5umV5dPyTOUx+7//ZItLBePH/ldYLd1rvuvIbYRWy7HfcMk2d0KRo8d+y9FpkFmdMTyxasyD+vvzqG8OPfN7gMl6iarzlOE3zeGfvlZ1d6FpN4/bCF07xwbVm+VsUpSpd8rpaahR/aA6Sh/fZU/+1sO/9YUeKIwP9Nll0o7juZ3DKYdyHt+apUfgaVDV02V5XOXuwr57eCrPyz5QRyilcgb0ODmsXY5v1xc8Ehrcjs4o+zDraO5x7IwUlwrGlf1PsJo536xsy22+4JLX3BrtkjV3eowya+KkMlNF1XigyXvZ5A02+d7A29yBVm/cCqGBpuynrHf/OsW0mcVtvq6ZzU36ooKql/3eu46prx9U0AhKwefTyeaZfaabN55JttCCWMDc7XuzqtD+oUbZoUV5mfdxo7asDnLkhz+o9vTOlR20r/hVH6jg8L1MUAo+yz/IKZ+YW+GN8g9zyyfkWGLHZJSOzTi8o8z+pUZZXCoYb9byWS3ZIwdG6EmHej6/V+dEXLLkTindeHAwT+ZXmQeY3EGUtuBVc/A1U/gGx8HXTcFrJv8V6o2bQMVGotVIsRFRL5UDI/QQYZ7P71WqGlQ1+71/g61RkfoqqKARlALOZ/eb7qnmuQMyUk33/aZbiiVWcQXbjcX18L4ye+TH3fYY6NxHt2mlaoOqZr+vpITfSC0ZwtSXERWgIpB+kEM+P86r+CS/crKMSfkVH+dX/CePxCLMKq4jQ4e3NxLXuFQwDq2Fs4oKZ+mN3OaLxxx66ZM2D7fcZ+ucH7pYl4zc6UBPyoaSBjJDSygKaYveNMVvcYSH8F+8heSQH66aYksqhfujwa3Fkipz7TRu8/XX6dxE0ybA2v5dYitVf1B9eBsL0QioKYSzR5p5Pt08HzK9Qvy3ZxqhBcAItoor2AbhDW8OHys9Emq3PiQHVWbd4yXAXbzz2rVS7beXQfU1CarD0ktHhVCUWlD/kwc4Kz8tqJpysOrzg1VfFOLfys8KAC0ARrC1uKJ8HZ7eiOZwXCoYn9bCWV3/JLf5WnotN9H89iabPkFpTZ/YPHyEdY42JOCSmTv1NdkvMUeyMv+LApe8bUqH2REeSr2t2C/znsCdgfsja1gD5+66LOQeX5fpad9yfHCbuZyq0QT4jhVRlSqCKiIk4qSmvgpqz3TTK8P0yTQvZHH0yTK9M0hsD8U1mVSDbRA+cE9DZ19zeu4I3bw247Z1me02ZHXYxEO0Om/lVI0mwNr+7a8tJQmqyH7HZBwam4Us14IKSqcWHp5edHiGHXhLYicXENcPc0E12CbhH2c1tNUUlwrGp7VkVvdO4G59i7yT+SOlDtKnDjIj95CXPj3l1Tk+l4xMCQ4YMkPdQyNN+ShT/g5flI2g8Co27gbcE8ijkHSlPW+KEuyfrtvGbuE2fJd455G6YvWmBTxeiXOq0QkwKlUXVAEhcl2EUIAKRF/MMf1yTb8882Ku6Zttemcy0iK6gmd/aJ2dbf90PVb8UVq6HgDNQ7T8xer2vKc4p3qw1y4vAZZJGlSqLqh+iNQ3HyGUoM4oqp4drp4Trv4qXP1l+PCs4qpphYi0jK5IhlG7IrS+w9BataoBZ0XFpYJxay2W1eoSk9iaSi9WpaUtwVLnjuhSp4vZ3TWSPkEwZETIiyAhhIScKnPFaFP1LkflGOoNseGbcR9Yx9xfap5eJu3F+h0zst8rp0RYZWNJZmv+BlZjilWXAAM5gGeD6gHGTwRS8Nk/3ww4yNG/gMQS1wySjNCKVBlxWKvWJ5J+JLQeLT2S3nZthNW7NtrZmkdiitWBXldpGCtVgIfMlkF1cj7iJ0H9Mnzkm5Ij80o55paCWOI6tRAkM7R+kHNoXDar1hGhklHpP7KwKS4VjGdrsazuHs8t+RbKOd/LrpO2RIzSOzqz1Nn9uFUabhV1C1xs7iBKqC4Zola8Y6reM9XjzJFx5vC/KTa0V8d88DWbRGl/An69cJ79ArXZe5u5X6ayevk0ngcBVtlYElbtbE10sapdJbAK/J5NYZmKoAosX8ozAw+al4vN4GIzqJC4IswiK0Zo7Z5q02BlFZF5Vr2bnBVNPJB23ar0G4RVNpZqY7V3VLHKrtJoYRWV6kd5LFMRVGcVV39VcmR+2dHEQxwJZcR1dhhZMUJrxSf5Ng0ek1k6MoTIXLmy3l1s4lLBeLaWyerhEpNwTR1Kuxbig7UrzVLHKT1UlB5NgY++b45NoN6V7zKbgrem0q+zP+EKHiid2qcux4ygetmkOliVJjBZXR7FqusAI0iSVUmAETz75jCoAtFXSsyrpSR2AEJrLuMt02Cwus+WrMpq1611htajpdVpN66pldVIE7hHFKslb3msolgFqx/n2QR4djGCKhA9tqT82NIK4EpW54RZuCINnpRfPtErWYXV8LA0U1FHaI1LBePcWiar+z7l3plN4JU9peGV4ZKPjDeHx8Z4ZVHaeeWUbqao9k0AP0ni3pmNiquOVRtX9zOuklXE1XwzsJBBdXDYDCqSuApWXVwVVl1cRd07v46qNfxFKPXKlY2KqxFWNa6CVRdXvy45kiBxdVH50QUSV1G1uriqrHpxNfxGatV3dVStcalgnFvLZHVdd09pqXagdH3Vjqe0q3a0hYhqJyxtCfhgqAuxMeCSkVBBflvtaAblVTupz7EbmTnOfo1oe3phDKt116v+CRt/vdrjACdpXshiFAWfSINBLIIqUmJXr3aPrlcB/AObzPA6Dt/I6b3dsqr1Klitp151qyBcvapN4MkFVV9IY2lOGHwiDQaxUq+W+OrV/Kh6dUha+PXUss/rcCFxqWCcWwtkFenTnPMjSvu7iFC6ni6inZrrx2Vo8LXwuGz3wzEPl+bEOxxQHTLHdhHhzuHUcbtA6T1PmKM1ny4NV3GjarB6/keR3pLtA8tK4Lr6wP7JVURLxMye6WTyhWwGUiCKAW6RFTOohmrpAyurgD/2mMijJdU81OPKlQeu9Vh1fWC7EriOPvDb0gfWVRATc7n+QSdsZhYjkAJRDmS/s4sZVDlt4+sDyxQrgnP49f2A/1hsGhyXCsa/tUBWMxdzQ2ooPe8SnssSOztnl6fpwxne7ByXvOjaNJ2dkyRKG4kQG74ZekNjvIDM8NbOJeO2wM2BWwQ3Cm4XOPjdXU1JzeMPE1O4IbWyeuGkqPlVztnMtQsM9fEaN7+qczaIjTq/qu0ltoIFV1SnIBbhFGG2dybjLTJkBFX//CpQR3BGiAb862NO4Ti0NG//pcJqq2/T2vCs58j86gNbOL/qFhjK/GqRzq++IXM2bn5V20uT87kKQqZtQCzCKcvUaYWIt8iQGVS1sfQe51eBOoIzQnTRwH2Hd8YsY4pLBePfWiCr379Lpb++0CqdeCVPKFx+fWTZt131Is9n+JeS2iSqj12eBhVVbIhKvYfYof4YMufrqhdxyUyfpNTBTYNbJ2+O/TKejd5AVs+Rs72VVV23ZBfuz7XrltrquqXoxcBRodXDFbkuFy1lyAiRXqTHXGnoW7fkilWEaMA/NeZoq8JxKTyQUk9nb7M6/aa1GbpuSRfug1Vdt9RNnrBxi4Ej65a8BYYf5iqubDJ9TmI5vtCZVYLKtcFu3RISYClWi19JAfwVi2JcSFwqGP/WAlld8zSPfvj6Ap6elHCZKH0NDwVmc+LvZu1ttT2i4VaTesu+OUcnYiNHgqiQ1g1kVrgDkGIhd4L/1p4EbhHcKLhdcNPg1kkbbb+MZ4/P49EPf5hAVi/4hAcTXvq5rDHU9cDfsBXsf8imxnIIUKdVK3BFdEWWCyxBLPjEwAvkxm6BoVaq/qAK7AH/WzH7dWc/t23/JctSLxdWW6/mgbG3ruOxzrIeOKeTtIL9D9n41wN7C/dBIHGVZYZcFMHFwAUy8pEb2wWGyH7HZrGr5ILqa0yAAX/JJzETSnGpYPxbC2R1xYM8YemrP/EctIS/SCMRSvuaE7FJlHPMruaBfhAbvhlyUu/BIvmr/Bca4wr8scoML446R3sSdMldeeuk/Mt+Gc/um83DWsDquRNte0nX7rv2knvOxqXBNUKrZsKKK4BEgOUTNikMs/gXlIJhP6iuUgXwwB7wD4g5WTjz0c0pf16aevnyA1d5reBbottL/udsdJmhP7Siah0pmbDiOiGHARblK6D9KI8FKij9IIcR1YIqlap0lRhUByQD/vDYmM2Q4lLB+LcWyOq86+RUb685wYLnaq/giVn8ve3BKMcMtTSPotgvyGq1l6g3dIXkGHgBb53dn/eB+mOVmbnTU2xI/tBFsrKe9st4dtUnZNW1l5AGu/ZSjTSY2ywtj4RW9/yq4oroimQYQCqxbuAtLoJkP6ia/WpQRV792Dr7ZZwduGkVj8by2kssWf/+nS1Za6TBXL7vC63uQXPFdTQfMQeQJPZ9gRZDH2Ed5z1hM4p7RBBUZr8SVPvtJfyv7bPfxllcKhj/1gJZnX4mT1JyBU8tSZTr+8v67yTZUIvTdD6xkUrx0ao+Vm/UP5BWB97SGaPCkcSJMktDAn4ddQ5umu0PMTeLtt+M4UlKrmStJQ3WmRvpBttHWGWiVTNhxRXJMCAEikosBuDUgdegVGtUUK2gavaLShVR+o6VzK5r2L5zF/FQdleyXl8zDdaZG+0G20dY9WmbgfuYCb+eSlyRDA+X2lWIZQWLMCuDb8dkcAHwyBDqW4L6ZipbSgC1f3Jh3z0He+1Cdm2/jbO4VDD+rQWy+uVFPP4MBU9UEuX1/bWX6Bwzax5p/Wse5cSGeBAbQkJvKArJIS1HH75FRURn3IP3BPyxX+Ydnenpk7rYL+PZ+eN59pmWrC4NjoRWedrGhlapWnXyRjPhGrgCRRALJhVaDLzAwBVcxwdqgIr4fOe3jNUdVtgv42z/ZctSLliy/2KUrMsPXM0j2O2KCDtz4z1tg9CqVatM3thM2OIq0XVoGltNspMLoX1H+ETGi1g6QsIpPvDWAUZUAbUIoL6492Dv3YjVBX122W/jLC4VjH9rgawuvZ8HFrokKtJLbBXlmG3N097brjJabFY+3cQ9P2cldwNvrcbP8p7Ah5E4OZmTHqSn3zPYfhnP2s/gaYU10mDXDdbQGqlaNROOxhXJMPADhCAWNCq0buCto1RrVD+oty9nrO670X4ZZxmdNvJwZ5cGc+aG3eBQ2+jQqlWrZsJsMvlwHSzbo70hAXaIt4khQqgO3dYQlL6ZCqpZo2pEtaDuQqwuGplqv42zuFQw/q0lsnqvTaK0l1iLY5aaR9uJyKM2d2D3n2WPit2FssHLqt700N0oqn/gIn6E8gYfw52B+yMic0d6+t0v2y/j2T0zmAbXF1qlatWGMDJhPssqhavDFeABP0AIYkGjQuuGIoof4QOgGmzjV/CLCuptS7koqs8G+2WcZXTawDQYoVW7wbGhVatWaQgzE35S5288XJEM6/7ArwixSIkF2sggoqn4EQvUl1PANghn6uuBilhdNDzFfhtncalg/FsLZHX7KB7jPbNWx4yaR7cCkSchkUdFiQ3f7G0GDfF2daW7VckhKqRVdfn2SasxnXEX3h/bfTIjMcuYar+MZyPW8hjvWkOrbQjP5BomZsLezqMWV90l+FtGSA2wIBY0gknlVvlURPEjfEDDKUFdGQEVqfXkmG0PDo5O5kHsf1pSS2i1m7nIGiZkwt7OoxZX/3beCLADSKzsFSyber8qAy/wdjBjKSnVcPoCatQIqEity76K2Sg1LhWMf2uBrKZM51nA08+KccyyWk1n1WsXG6lURzYqINtO1Vs8NAdU9wZe4wo9sWgMZ4z7A3cJEqf/dqDMqKOyv7JfxrNpO3gW8OnSYYoNrS4T5vyNFq5edEUyjNr19hUEr90qSyxoxACW/oEr+JGl9FsSDs6R+t6yiKDemGBmxpzhH56ZkXx24r7zFrPD5A+tut5Q1kUwE75XHj1H4fpoko2uSIa7/8BWU6/dDLAgtp/swY8BbgcSTg68BqKIpUopwunzbCYB1LynCGruY0mHFubbb+MsLhWMf2uBrJalmy9+w8P2Xc0TaSd6edTyNty8B2VPlNjt6VMhGGRTveGhoSUkrzEo8MP8ADUWZ4y7BPcK/hPIjDqqsmasSA+bX400p42OhFZ/Q9hlwlfNksJVcLXJcCKjIpADeJbYb0kjBrB0Q6/gR/gAKZVwCs5BO0L0DQmshLNjnvSqDpXvPWth8h8XRarWSEPYZcLcfomFq8VVkmHZg5+dYQRYJbaPQNtXuHUD6S4QxY8QS0FpD1IKzkE7QnRulyRUwkfyYo7AiUsF499aIKuw+TeZqadHap6v/hSZqUMetfia2sS+w/YVIZjVu6P0AyE5xkOiqw687sR8iZ5YNFZnDJlxx0DmzY/arxFtN0wyp46KqlpdJqzzNzVxRe06T47MkHz4ViEWMRYcAloAiVIWZOrAa1xBxguklVKG00TSjhDdZq65b7H9GjUsre3q5LMX2qpVGsLeXKvM39wSg+tDWzmL8xg7wwywSixibA9Cy8QYpSzQtYNXkPFqLCWlCKdP7ADtCNEgP6/HTvs9alhcKhjn1jJZTRphPodjPsPMQB4Fx3yezaOc2Cx7nNiSSq29jSLRPd8V0RsqQnLISdW9gbe4iOoIH3Aa4y7BvYI7Zm1bkzLefo1oG7ba/GoEq9bT343MtWom7C9cFVckw6hdW3/DeAjYblxgiUWMBYeEVriNjKW8iPoWSEcoTSDtYP66r82YJPs1aljBqL17z1zIqhWh9aKlnGv9q82E09qsiRSuiiuSYdSunaQzzHzYR+wzhNZy6w29gvqWpamjFOH0kW1gPvvBLeFJIfs9alhcKhjn1jJZLdxhppxqvjideZRtUejE+sW27FGxrW+Wyme1TANAKqc39KPk7UV1HSItBq7gR9T4riiNccfgvyqLWYgjtj3X/HKYOdWXCbulEVq4Kq42ukqrqdUcYgbYHLFIaMEhEmNyq0PgxMAV/IilqaN0LpdYgHmQv6eOh7ord4b3/jYh+feSCWuT6VIvE5bC1eIq0ZW1a4fN2ff/lxM5CLCO2K7MijmQ3ILJp3ZaODFwBddRmv4zyVLamZSCeZBfvb+OHRjiUsE4t5bJKizxbjPl19KiOJMT67P/6JU9PrGZSl3LKbsVf+M0APW+xaf3HZQcQlJ1Ed4OUZcCS74U0fjvnKbf1st+gdqs3RfmlOFsMmkm7C9ca+D61+lcKny1BlhHLIpYhTaBQBJdb/BtgiCKjNejFIk00umrZ/PInHos/d51e3+3gE0myYSjCleHK5Lh22TS9a6NWe0lwDpiO0tWDGgfI7cyQKYOudglCVUuwLaUPrAF6XRWh035g3bbb1CrxaWC8WwtltWcNeazXzGPmnpGpKOIsseJbSsf6Ssua23ds9ObOZVIrqrXGHodSZfTGL+FZGxFG1O01X6B2mx1mvnF28yEf41M2Ctc/bhq7aqdYc2Hr5zpIxZZsUALFMEtmIyMubyIHyFtBtiIpaAUkRnpNP6TzXn2C9Rq5WsL9pyewEz4D9ITlsJ1/2URXJkMo3aVzrDmw5zLccQ+sCUCLQaYdEOv4Eed+BnGUlK6Gel0ZruNVdtL7Deo1eJSwXi2FssqbPkj5rNTbdkTK7atfK7go8zMpsQ9+/WGfkirVHUVXnXVgesqMD6MX4FfX369Sepv/3Td1nmW+cUwr3CtG1d/gI0Qi6z4SybG4BY0Al1gySGvcQXXFVF8GFk0IjN+vc8q+6frsczHNu35reCKwrV2XKUzfLPkwxpgHbFg7z6BFqOjRVfjJweu3O8h2n4TsmhE5sw7NxS8WcemMn6LSwXj1loyq1XFZvZfpOxxXQoRm6mUNCp0GsBmU3DPrURveGjkVCI5HC2ERF5E4b2Bt1TXCdyGtwgKpxW38kCHH7PiSnPJeBaunMKRPpMf13MnsjN8wSfMh12ABbGIsQ5ahEqgiMwWTLqBt+TTQxSfxOfxi9fPNCUNOJztaLg65cplKFw5haN9JsUVybC0mrhGovVq5sMSYLkIEcQixt4JaDcS2ns2CbeCbmTIRURRRbTdBkDO0rfDxmOxO8rEWlwqGLfWklmFHdxhPj2FZY+Krb6ZlY/0FXVBjLrnhVdQb061X8OcCspBcvppcdUQ3j9wBdf5get4c+AWwY1S2NBdP7bnmP831PxyuIerV7v+frydyHEBVitYEIsY64dWuY0duI4PYOCT+Dx+cVODpwkrd4T3nDZ/7xkLLK4SXW2r6fIVnMhxAfYGqWBBLGIsoP3HekDLSEtuBd2owev8AMZt6wA5frFyW4NPT45LBePTWjirsOSpEbG18mGjQvqKmk1Z9yz1j3po5FRQbjEkbyWq64CooiulFXVxT+Bj+DB+JflD++caZp8nRXB1tavD1QVYR6xmxQ5a5bbG0Ov4AD6GD+NXxsc8XF6/haeFIrh6tavgKvOuyIc1wCqxGmORFQPaWyTSarDFAL0Y+hpwYtxKRPFh/Ep4UszD5fVbXCoYh9byWYWt7i5iS+VDsc/kNIDNpjz3rHrDQyOnspKLn1bh4a0jA29FXXwAvhwfTnrV/qHGWLe5gqvUrsD1N2M4kaMrEF2ABbEaY5EVO2iVW0XXDb2iiOJj+PDABpSpsZbdYytx1doVuJ4rEzkXSj7sAiyI1RjberUHLbllsFV03cBb8HkTEF2DaJzWZk3BkAaUqbEWlwrGm/1PsArbOsx8+ktpVJzGBTFcv+a5Z1f/WA99sSf5X6zqtQ78CAMf2zvB/onG29BV5v+GstV0ygguaTpttC1fEWC1gnUxFsRqmHXc1jrwIwx8ZuwW+yd+ghWM2ANcpdW0IPlsbwWiBthLpIIFsYixVzErtmEW43pyK4NM+sZq/ghUX7eq+KOY3dkabnGpYFzZ/wqrsLT5ZurZnAZgNnW6dc8zxD1bvTWnEidt/bSorgOi6rBXLjYLWpnsmK0WGmnzd5uzRnEi55ThXCbhAqwj1mXFCLMu0iq6NYZev3yyWXLA/uc/2UoTspPPTeREzu8WcJmEBlg/sYyxbDshzLpIq+hyXLvKDryW6+k3rylfGbNfYWMtLhWMH/sfYhVWmmbW+LMpuGdPb3joWeewaeEkV9XhqjFUex16ZctAU17viU4NtrRi021eJB9mgPURi6zYQesirQ6lV4de6bfCZNQ7Z9lwq04vz+7py4cRYM/xEXvRUgctp3aU2ytkCL12yJX813ZVZ1XY//c4LS4VjBP732JVrTTdJN5l3XNEb82pxElTcvHTqnqNkXijyWr6805A7J1TGGDZcHLESlZcA1rltsZo/ZlZFPPI2/EbiE1vv44B9owFEWIlK2Yd66BFNUtuBV3fSP/Hd4eWxzzydvwWlwr+7Pa/yKpa9hqz5jnz5eVWb+ZUv2UVBCc9/Szx0+qqIbyMhDZmYz+Tt97+evPY6jTz7Dxz6fsesciKpY5FmD1dIq1yq+hitJpk+iwx6zLsrzeTla8tyH5+W8pVyy2xyIrPTmQdizB73uIItxgXcqTdsiZv0PcVG+s9svH4LS4V/Bntf5dVZ4U7zA8fmMX3mMXtzYzzreSohWZfZJZ35Ng52hTFbIPdzLY910zYZO6aau6eas55z0KLava88ebemebeWWbUOrOz3pWDzWGVO8OFE1ND960LdVy/789LLLR/SEy5bFlm542ZD28s/Pe+qh+aKAtvuMWlgifeTgJWAwvsf8ICVgMLrGVYwGpggbUMC1gNLLCWYQGrgQXWMix+Wd1XYj5LMVP2mzd38AS0gUnm5R3m7V1mesjMCJnUn+lY6ur0ikPz8soT8ksmhsLj0kveTy+ZECr7NKtiaWHFssKj2TF79p0YK0812TNMzkyTOsrs/5dJHWIODDWhf5uCr03BN6aykYvpm8gCBZvW4ovV0mqzMGSGJZm7Zas+/z7Xui29bnKtO9N33WreTzUrC8yhBjwpeTx27NCRilWF4Y/S83twq76ofa51W/rBssO17kw/LK38m/zD20pNZczZ+01rR8pM/hKz/12z9WFuEbbNt8/1rn9yk2u3w/W+Z0xqH5P3qSlZZ47WsQFSE1mgYPNZHLH68W5zu+wqxIMP9XQmyOw77gUa6+ERetyLO/EFLz5IMz80z1PEpbOyc5/kntR5smUu9++DzHp+xIBk2YpeBH4zteQtOaNJT3zBGJpWMa/gSFql/Y+a1tKnmI33c0uhTe50pk5yVGEX7mTNreifksMjnpUTX+R8F3fWS/4UUxGzRX9TWKBgs1pcsDr/gOmQyM2EuBv9Qu7cd5scKOyXGZ7YaazHqOlJav4z1L5s0v2Zy5cX5D27I8c7PIL7broDhUVmey6TpzGPURsRkpPUvIHXw9Or1jT4weuGWE6i2fgwNxPiXn53E9St0aAinCKWOkrTnuehaTw6zTfSepniBfY/bAoLFDwB9jOzWnqYe/Dx5Ajfyd9tl3LTak2cVGY4407e8aQQ9bGdPIxUTyjVoWeTQvIhKebQcWcux8qO5A/axZ3B3BlqT8rJ3z1s4qQyu/MOqfHIEE86HGNPKOXg2aSZZaN59mH5tDxTecz+7z/Zqku5B9+qGid/389Nq5n6eqBqOLWU9uYxhxl97QmlHHI2aYacfZg71hw73pQ4UPCE2c/J6u5C024etxG6do51yTfL2aQocu5cySMhUOH4ZXYaP77Lnvyth3/rCz1QGB/os8ukHcdTH4dTDuU8vjVLD1BTl6xnk/Kww92FfffwTJeXfTKPUI3lBOFxctS3HP6tL3igMFQfnVH2YdbR3AbsjFSXle4133XkNkKr5dhvBFWb/aJM1WO/5eg0gKrhFLFUKc3qx0O+cwbI0DO/B5isl8gtTxl+0xz+6auNAwVPpP1srH6dYtrM4jZf18zmJn1RLtnLne5dx8TJLzO0hMZQ9+lk88w+080bzyRbyaE3boVu35tVhfYPNcoOLcrLvI/bfGV1kAMj/C65p+ROL0kr4lWfzFDxvUxozMP5P8gpn5hb4Y3yD3PLJ+RYvcdklI7NOLyjzP6lRlnmfLOyLbf5QlBdc2t0UNXs9zGCqqmvgkoOldKBJu9lkzfY5HsDb3MHWmJ5/vdAU/ZT1rsHCp5g+3lYhT++VA6M0EOEeT6/V+eoS9bc6f4NtsJB4qQyQ0toDGmf3W+6p5rnDshINd33m24pVm8VG3dGY8U+vK/MHhjhHSKc++g2rXOsS9bc6ZWU8BupJUOYONEfQ2a44Q9yqO7HeRWf5FdOljEpv+Lj/Ir/5FFvOGkVe2To8PZGil2yh/sGLdOTDvV8fq9SjQRVyX5TuvHgYJ7Mr6AOMLmDCGfBq+bga6bwDY6Dr5uC10z+KyQWGCuuSJUbiWug4Im3n4HVkipz7TRu8/XX6dxE06ZP2jxcYuscv0t+eBvLmIjMKZS2R5p5Pt08HzK9Qvy3Zxolh/xw1So27gzcHw1vLR4rPRJqtz4kxxxm3eOlT1280761zum3ly75NXHJw9JLR4VQ0liZ/5MHaSs/LaiacrDq84NVXxTi38rPCiA55IertmKj+Bme3ojWImrUpTdym6/l13MTTU2Atf275T5bqf7QxQZVZL8HehI8FKUAFTSCScBZ9KYpfosjPIT/4i2gBcAItsRVkmEQ3uDmcKDgz9Ic/hlY7bKQe3xdpqd9y/HBbeay0a/p0x0rouocuGT4V3hZTZxU5p7ppleG6ZNpXsji6JNlemdQ7x4qdjLvCdwZuD8G7mno3F1Ozx2hm9dm3LYus92GrA6beART561s9Gv6pM3D/tqQEJeM3GlMxqGxWciRrMzQeGrh4elFh2fYgbfUe3IBxf4wF/cE7gzeHx9nNbRRsf5JbvO19FpuovntTTYBBquaALP9+wgrVW0pIagy++1rsl9ilmtB/RcRLXnblA6zIzyUxFpcXybVYBuEZw1r4OxroGAjFGw6O9Gsjt3Cbfgu8c4jdaXOTQt4vBJn5KLTJ9Q5ziVDQmRKcMCQGQK/mGP65Zp+eebFXNM32/TOpJ+Gb8bd4HfMs7Ptn67Hij9KS9fjg/Vk/kipsz3vKc7IHey1y0ufpMWPOse55A+ROOXDAVPmGUXVs8PVc8LVX4WrvwwfnlVcNa0Qfpq+GakUKh845nfomKtW1XFWlN/2TuBufYu8k/kjxSoS4A4yp/qQlwA/5VWqvqCKXBchFKCCz0MjTfkoU/4OX5SNILqKK3gG1ciEkTanPW+KEuyfrtsCBRuhYJPaCWUVudOVUyJKsy0hvf6/QemYUselTxAMslmXfIDeF24Y6vbPNwMOcvQvoN4UO4P3ARwzEi14ca15nkj6Ecd8tPRIetu1EaXv2mh7/Y/ElDoDvZ7EMNY5kA15EV3y5Hx4X8r8ZfjINyVH5pVyzC2F3hR7aiHuAzrmD3IOjctmzTMiVDIq/UeWxVSXmMTWZHWxsiqNJRard0QXq13M7q6RBBjIIadFZgsIgSKAVFArRpuqdzkqx5BY4IroCpJtaO0vVWsvk/Zi/aE1ULARCja1nVBW39vM/TJV6cun8TwIKM22hChte/3RpY72JKA0xHs2hUUOXDJEfSnPDDxoXi42g4vNoEKKDSeNnAqOuXuqTaJUafj1WfVukVU08UDadavSbxCl2ZaoTeneUaUOexKjRWnUOR/lsciBS55VXP1VyZH5ZUcTD3EklFHs2WHkVHDMFZ/k2yRqTGbpyBD8euXKevdA2T2eW/ItlHO+l10njaUYVnd0ZrG6+3HLKgIjKk8EydxBhFCDKrCseMdUvWeqx5kj48zhfxNX0Kuh9eBrNg3WDhMic+E8+wVqs0DBRijY1HbiWIVLvmxSHUpLC5FKL49S2vUP4WKptKRPcL19c+iSIfArJebVUuo9AI45l96aSRSU3mcLHlW669Y6HfPR0uq0G9fUqnSkhdgjSumStzylUepA6Y/zbPo0uxguGQIfW1J+bGkFxKbSc8Ise5BETcovn+gVPKJ0eFiaqajDMR8uMQnX1MGqawI/WDurLFYdq0OF1dFE9Oj75tgEElv5LvNhxFuy+jo7TK5kBaupfeoKrYGCjVCwGezEsfpJEvfObJRXdkpbr7yfXplKwyvnm4GFdMmDw2ZQkXhlKO28sijtvDKqpvl11DzhL0KpV65slFeOKK1eGUo7r/x1yZEE8cqLyo8uEK+Mmsd5ZVXa88rhN1Krvquj5tn3KffObIK46rGKuIqgemS8OTw2Jq4Kqy6upnQzRbVvAhgo2AgFm8FOHKtPL4xRuu5qx2VQNaqdHgfY4n8hiz4Y6iKJgt5wyUioXLXTPbrawe3ywCYzvI6jG3J6b7dKa7UDpeupdqB0jWpHW4iTC6q+kLbEnDDURRIFvSnzVyW+aicft0Wk2hmSFn49tezzOm7Add09VqVeBav11aseq65e1SYw6lXkwIifiKLgE7hiIKgiJY7Uq5oDe/Vq6nNm3zMmc5z9GtEWKNgIBZvBThCr4SpuVA2lz//IKh3pIso60rq6iP6pOfhaeNye6VT0hWy6YQiMAdWRU9Elh2rpIqrSuHViDxk8WlLNIyGuXHngWk9p10WE0vV0Ed+WLqLOoU/M5ey5tvtnFsMNQ2AO5E6zi+mS2fT3dRFlgg6uPfz6ftw6x2KTKCTAc86PsOrvA4PVevrAdnK1HxcSIloiZnLCBqF1uLSX3uEAtwA1tg/MKdbnCTxY3fOEOVrz6dJAwUYo2Dx2glhNTOGG1Kr0hZOiZufY8Z9rl6fpwxludk47/vCs8K+24NFGooiN2gZ6wxnDSffOpLdGfgWX7J+dw40C1w4Hj1tnfcwZDoeW5u2/VJRu9W1aG54UHJmde2ALZ+fc8jSZnSvS2bk3pOPvZue0OTE5H2kSxZ5RBL3hjFnkTCuEt0Z+RZesbYn3ODuHGwWuHQ6+aOC+wztjFsFkLuaG1GB13iU8lyV2ftUuMNTHa7z5VS5a0tWFOr8qabC2goEroiuIBaV4AVARb11QBdjAG5ADdQCPEL27qympefxhoGAjFGweO0Gsjt5Apc+Rs71VaV31Ypd9z7WrXtrqqpfopaRRjtkTG5kSfHCvDBkhao/kCjJ38616caUOHDxunakxByMVjkvhcYZ6tneb1ek3rc3QVS+67BtK66qXbvJ8hltKGln14i1P+zBXxWaL4nPqzfGFzstRZq4sdatekD5JqVP8SgpunYpFMTfg9++S1a8vtKwmXskTCpdfH1m4b9ctyRM2/sXANg3uYxcYcopVcAWWJHaIHRpRudJwsLfM8AVJgKVYBfaAP2+O/TKeBQo2QsHmsRPE6uPzePTDHyZQ6Qs+4cGEl34uK9R0Nek3bCT6H9HwJ1HqmLXmgdjwzciRICr0hroYeIHM6llveZrWOX6XjJsGt85bMbs9Zz+3bf8ly1IvF6Vbr+Zxo7fK8fuymjSnkzQS/Y9o2CTK55ilP0Gx4Zv/kwdRqffkAhn5yKw4KQeZkTuNzWJPwrnk15g+4dYp+SRmOmLN0zz64esLeHpSwmXC6jU8FNiuB76ttods3Hpgb+E+Z1m9ZYbAEnC6gdwYDCNJ5gp+bz0wIAfqAB7YA/600fbLeBYo2AgFm8dOEKv3zeZhLVD63Im2OaErv11zwj2l4ZKoGo5Z8ygVG3LCPcMBQ3I4afwLjXEH+GV2dQ5uF9w0uHUGxJwsnPno5pQ/L029fPmBq6Q5ccOa0C3RzQn/Uxq6SM3vmFHzjJQ8SsWekEP3jOIHkn+Uh3+p8Qc59MdWZqlzpCdBlzwgGbdOeGzMZkgrHuQJS1/9ieegJfxFWsFg1ddeik2DXWh1VSsI5NNwAwgkiR0s0L7Kf0EpU18PVMRhVKraVWJQ7Ur4U/5lv4xngYKNULB57ASxetUnVNo1J5BEueZEjSSKm/Qsjzhm9/Sjig3fjFQKcqrebuAtLuI+8MusuZO6ZGRlj62zX8bZgZtW8WAlrznBgufv39mCp0YSxcXfPsfsHlNWsUfzAWXISb3fF8kxIPD47EPjvOczRnGHAcrM3Elccr+9vHVe22e/jbN51/FgJddeYsl6tVeyxizf3/ZgVGjV51ctri/IesOXSCzIBLQYeMFHWPvLkn2JqAoqs9+n2FL+oYvk1T3tl/EsULARCjaPnSBWfzOGJym5gqeWJEr7/tJLtA9AyjSd5lEqNlIpSAghVW8MSKsDr6ExruNuwD2hMmvuhDoHPv6OlczNati+cxfxSG9X8FxfM4nSvr/2EumYe3rPagzcxzzq9VSKjVRquFQ+ojfrHzhpGXw7JoPLR0eGUB1R5jdT2ZCAzP2TC/vuOdhrF3Iz+22cTT+TJym5krWWNNjN3MgK/iTZEo0TrT5ckQzz4bg+llhUsIBTB94ynKJGldSXoEpLCZEZlSqw3/4Qs+toCxRshILNYyeI1fPH8+wzLXhcEhVxzPKshnXMUvNo61/zqBpiQ0joDUVVcgy8wMAVXMcHasgM737nt/T0HVbYL+Ns/2XLUi7g8ftMoq7mAd52Pt32/b1nNeCYteaR1r/No6zY4puHprFRIfuAUPJ3RF3kS/DEI8QZ4wNvHaA/FpmLIPOLew/23g1PX9Bnl/02zr68iMefoWSNSoO9mRvtBrvQyqpVJm80E3a46lJ+oAhiwSSgBZwcffiWS38RTnuQakRUP6g7OjNWJ3WxX8azQMFGKNg8doJYbT+DpxXWSKJcL1Edc6Tm0TwqWmykUhAPEkJvaKmSu4G3TmPcE5o4OZlvX05P33ej/TLOMjpt5NHALoli35+9xFDbaMesNY/mUWxR+MQeLJtrvSHueYi3BR4csA68VY3fTMU9wQpH/bGVeRc8fdHIVPttnC29nwcWujQYodV2g1tFhVZbtbb3NhyNxpW1azcJsM9ZaN3AW0vps7ZGRerrQE16kLF6z2D7ZTwLFGyEgs1jJ4jVe2YwiarPMUvNo+1E5FF8ElLKHic2ZIN4kBB6Q0uV3A0VGD/CB3BP4M7Ar+AXVebblnJJTZ8N9ss4y+i0gUkUHLP2EmMds9Y80k5kHvWkdv89sZFK6e6yr4jeSKhE8sigwKn4Ecubl1NwZ+D+YOLkyQxPXzQ8xX4bZ0vvtWmwdoNrCa1StWpDGJnw5g5my/1SuCquXQge4qQSyxjbjVj6By7iRyhQ8TGwDcIjoHZkrN79sv0yngUKNkLB5rETxOqItTzGu1bHbNuJM7kChnmUt2+lFRu+WSof+Fd1z9AbWkJRVV3VVYHxI3xAnTFlXhmRGYnZ5JhtDw6OTuYx3n9aUotjtluByAoY5FHevpVWbP9m0HDPA6i37DQrW0K/KgMv8HYwPTE1Vmf8AiqciMxIzMq+itlmc/soHuM9s9bQ6jZzkWdZdZO0CK6Irt523sBvV1cGTIUWWAJO5ZNvn7SUMpx2IeHbfaAitc6Yar+MZ4GCjVCweewEsTptB88CPl36E7GO2eVR7P5r2eP5ZqRSqHxuX0HZ2q2yekNLDIjqH7iCH1mNv+X9gbsEidMtiyjzjQlmZswZ/uGZGclnJ+47bzH7E37HrKvVZFadedS98uAyyp5Hk6xvRirV/Qc2KnrtpnuG3v1kB3cMqD6Q0nLgNQSGJ1aN4YyfZysCMuc9RZlzH0s6tDDmDP+U6TwLePpZMaFV1hvquojacUUy3JGtJoC3U4mVGMsBbr2B17jCWCqUIpyCcHCO1Pe/HQgqKuHsr+yX8SxQsBEKNo+dIFbTw+ZXI81poyOO2d9OdHnUVbOk7BGxbSqVSJ8KwSCb1ftbaokBUd3QK/gRPkCNxRnjLsG9Agd/QwLrqOyYJ72qQ+V7z1rIw/ZdzRNpJ7o8ipv3sOyxYksqhcrnaekrwj2r3n1E8r6iuhtIliAwfgRPDI17UGPcJbhX4OBzuyShjjqSF3OASlm6+eI3PGzfVa2RhrCXCS9vw+2XULhG4dqeURHIATwlFjEWNALaGoOIPswPkFIJp+ActOM/AaiohCtrxopAwUYo2Dx2gliF3TDJnDoqquZxeZR2/2uKjcpnnhy4INnUraI3PDRUhOSQE4UQdNWB17iCfAk3hGpMZ5zIewUOvs1cc99i+zVqWFrb1clnL7Q1j7QTvZk66f7fEiP2Q1s5B/AY+4p0z6o3PHQPSs60CoUQhLeDV5AvqSemxnDGT+zAvQIHj/smr8dO+z1q2PybzNTTI1XrV3+KzLUiE158TW243mE7w0DOEttROrqAFuMhIVMHXndixstYKpRqOAWoYB6gbn7Ufo1oCxRshILNYCeO1WGrza9GsOY5/d3ITJ3mUf6yR8VGKoXKp/U39KaQ6sYFVm94aKhIyUX1yFjKi6iOcENENE7gvYI75rqvzZgk+zVqWMGovXvPXMiaB475oqWcqfurzaPS2qyJlD0qNlIpVD6dpK/IbMqn9zOU3KruDb2C6ggfiGgMZ/zINtwx2Q9uCU8K2e9Rw5JGmM8RWs8wM5AJI7SeZzNhhysLV4erJMNrbyNmDLB3RYgFh4AWQJJbb+AtLqK+xQccpeActIP5tW1Nynj7NaItULARCjaDnThWt+eaXw4zp/ryKDexrmWPim19szQqWs2hSJDK6Y10CCoiraLqOkRaDFzBj1jYOI3ncoIedwzumz11PBJcuTO897cJyb+XPEpbFJd6eZSUPVZs8c2sfDpszr7/v5wGgHt2endlTsWB1AiKPrXTSouBK7iOwuafSVbjztQYdwzum+r9dWxuVLjDTDnVfHE6M2HbZNKlERfbwlVxtdFVatfVMpED2ByxIJDQthdudQicGLiCH5HSu6IoBfP4r8pqX4gTKNgIBZvBThyrsHZfmFOGs0WheZS/7Kkh9l+nc6Hp1eqend4ogVTyBMpJ4b3BtwkiMPIlT2OkYUjGrp7NA1fqsfR71+393QK2KCSPiip7nNhIpW6TKbu7OA1A9+z07iw5FSR/jKrLgK465GKXJNRIuC2sxg9sQTKW1WFT/qDd9hvUaol3mym/libTmVwaMfuPXuHqw5XJ8LWcdF3xN07kkNhbfMTeQWiBIrkVdO0QPomoZLwRSv/OhRbbetkvUJsFCjZCwaa2E8rq6jTzi7eZR/0aeZRX9vjF1spH+4qaTV0506c3ciqRHEJCdSgaGXN5ET9C0oXbAp4YGsOvIxnDf7I5z36BWq18bcGe0xOYR/1BOopS9uy/LCI2UylUPtJX1GyKMwFO7we2RCTHgKJu6BX8qBM/Q09MjTcjGctst7Fqe4n9BrVazhrz2a+YCU89I9ITRuHqcLW1q3SGl7W2AdYRy6xYoFVuawy9jrTZUYrfQjq9oo0p2mq/QG0WKNgIBZvaTiirsM6zzC+GeWVP3WL73XNEb+RUXzKtgurQEsJDVA55jSu4rgLjw8jB4Nfx631W2T9dj2U+tmnPb0VslD21iy19xZslm1L37PSGcveJ5BgdrfAceIGBK/d7ArffhBwMfj3zzg0Fb9axJYnflj9iPjvVFq6xuNra9Qo+jM58WAKsn1gQiMRYuVV0lUwduK6I4sP4FUTm5debpP72T9dtgYKNULBJ7USzWlxpLhnPsocTANKl8It97kT2FS/4hNmUc8/QGx7aSQ5HCyGRF0FRN/CW6noC45P4PH7x+pmmpAFHex0NV6dcuQxlDycAtEuhYiOVkkYFZ9hbr2Y2Je6ZS9igNzz0nZB8IyW/Z5OoLsJHhlyED1aB223ALcLCqcPGY7H7kcRaVbGZ/RcpXF2fSXBlMiytpnkykWPzYQTYVkIsYiyyYoEWoRIoIrMlut7AW/LpEG1DyLki6lYeyfFjFijYCAWb1E40q7DtOeb/DTW/HO6J7VU+vx9vpwGce9b6B3rDQ/slV9VjB67jAxj4JD6PX9zU4CUllTvCe06bv/eMBVZs8c22UXH5Ck4DOPd8g9Q/0BseGpL/Yz0kp5+m6iJ81OB1fgDjtnW4RfCLldsafPbuwR3m01NYuCquGl1Zu0pnWJc0aYBdeAWJ5WKJa5gVgz1Ay0grwRbo+geu4Do/cB3xBuRAvbDmvi11WaBgIxRsOvsZWIV9nhQR21U+Tmznnp3emlM5yVX1GkOv4wP4GD6MXxkf82hy/RaeFoqI7VU+IrbM2iGbUvesequHRk4FyW8RP62uGgPaY+hrSItxKwXGh/Er4UmNfDQ5eWoEV61d2WqSzrDmwzbASgWrMRZZMdhbDGhbCbc6gKWQSTiFT1CNj+HD+JXkD+2fa5gFCp54+3lYhXWbK2JL5QOxfzOG0wC6fs25Z+itHho5lZNcVVfh3dArKjA+hg8PbECRE2vZPbZSbK18IPa5Mg1woWRTzj1Db/XQrVd7klN1umoV3g28hbo3QeA18OVpbdYUDPlJRc7q7oKr1K7E9UxO5Nh82AuwSixiLLJiC61EWkUX8TYy8Fb4xAcQjfHhpFftH2qMBQqeYPvZWIUNXWX+bygbFaeM4IKY00bb4gfuWesf56Ghtzppp3qtAz/CwGfGbrF/4idYwYg9EFsaFQuSz/bWr6l7vkTqH+gND30VcyrrpDGup+oyqKhvrOaPcE9ct6r4o5i9vRpuW4eZT38prabTuKSJKxC9AOsqWBtjL/ag/YvlttaBH2HgY3sn2D/ReAsUPJH2c7IKm7/bnDWK0wCnDOcku3PPTm+XU8FJOz+twtcYev3yyWbJAfuf/2QrTchOPjeR0wC/W8BJdnXPfr3podm0gJN2flqF57h2lR14LdfTb15TvvK4d7tLm2+mns2JHObDp9sAO0MCrCVWs2IJszbSCrc6gKUOe+Vis6CVyY7ZaqGRFih4wuxnZhWWVmy6zYtkU3TPPr2RUznJnZ/Wodrr0Cv9VpiMJprxqk4vz+7py6bgns/x6X3RUic5JwZU9StkiPZ2yJX813ZVZ1XY//c4rTTNrPHnwwiwHrGIsbPOYdvJQavcIthiKL069MqWgaa8aTbgCxQ8Mfbzs6oGve+cQvfMdoXTW3KqGpKr6jVG68/MopgHpo7foHd6+3V0z2csiOgtORWrICc5aiGqLsL7Rvo/vju0vBkemCpNN4l32QAbIVazYgmzhFYirXJbYyTeaLJqP7HmeCxQsLktXlhVW51mnp1nLn3f0xs5lVRBcNKni59W1VV4jFaTTJ8lZl2G/fVmsvK1BdnPb0u5arnVGznV2YmsguCkz1scUR3jQo60W9bkDfq+YmMzH/iXvcasec58ebklllnxb1nHIsxOP0sirQZboCsjoY3Z2M/krbe/3jwWKNh8Fl+sOtueayZsMndNNXdPNee8ZyVHLXTeeHPvTHPvLDNqndlZ77qz5rDKneHCiamh+9aFOq7f9+clVvI/JKZctiyz88bMhzcW/ntf1Q8ndN0ZrXCH+eEDs/ges7i9mXG+hRbV7OyLzPKOHDtHm6KYbbCb2QIFm9zilNXAAgushgWsBhZYy7CA1cACaxkWsBpYYC3DAlYDC6xlWBOzWp1ecWheXnlCfsnEUHhcesn76SUTQmWfZlUsLaxYVng0+wTt+FbTylNN9gyTM9OkjjL7/2VSh5gDQ03o36bga1Pwjan8eZZi7ysxn6WYKfvNmzt4AtrAJPPyDvP2LjM9ZGaETGrNg8VPkAUKNtxOsIJNwOqxQ0cqVhWGP0rP78GN3riJ4/PeLsm6qflg2R9Z9zUfllb+Tf7hbaWmsplPbj9SZvKXmP3vmq0Pe6dIePtc7/onN7l2O1zve8ak9jF5n5qSdeZo826fU1ptFobMsCRzt2zV9w/fPtftZVt63eS6o+xM33WreT/VrCwwh5r5SclAwYbbz6jg8bJaOis790nuaJwnG65y9zfIrKcPDEiWjcxF4DdTS96SE370vBCMoWkV8wqOpFXa/6hpLX2K2Xg/txTa5E5n6iRHFXbhTtbciv4pOTziWXukmjvxBS/yp5iKmA3em8I+3m1ul12Fbk70TmeCzL7jXqCxHh6hx724E1/w4oM088OPPwf+UyxQsOH28yr401ktX16Q9+yOHO/oAcjM/Rp9MttTfTyNeQjXiJCcw+UNvB6eXrWmSR/bzUk0Gx/mZkLcy+9uyrw1WmY4Y3hip3Ha8zw0jUen+UZaL1O8wP6HTWHzD5gOidxM6AY5POIWyCwHCvtlhid2GusxanqSmv8MtS+b9DSGQMGGWzwo+FNYPVZ2JH/QLu4r9WD0udE9bOKkMrvT8qjxyBDPyRtjz7fk4MmWmWWjeXJe+bQ8U3nM/u8/2apLuQffqhonf9/PTauZOHkyqzO2GvfmMYcZfe0JpRxyNmmGnH2YO9YcO96EqvQw9+C75kvuKtTGO/m77VJuWq2Jk8oMZ9zJO54Uoj62k4eR6gmlOvRsUkg+JMUcOu7cM1Cw4RY/Cjaa1cMph3Ie35qlx2+pS9aTLXlU3u7Cvnt4IsjLPplHqMZy/uw4OShajo7WFzyOFqqPzij7MOtobgP21anLSvea7zpyG6HVcuw3XLLNnVDk6LHfcnQaZFZnDE+sGvOg/v486ptDz/weYLJeouo8ZfhNc/inr1XdXWjazeM2QtfOsS75ZjmbFEXOnXJ6Giocv8xO48d32ZO/9fBvfaEHCuMDfXaZtON46iNQsOEWVwo2jtVDi/Iy7+MmUVkd5LgBv0vuKbnTS9KKeNUnM1R8LxMa82j3D3LKJ+ZWeKP8w9zyCTlW7zEZpWMzDu8os3+pUZY536xsy22+4JLX3BrtkjV3eowya+KkMlNF1XigyXvZ5A02+d7A29yBVm/cCqGBpuynrHf/OsW0mcVtvq6ZzU36olyylzvdu46Jk19maAmNoe7TyeaZfaabN55JtpJDb9wK3b43qwrtH2qUBQo23OJNwUawenhfGfeSun09Ny+/j+lT7qPbtM6xLllzp1dSwm+klgxh4kR/DJnhhj/Iobof51V8kl85Wcak/IqP8yv+k0e94aRV7JGhw9sbKXbJHjkwQk861PP5vTon4pIld0rpxoODeTK/yjzA5A6itAWvmoOvmcI3OA6+bgpeM/mvUG/cBCo2Eq1Gig1/fKkcGHGVO5/fq3PUJWvudP8GW+EgcVKZoSU0hrTP7jfdU81zB2Skmu77TbcUq7eKjTujsWIHCjbc4lDBhrJ6rPRIqN36kBySl3WPlz518c6K1jqn31665NfEJQ9LLx0VQkljZf5PHqSt/LSgasrBqs8PVn1RiH8rPyuA5JAfrtqKjeJneHojWouocJbeyG2+eMyhlz5p83DLfbbO+aGLdcnInQ70pGwoaSAztISikLboTVP8Fkd4CP/FW0gO+eGqKbakUrg/GtxaLKky107jNl9/nc5NNG36pM3DJbbO8bvkh7exjInInEJpe6SZ59PN8yHTK8R/e6ZRcsgPV61i487A/dHw1mKgYEtXsKGs5vTcEbp5bcZt6zLbbcjqsCm7439zOm9lo1/TJ20e9teGhLhk5E5jMg6NzUKOZGWGxlMLD08vOjzDDryl3pMLKPaHubgncGfw/vg4q6GNivVPcpuvpddyE81vb7LpE5TW9InNw0dY52hDAi6ZuVNfk/0ScyQr878ocMnbpnSYHeGh1NuK/TLvCdwZuD+yhjVw7q7LQu7xdZkc63K1HB/cZi4b/Zo+3bEiqs6BS4Z/hZfVxEll7pluemWYPpnmhSyOPlmmdwb17qFiJ/OewJ2B+2PgnobO3QUKtnQFG8Rq8Udp6Xr4LA/w8Zc62/Oe4ozcwV67vPRJWvyoc5xL/hCJUz4cMGWeUVQ9O1w9J1z9Vbj6y/DhWcVV0wrhp+mbkUqh8oFjfoeOuWpVHScN+W3vBO7Wt8g7mT9S6iB96iAzcg956dNTXp3jc8nIlOCAITPUPTTSlI8y5e/wRdkICq9i427APYE8CklX2vOmKMH+6bpt7BZuw3eJdx6pK3VuWsDjlTgjF50+oc5xLhkSIlOCA4bMEPjFHNMv1/TLMy/mmr7Zpncm/TR8M+4Gv2OenW3/dD0WKNjSFYT9OKtHS4+kt10bUfqujbbX/0hMqTPQ60kMY50D2ZAX0SVPzof3pcxfho98U3JkXinH3FLoTbGnFuI+oGP+IOfQuGzWPCNCJaPSf2RZTHWJSWxNpRer0tKWYKlzR3Sp08Xs7hpJnyAYMiLkRZAQQkJOlblitKl6l6NyDPWG2PDNuA+sY+4vNU8vk/Zi/Y4ZudOVUyJKsy0hvf6/QemYUselTxAMslmXfIDeF24Y6vbPNwMOcvQvoN4UO4P3ARwzEi14ca15nkj6EcccKNjSFVT7cVaLJh5Iu25V+g2iNNsStSndO6rUYU9itCiNOuejPBY5cMmziqu/Kjkyv+xo4iGOhDKKPTuMnAqOueKTfJtEjcksHRmCX69cWe8OGrvHc0u+hXLO97LrpC0Ro/SOzix1dj9ulYZbRd0CF5s7iBKqS4aoFe+YqvdM9ThzZJw5/G+KDe3VMR98zSZR2p+AXy+cZ79AbfbeZu6XqUpfPo3nQUBptiVEadvrjy51tCcBpSHesykscuCSIepLeWbgQfNysRlcbAYVUmw4aeRUcMzdU20SpUrDr8+qd5OzQMGWrqDaj7B6tLQ67cY1tSodaSH2iFK65C1PaZQ6UPrjPJs+zS6GS4bAx5aUH1taAbGp9Jwwyx4kUZPyyyd6BY8oHR6WZirqcMyHS0zCNXUo7VqID9auNEsdp/RQUXo0BT76vjk2gXpXvstsCt6aSr/O/oQreKB0ap+6HDNc8mWT6lBaWohUenmU0q5/CBdLpSV9guvtm0OXDIFfKTGvllLvAXDMufTWTKKg9D5b8KjSXbfW6ZgDBVu6gs5+hNXwF6HUK1c2yitHlFavDKWdV/665EiCeOVF5UcXiFdGzeO8sirteeXwG6lV39VR8+z7lHtnNoFX9pSGV4ZLPjLeHB4b45VFaeeVU7qZoto3AfwkiXtnNsorO6WtV95Pr0yl4ZXzzcBCuuTBYTOoSLwylHZeWZR2XhlV0/w6ap5AwZauoLMfYTWn93artFY7ULqeagdK16h2tIU4uaDqC2lLzAlDXSRR0Jsyf1Xiq3bycVtEqp0haeHXU8s+r+Prr+vuKS3VDpSur9rxlHbVjrYQUe2EpS0BHwx1ITYGXDISKshvqx3NoLxqJ/U5diMzx9mvEW1PL4xRuu5qx2VQNaqdHgfY4n8hiz4Y6iKJgt5wyUioXLXTPbrawe3ywCYzvI6jGwIFW7qCzupj9WhJNQ8UuHLlgWs9pV0XEUrX00V8W7qIOoc+MZez59run1kMNwyBOZA7zS6mS2bT39dFlAk6uPbw6/tx6xyLTaKQPs05P6K0v4sIpevpItqpuX5chgZfC4/Ldj8c83BpTrzDAdUhc2wXEe4cTh23C5Te84Q5WvPZxHAVN6qG0ud/ZJWOdBFlHWldXUT/1Bx8LTxuz3Qq+kI23TAExoDqyKnokkO1dBFVadw6sYcMBgq2dAX9Vh+rh5bm7b9UlG71bVobnjMbmZ17YAtn59zyNJmdK9LZuTek4+9m57Q5MTkfaRLFnlEEveGMWeRMK4S3Rn5Fl6xtifc4O4cbBa4dDr5o4L7DO2MWwWQu5obUUHreJTyXJXZ2zi5P04czvNk5LnnRtWk6OydJlDYSITZ8M/SGxngBmeGtnUvGbYGbA7cIbhTcLnDwu7uakprHHyamcENqVfrCSVGzc+z4z7XL0/ThDDc7px1/eFb4V1vwaCNRxEZtA73hjOGke2fSWyO/gkv2z87hRoFrh4PHrbM+5gyHQMGWrqDf6mO1cFwKD8PTk6HbrE6/aW2GrnrRZd9QWle9dJPnM9xS0siqF2952oe5KjZbFJ9Tb44vdF6OMnNlqVv1gvRJSp3iV1Jw61Qsivn6379Lpb++0CqdeCVPKFx+fWTZt131Is9n+JeS2iSqj12eBhVVbIhKvYfYof4YMucP9hapvSDpk5Q6uGlw6+TNsV/Gs9EbqPQ5cra3Kq2rXuyy77l21UtbXfUSvZQ0yjF7YiNTgg/ulSEjRO2RXEHmbr5VL67UgYPHrTM15mCkQMGWrqDf6mM1+7lt+y9Zlnq5KN16NQ+rvFUOb5fVpDmdpJHof0TDJlE+xyz9CYoN3/yfPIhKvScXyMhHZsVJOciM3GlsFnsSziW/xvQJt07JJzHN7DVP8+iHry/g6UkJl4nS1/BQYDYn/m7W3lbbIxpuNam37JtzdCI2ciSICmndQGaFOwApFnIn+G/tSeAWwY2C2wU3DW6dtNH2y3j2+Dwe/fCHCVT6gk94MOGln8sKNV1N+g0bif5HNPxJlDpmrXkgNnwzciSICr2hLgZeILN61luepnWO3yXjpsGt81bMft2Bgi1dQb/Vx2rmo5tT/rw09fLlB66S5sQNa0K3RDcn/E9p6CI1v2NGzTNS8igVe0IO3TOKH0j+UR7+pcYf5NAfW5mlzpGeBF3ygGTcOuGxMVvprHiQJyx99Seeg5bwF2kkQmlfcyI2iXKO2dU80A9iwzdDTuo9WCR/lf9CY1yBP1aZ4cVR52hPgi65K2+dlH/ZL+PZfbN5WAuUPneibU7oym/XnHBPabgkqoZj1jxKxYaccM9wwJAcThr/QmPcAX6ZXZ2D2wU3DW6dATEnCwcKtnQF/VYfqwduWsVjebzmBAuev39nC54aSRQXf/scs3tMWcUezQeUISf1fl8kx4DA47MPjfOezxjFHQYoM3Mnccn99vLWeW2f/TbO5l0np3p7zQkWPFd7BU/M4u9tD0Y5ZqileRTFfkFWq71EvaErJMfAC3jr7P68D9Qfq8zMnZ5iQ/KHLpKV9bRfxrOrPqHSrjmBJMo1J2okUdykZ3nEMbunH1Vs+GakUpBT9XYDb3ER94FfZs2d1CUjK3tsnf0yzgIFW7qCfquP1X3nLuKB0K7gub5mEqV9f+0l0jH39J7VGLiPedTrqRQbqdRwqXxEb9Y/cNIy+HZMBpePjgyhOqLMb6ayIQGZ+ycX9t1zsNcu5Gb22zibfiZPUnIFTy1JlOv7y/rvJNlQi9N0PrGRSvHRqj5Wb9Q/kFYH3tIZo8KRxIkyS0MCfh11Dm6a7Q8xN4u234zhSUqu4KklidK+v/QS7QOQMk2neZSKjVQKEkJI1RsD0urAa2iM67gbcE+ozJo7oc6Bj79jJXOzGhYo2NIV9Ft9rO6/bFnKBTy8nUnU1Tz+2c6n276/96wGHLPWPNL6t3mUFVt889A0NipkHxBK/o6oi3wJnniEOGN84K0D9McicxFkfnHvwd674ekL+uyy38bZlxfx+DMUPFFJlNf3116ic8yseaT1r3mUExviQWwICb2hKCSHtBx9+BYVEZ1xD94T8Md+mXd0pqdP6mK/jGfnj+fZZ1rwuCQq4pjlWQ3rmKXm0da/5lE1xIaQ0BuKquQYeIGBK7iOD9SQGd79zm/p6TussF/GWaBgS1fQb/WxmtFpIw+WdUkU+/7sJYbaRjtmrXk0j2KLwif2YNlc6w1xz0O8LfDggHXgrWr8ZiruCVY46o+tzLvg6YtGptpv42zp/Tyw0CVRcMy2l9gqyjHbmqe9t11ltNisfLqJe37OSu4G3lqNn+U9gQ8jcXIyJz1IT79nsP0ynrWfwdMKayRRrpeojjlS82geFS02UimIBwmhN7RUyd3AW6cx7glNnJzMty+np++70X4ZZ4GCLV1Bv9XP6gYmUXDM2kuMdcxa80g7kXnUk9r998RGKqW7y74ieiOhEskjgwKn4kcsb15OwZ2B+4OJkyczPH3R8BT7bZwtvdcmUdpLrMUxS82j7UTkUZs7sPvPskfF7kLZ4GVVb3robhTVP3ARP0J5g4/hzsD9EZG5Iz397pftl/HsnhlMoupzzFLzaDsReRSfhJSyx4kN2SAeJITe0FIld0MFxo/wAdwTuDPwK/hFlfm2pVxS02eD/TLOAgVbuoJ+q4/Vg6OTeQj0n5bU4pjtViCyAgZ5lLdvpRXbvxk03PMA6i07zcqW0K/KwAu8HUxPTI3VGb+ACiciMxKzsq9iNmncPorHeM+s1TGj5tGtQORJSORRUWLDN3ubQUO8XV3pblVyiAppVV2+fdJqTGfchffHdp/MSMwyptov49mItTzGu1bHbNuJM7kChnmUt2+lFRu+WSof+Fd1z9AbWkJRVV3VVYHxI3xAnTFlXhmRGYnZ5JhtDwIFW7qCfquP1fDMjOSzE/edt5j9Cb9j1tVqMqvOPOpeeXAZZc+jSdY3I5Xq/gMbFb120z1D736ygzsGVB9IaTnwGgLDE6vGcMbPsxUBmfOeosy5jyUdWhhzAnzKdJ4FPP2sGMcsq9V0Vr12sZFKdWSjArLtVL3FQ3NAdW/gNa7QE4vGcMa4P3CXIHH6bwfKjDoq+yv7ZTybtoNnAZ8u/YlYx+zyKHb/tezxfDNSKVQ+t6+gbO1WWb2hJQZE9Q9cwY+sxt/y/sBdgsTplkWU+cYEMzPmDP9AwZauoN/qY7U6VL73rIU8qt3VPJF2osujuHkPyx4rtqRSqHyelr4i3LPq3Uck7yuqu4FkCQLjR/DE0LgHNcZdgnsFDj63SxLqqCN5MQeolKWbL37Dw/ZdzRNpJ3p51PI23LwHZU+U2O3pUyEYZFO94aGhJSSvMSjww/wANRZnjLsE9wr+E8iMOqqyZqxID5tfjTSnjY44Zn870eVRV82SskfEtqlUIn0qBINsVu9vqSUGRHVDr+BH+AA1FmeMuwT3Chz8DQmso7JjnvQKFGzpCvqtPlZhaW1XJ5+90NY80k70Zuqk+39LjNgPbeUcwGPsK9I9q97w0D0oOdMqFEIQ3g5eQb6knpgawxk/sQP3Chw87pu8Hjvt96hh828yU0+P1Dxf/SkyU4c8avE1tYl9h+0rQjCrd0fpB0JyjIdEVx143Yn5Ej2xaKzOGDLjjoHMmx+1XyPabphkTh0VVfO4PEq7/zXFRuUzTw5ckGzqVtEbHhoqQnLIiUIIuurAa1xBvoQbQjWmM07kvQIH32auuW+x/Ro1LFCwpSvo7EdYLRi1d++ZC1nzwDFftJQzdX+1eVRamzWRskfFRiqFyqeT9BWZTfn0foaSW9W9oVdQHeEDEY3hjB/Zhjsm+8Et4Ukh+z1qWNII8zkc8xlmBvIoOObzbB7lxGbZ48SWVGrtbRSJ7vmuiN5QEZJDTqruDbzFRVRH+IDTGHcJ7hXcMWvbmpTx9mtE27DV5lcjWPOc/m5kpk7zKH/Zo2IjlULl0/obelNIdeMCqzc8NFSk5KJ6ZCzlRVRHuCEiGifwXsEdc93XZkyS/Ro1LFCwpSvo7EdYrdwZ3vvbhOTfSx6lLYpLvTxKyh4rtvhmVj4dNmff/19OA8A9O727MqfiQGoERZ/aaaXFwBVcR2HzzySrcWdqjDsG9031/jpygsIdZsqp5ovTmUfZFoVOrF9syx4V2/pmqXxWyzQApHJ6Qz9K3l5U1yHSYuAKfkSN74rSGHcM/quymIU4YttzzS+HmVN9eZSbWNeyR8W2vlkaFa3mUCRI5fRGOgQVkVZRdR0iLQau4EcsbJzGczlBjzsG982eOh7qDhRs6Qo6+xFWYen3rtv7uwVsUUgeFVX2OLGRSt0mU3Z3bcxqL+7Z6d1ZcipI/hhVlwFddcjFLkmokXBbWI0f2IJkLKvDpvxBu+03qNUS7zZTfi0tijM5sT77j17Z4xObqdS1nLJb8TdOA1DvW3x630HJISRVF+HtEHUpsORLEY3/zmn6bb3sF6jN2n1hThnOFoXmUf6yp4bYf53OhaZXq3t2eqMEUskTKCeF9wbfJojAyJc8jZGGIRm7ejYPXKnHAgVbuoJqP85q+dqCPacnMI/6g3QUpezZf1lEbKZSqHykr6jZFGcCnN4PbIlIjgFF3dAr+FEnfoaemBpvRjKW2W5j1fYS+w1qtZw15rNfMY+aekako4iyx4ltKx/pKy5rbd2z05s5lUiuqtcYeh1Jl9MYv4VkbEUbU7TVfoHabHWa+cXbzKN+jTzKK3v8Ymvlo31FzaaunOnTGzmVSA4hoToUjYy5vIgfIenCbQFPDI3h15GM4T/ZnGe/QK0WKNjSFVT7cVZhmY9t2vNbERtlT+1iS1/xZsmm1D07vaHcfSI5RkcrPAdeYODK/Z7A7TchB4Nfz7xzQ8GbP7ahBWz5I+azU23ZEyu2rXyu4KPMzKbEPfv1hn5Iq1R1FV511YHrKjA+jF+BX19+vUnqb/903dZ5lvnFMK/sqVtsv3uO6I2c6kumVVAdWkJ4iMohr3EF11VgfBg5GPw6fr3PKvun67FAwZauIKxBrB4NV6dcuQxlDycAtEuhYiOVkkYFZ9hbr2Y2Je6ZS9igNzz0nZB8IyW/Z5OoLsJHhlyED1aB223ALcLCqcPGY/XvZqFWVWxm/0XKHtelELGZSkmjYp5MA9hsCu65legND42cSiSHo4WQyIsovDfwluo6gdvwFkHhtOJWHujwY1ZcaS4Zz7KHEwDSpfCLfe5E9hUv+ITZlHPP0Bse2kkORwshkRdBUTfwlup6AuOT+Dx+8fqZpqQBh7MFCrZ0BWENYhVWuSO857T5e89YYMUW32wbFZev4DSAc883SP0DveGhIfk/1kNy+mmqLsJHDV7nBzBuW4dbBL9Yua3BZ+8e3GE+PYVlj4qtvpmVj/QVdUGMuueFV1BvTrVfw5wKykFy+mlx1RDeP3AF1/mB63hz4BbBjVJYc9ePumx7jvl/Q80vh3tie5XP78fbaQDnnrX+gd7w0H7JVfXYgev4AAY+ic/jFzc1+OzdQMGWrmBDWYWFp4UiYnuVj4gts3bIptQ9q97qoZFTQfJbxE+rq8aA9hj6GtJi3EqB8WH8SnhSzKPJ9Vvy1IjYWvmwUSF9Rc2mrHuW+kc9NHIqKLcYkrcS1XVAVNGV0oq6uCfwMXwYv5L8of1zDbPPkyJiu8rHie3cs9NbcyonuapeY+h1fAAfw4fxK+PrfTQ51gIFG25xqGAjWIVl99hKsbXygdjnyjTAhZJNOfcMvdVDt17tSU7V6apVeDfwFureBIHXwJentVlTMKQBRU6sre4uYkvlQ7HP5DSAzaY896x6w0Mjp7KSi59W4eGtIwNvRV18AL4cH0561f6hxli3uSK2VD4Q+zdjOA2g69ece4be6qGRUznJVXUV3g29ogLjY/jwwIYVOTUsULDhFm8KNo5VWMGIPRBbGhULks/21q+pe75E6h/oDQ99FXMq66QxrqfqMqiob6zmj3BPXLeq+KN6d4aq37YOM5/+UhoVp3FBDNevee7Z1T/WQ1/sSf4Xq3qtAz/CwMf2TrB/ovE2dJX5v6FsVJwyggtiThttix+4Z61/nIeG3uqkneq1DvwIA58Zu8X+iZ9ggYINt7hSsNGswkoTspPPTeQ0wO8WcJJd3bNfb3poNi3gpJ2fVuE5rl1lB17L9fSb15SvrHe7xYZY2nwz9WxOAzCbOt265xninq3emlOJk7Z+WlTXAVF12CsXmwWtTHa9D+o3wObvNmeN4jTAKcM5ye7cs9Pb5VRw0s5Pq/A1hl6/fLJZcsD+5z/ZAgUbbvGj4E9hFVadXp7d05dNwT2f49P7oqVOck4MqOpXyBDt7ZAr+a/tqs6qsP/vcVppmlnjz6bgnj294aFnncOmhZNcVYerxlDtdeiVLQNNeQPOA2qApRWbbvMi2RTds09v5FROcuendaj2OvRKvxUmo945y4ZboGDDLU4U/ImsqkHv9Pbr6J7PWBDRW3IqVkFOctRCVF2E9430f3x3aHnMA1PHb6XpJvEu654jemtOJU6akoufVtVrjMQbTVbt550cj0HvO6fQPbNd4fSWnKqG5Kp6jdH6M7Oo3gemfpoFCjbcfnYFj4tVtfK1BdnPb0u5arnVGznV2YmsguCkz1scUR3jQo60W9bkDfq+YmO9B/4dv2WvMWueM19ebvVmTvVbVkFw0tPPEj+trhrCy0hoYzb2M3nr7a83j61OM8/OM5e+7+mNnEqqIDjp08VPq+oqPEarSabPErMuw/56M1mgYMPtZ1SwCVh1VrkzXDgxNXTfulDH9fv+vMRK/ofElMuWZXbemPnwxsJ/76v6oYlyuIZb4Q7zwwdm8T1mcXsz43wrOWqh2ReZ5R05do42RfVuotwMtj3XTNhk7ppq7p5qznnPSo5a6Lzx5t6Z5t5ZZtQ6s7MB686a1gIFG24nXsGmZDWwwAJrPgtYDSywlmEBq4EF1jIsYDWwwFqCGfP/A7beJvN5416QAAAAAElFTkSuQmCC\n", "text/plain": [""]}, "execution_count": 4, "metadata": {}, "output_type": "execute_result"}], "source": ["from IPython.display import Image\n", "Image(\"http://www.xavierdupre.fr/app/code_beatrix/helpsphinx/_images/biodiversite_tri2.png\")"]}, {"cell_type": "markdown", "metadata": {}, "source": ["## Id\u00e9e de la solution\n", "\n", "On s\u00e9pare le probl\u00e8me en deux plus petits : \n", "\n", "* Trouver la position des boules dans un rep\u00e8re cart\u00e9sien.\n", "* Choisir la bonne couleur.\n", "\n", "Le rep\u00e8re est hexagonal. L'image suivante est tir\u00e9e de la page wikip\u00e9dia [empilement compact](https://fr.wikipedia.org/wiki/Empilement_compact)."]}, {"cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAASEAAAEkCAIAAADvshD/AAAAAXNSR0IArs4c6QAAAARnQU1BAACx\njwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAACkLSURBVHhe7Z3fb1zHlefbsrQhbEWkYxgYCc50\nIwjkIRGAxGbX2oG0IB/icTaWhvSvJNQkphI7TjKTASU5seFogOZqMxkbkMmJfwihsHDzIRrsOAOQ\n1sPMw4xXweZlDQygp3maB2L/gvwJ2m/XqT4snupu3r63qrpueA4+kPrcqnvvt4v1u+vWbfxroxLL\nDWsrKyudToc+n/KiZYVqToNqJqQ/Encbjc+SCny+e/f+/fuTk5PkbnqRM0E1p0E1M9Ifiat0/0aj\n2WxCEGx1dZWOfNmLnAmqOQ2qmZF+cdxCv7GxQZp2d3ftoUbjhnfK2FHNaVDNLtIvzgLd2Sn0ZFz0\n0YuFbnHWeFHNaVDNLtIvCLqnbNRzZfvd737HvViMIMWJY0Q1p0E1C6RfBJRmlGmylZUVq8Wx7e1t\nG5xNr0A1p0E1+0j/QCDoCbpbo4HyjVJuhey3+fl5ioM+7m3vIolRzWlQzX2R/oFwtxUmWlXXoHV2\ndpaiQRa+ibhOSlRzGlRzX6Q/nAt0E2OdTsfef4Ddu3cPFQNFRlUxrqRUzWlQzYOQ/iBwRVdQu92m\nG//G2M7Ozpqxra0tOoJyT7LsCUZW4o6Bak5DHTUDXzMkkUISDAuiWfp9uWOuyDY9PT03N2edodZq\ntc6dO2cd08huehePhGoWF49EHTWjUhCaFxbcPuNAK6dZ+j4orLhWQGt7twiOaoap5r5As1vAqtuB\nmqXvguL+Kl1msH3ZMG9igvO9I8dteH9DVYD6T9wuCKrZNdUsGK75ZE/hclDN0mfWGo1H6QL7DTpw\n44K/EqDOgNzT9lRp+A74U4lTqqCa+5pqBlD1iL32PoMA3AuhRW5XTrP0Ae73GJ3kGMoxro57iMgF\nQSlHk4r6QNhEoNRUzYRq9kGN8CV7yT0jzUMan+GMpNn+h6PvmJkWv3sNNUG+KgFlqO18w5ATaTHS\nd1bNQzjkmgHK/MUBmnEjEbk0RTR30wj+IEPTHyoFXa6ar9rXMB6FJLBp4NoRcunIa6q5MIdEM6Aj\nqAsQ6jcvbGi70mseaOh0ut8hOPiq+COFNdXso5rJstA8MYHOpDXUBDhHXCUGqHXYjh07Zj8VNtVc\nkEOo+ciRI/aTyf3i4pHor7ndbn/wwQczMzPWTyiIQI+W29nJycn19XVIgs0b40VizWaTjqyuriK0\n0+mo5pH4PdYMw2c6iNDt7W1XM/K9uGxUhObNzc3G/fv3l5aW7DETQ5yTADTiLGtubo7WrQy3S5cu\n2RNUc2FUcxqE5oYrCEM3ETsZrqyFhQWbWgNsY2PDRlXNI6Ka0+Bq3rPE3QAfVDls6KjYNPPMfWBO\nNZdANafB1dy1016MseAOGZFeNuUc293dnZqaogiquTSqOQ17mk+mmikqAqofMqSX3/leWVmhUNVc\nEdWcBqt50wsYI0gdpBFZu/ckEtnduwi0pporoprT0JWFciaOjh3uyIrqih/yUc1BUM1pGHkZWBrQ\nnybjfYLciko1h0I1J0D6mYDmng1jWaRjq9Uid9mLnAmqOQ210yz9fOCVnaurq7yPwnHTwRUx80E1\np6FemqWfDzco5cwv5UhK+pxhb9tFNaehXpqlnxVsvPwMiSvi5Aabao4KW/6apZ8VdmtWx0SEDFHN\naaiRZulnxVVKvJ4hWUWEDFHNaaiRZulnxR1Kv561vQgZoprTUCPN0s8N/jEEdtsLzRPVnIa6aJZ+\nbvAsLUwEZYtqTkNdNEs/N/RvnwbVHA/p58YyJaFZDCqCskU1p6EumqWfG+cpFU2lJYKyRTWnoS6a\npZ8bL1Iq1upvr5rTUBfN0s8N/dunQTXHQ/q5oX2YNKjmeEg/N3hce8oLyhbVnIa6aJZ+bqCKYhNB\n2aKa01AXzdLPDf3bp0E1x0P6ueG+9qIua3xUcxrqoln6WaFrVdOgmqMi/azQZy7SoJqjIv2sQMIJ\nExEyRDWnoUaapZ8Pe9t5NRrT09P0IfNn4FVzGuqlWfr5gCQjm52drd1eLqo5KvXSLP184JnZdrvN\n+3t9Ntf9vQjVnIZ6aZZ+Jvj7VDabTXKXvciZoJrTUDvN3TlQcSgH+KcP9ASQiLD894hWzWmoneYc\ne7FtSi3zOl33vQHz83YySTUHQTWnoWtofMXRMYIa6RTJMr1tm4TG3OpKNVdENafByoJufBJh4+IC\nafIqKjJ+j5tqrohqTgNr7vZxRdhYKPI+UqQvRVDNpVHNaXA1dw0FTsRIDHe1YTyc9c3tFajmEqjm\nNOxp5hYWdtWLl4zb5vcNssXFRZtmA6zT6dioqnlEVHMaXM0NyIJu65jCJ2InwBU0Ozvrd7V9c6sG\n1VwQ1ZwGobmxtrZ28+ZNXvQFS9zIIhVY0IkTJ27dugVJsAVjc3NzFNRqtejI5cuXEbq1tXXmzBkK\ngqnmA/k91gzDZzqI0J2dHVfzRe+yUfE1Wwc2MTFhP5m1KmlmZvD92Y4ePWo/FTbVXJBDqPnBBx+0\nn0zVkKPmL5omT1wiIPjO9k304Uw1+6hmsi+MUfOr/R7FYfuqOVlcrjqvoWq0d5B22kgCmwZOlzu9\nIxjIquaCHBLNgI7cMKFoaY/bM6S9MA7NNhJuDH3nzdbhwnAydIdSttZoPGovvM/wt0RHdqTFZqp5\nCIdcM0AJXO5X2KAZNxKRS1NE874TCCSon5oPm76mW3OMBG6Gsv6EvdieIQmC/JFUM6GafaAZLZuw\nh4xmKgMlGK5ZRJY+g1LopybslBlBvuPF7wvSHd/El0IWJAVdVHNfU82gb+0AgwDcC5qL3K6cZum7\n4ASchqI5xFBDAIz2EBMgiekIT1/2NbSkpauQ4ahm11SzADKGGOoIUgipATVL3wdld3hSjmqoBcUt\ngqOaYaq5L9DcnYcIZwdqln5fUGm5smZmZrq/XhewZrN59uxZ65i/x6Z38UioZnHxSNRUM5omNmjm\nx8+GWznN0h8EZJ2nCxvjp3fuGtve3sYRWKfToSO05oX3WoDhL4EqRFw2Kqo5DXXUDHzNkEQKNzY2\nAmqW/nBcWbh9NyEH2+7u7tTUFEWGIPwlxNXSoJrToJoHIf0D4UYW90Oxtvf3DOWel5OhSY03ii2C\nak6Dau6L9A8ExReFmKzVauHeVsV+W1paspHG0Q0QqOY0qOa+SL8IuAeKMhnubVU4hmbXBqOn650+\nFlRzGlSzj/QLskk3NIYRodViDDUB6gMKymq/O9WcBtUskH5xeLy4sLBg5Rhrt1HUu3YScr2zxotq\nToNqdpF+cTDsY+M9TFDoMXakg5AmThk7qjkNqtlF+iPBK1PQmJKm1d4G/yj0InImqOY0qGZG+iOB\nppMHixgXotBbx3RwReRMUM1pUM2M9EeFi/7i4iJk0efTXrSsUM1pUM2E9EeFe7HotkIWfR7jnltF\nUM1pUM2E9EuArirZ8eO2pYVQESc3VHMaVDOQfgmWSUjPIFFEyBDVnAbVDKRfghukpWeQKCJkiGpO\ng2oG0i+HbVONZTtrJFDNaVDN0i8HL16G3fVC80Q1p0E1S78criYRlC2qOQ2qWfrl4LVeMBGULao5\nDapZ+uVgTagARFC2qOY0qGbpl0PT0eU35t+mvXzNbH3/d6mO5g3pl4Pf91SjdIyn+euNxh/aa9fP\nHve+TkU0b0i/HFpXMX9vr1pju+J9qSpo3pB+OTQdGVyN7It/0Hrv5ethefnl608bLnpB1Xn2ya+S\n8ocbjf/tfa/SaN6QfjlYE0wEZUsMzRjMkD3QeOCnz/1IZOLqcBkDIqg6f/ud9mMnPkf6n/e+Wmk0\nb0i/HFx5w0RQtgTX/Gmj8Xl7vcbZP/pPIgcHAc1XvDIGXn3qIul/oNH4yPuC5dC8If1yuJoO7foD\nDGPIJo595u1vvSmybxDcMrbuhQYBXVz6Fkgf8QXLoXlD+uVw32pRlzVpYTVjAINhDNnSk0+LjBuK\n804ZW/NCg4Au7pEHjtAXKfiWo+Fo3pB+CXRtNXjBXqmBIQ0GNiLjBuGaU8DAD7wIoTj3R/+Zvgu6\nvv/X+6YjoXkDSL8EEOHaKS9ChoTVjKELv0P/e19ZFlk2FChUbhl71osQCnR00d2lr3PZ+7IjoXkD\nSL8EEEH28MO2u5T/s65hNXP3PcZ8PYNCRaXrme//nD687cUJRah5fM0bQPqjcptUNBqTk5N12bMh\nrObY8/XEz3oF7MIP33plrUOfr3jRQhFkHl/zBiH9UeF9fFZWVngfnye8aFkRUHOC+XriL3tl7M9/\nfvv6h5/Q5xe9aAHheXx0g8vN4x/yvMFIfyTuOjMwEFSXPfQCak4wXw/WnRlFFLCtf/l3+gwizS4S\nVebxNW8w0h8JLvTNZlPsq4pOrYicCQE1p5mvB9yIPb+6/nf/5/+Byzd+TUfizXyAKvP4hzxvuEi/\nOBgIsvGrLlD00ZGlg5nvaV5dc4L5evB2r4CB9Y8+pTKGpgwDMzr4undKQMrN42vecJF+cXhN1/z8\nPAki4/dcoOhX/408LAE1p5mvB7xG8aWfblIBI15/92M6jqYs0poP4M7jF1+Pf8jzhkD6BUH3lM1/\nXxOaWgqq/vtdQMJqTjNfj+EWFSTAjRiBpgxdRwqK93s0GHUeX/OGQPpFuO0MDRcXF60Wx3hCBla6\nhQ1LWM0bNmL0+Xqe6nhlreMWMIInGEG8HuNI8/iaN3ykfyBoLp+gu5mhIUq5FbLfVlb4WdLudxAX\nSUxYzWnm69H9e7FXftBeodUSBYz485/f5mKGMikuEoqC8/iaN/oi/QPhPhLGgsPfAz87O0sxUUlU\n/KW8ImE1p5mv5yX2F3741vs790TRYlD2vvnj9ygmGr14Kz+KzONr3uiL9IdzgW5ijN81OMggi+dk\nUFWUGy9WJ6zmNPP1r/QKGHjrV78V5UrgzjGi6Ys0/+HO4/fdV0fzxiCkPwhc0RW0sbFBN/6NsZ2d\nnTVjW1tbdASCEIqKwZWVuGMQQ/OLFBBtvh4lxC1gf/XLf6KCtP7RpwDl7Y337gCMxOgI9SHR0LnF\nLFKncdA8fh3zBvA1QxIpJMGwIJql3xe0jLgi2/T09NzcnHWGWqvVOnfunHVMI1vl9/KRiKE59nw9\neno8BgNfv/qL5Z+8z+4QMGD79pu/ZBedxhjrP/rO49cxb6BSEJoXFhasM9TKaZa+DworrhXQEswm\nRdLMffcY8/XuLGIQYsw0inn8muYNt4BVtwM1S98FxZ1XlwwyZDswb2KC870j7psvfENVEGmkG0/z\njP0//Hw9+oe8WmoQFw0vmZjg5d6RZ7yYLt8OPQvizuNzggyycukcL2+A4XnjZE/hclDN0mfWGo1H\n6QL7DTpw4xte/L6gzoDc0/ZUafgOKBLilCok0Az746Dz9W+8fP1PvbIBlkxBuubF7wvawB/s72e6\noEwGnAjheXzfcs4bUPWIvfY+gwDcC6FFbldOs/QB7vcYneQYyjGujnuIyAVBKUeT6oubCJSayTQf\nPfaZp771ZpBci/Kz6JUHtEsoLaUnLdBqoYvoF7avBSpppPmR3jw+WeZ5AzXvl+wl94w0l24wR9Js\n/8PRd8xMi9+9hpogX5WAMtR2vmHIibQY6Tsn0/y62QuN7PSTT3PGXTGt0EidMeRyZNNX+g29ULoC\nNjgoaWgJxS1AEM1nn/vRA715/KezzBsAZR4Nbt+8gRuJyKUpormbF4dMqaDpD5WCLlfNV+1rGI9C\nEtg0cO0IuXTkteSaeb7+oROfe+o7bc6vDNoNFA+wZuBWCFmZjlw1ocjf4kQG3cJQpcvlyuABW0XN\nn3fm8T/1UqwKJfIGoCOocxGK4dMgQ9uVPj8PNLSDpVv/IuCrojCEtRia3fn6735l2d2pNwjI66V7\nhkVA0Y2h+Vqp9fgFqUvecCmkeWICnUlrqAliFHcf1Dpsx44ds58KWwLNXCnyfD1qd85t/+17P+PP\nBfnaq3/Nny/Gab58YmiOtD8+UzFvHDlie7Mw5H5x8Uj019xutz/44IOZmb2Z2GSCCPRouZ2dnJxc\nX1+HJNi8MV4k1mw26cjq6ipCO51OAs2D1tdjtMN9sAs/fOuvfvlPr7/7MXjpp5uAFxA+v7pORy7f\n+DVCr3/4yTdee5eCAJoXvmACgmt25/Ff8JIuCAXzBgyf6SBCt7e33byBfC8uGxWheXNzs3H//v2l\npSV7zMQQ5yQAjTjLmpubo3Urw+3SpUv2hGiah6+vRwePs+zyT94ftC7e5S/+5u84s8b4gfhAgmuu\nvq/OgeSZN4YjNDdcQWPcl8uVtbCwYFNrgG1scAMTUTOuTDZofb2bZVeu3RK5U4B2gzNrvD3bDiS4\n5ir76hQkw7xxIK7mPUvcRfRBlcOGDqFNM8/QE7CRYmouuL4eVTvnQnSuRB5l3vrVbzla4i6iT1jN\n7np85G6RjKHIKm8UxNXctdNejLHgDhn7Pmuwu7s7NTVFEaJqLr6+3p1O6Pscyq1//Dd3Ubw4fSyE\n1eyuxw87j++ST94ozp7mk6lmEYuA6ocM6eV3vvlx1KiaURmOtL6eJ8eRL/1BDj+qvJRqFrEIATWX\n21enBDnkjVGxmje9gDGC1OEfztvttk0/Y3fvItBaVM3/xd6k6Pp65EJeVPH6ux+7mXX9o0/pOFjz\nThwjYTXHnscncsgbo9KVNfZuqw93ZEV1xQ/5RNVcbj8cHuSIZmHl2i06PvZhmE9Aze48PrrZIkkD\nMt68UY6Rl4GlAf1pMnQAKBHdiiqe5ir74WDcQlkTHS3KrG6DMNISwWQE1OzO46OzLRI2IOPKG6WR\nfiaguWfDWBbp2GrZOeJlL3JADpyvHwK6VZw7b/3jvyG/ptn/sAphNfM8PjrbImEDMq68URrp5wMv\nYlpdXb137x59Ph5zOFt9P5yLvfx6+cav39+5R5+fyWmqwyeg5jTz+CB93qiC9PPhBqWc+aUcSUmf\no/a2q++Hc62XX5d/8j6yLH3OcCTmElZzmnn89HmjCtLPCjZefobEFXFCMep8/SAojwJe5odMLOLk\nRkDN7jx+1GUWbAnyRkWknxXzlHiOiQgBGXW+fhAvOVmWEBEyJKzmNPP4KfNGRaSfFTwDQYZkFRFC\n8bf2DgH2w7myP7Mi+4oIGRJWc5p5/GR5ozrSz4o7lH49a3sRglBlvt7n7f351V+rniHBNSeYx0+T\nN4Ig/dzgH0Ngt73QIFSZr+8L/+gEoj7jHJDgmhPM4yfIG0GQfm7wLC1MBAWh+ny9D8+GAxGULcE1\nu/P46IqLZA9C7LwRCunnRux0/Lq9dsj967WMEbHn8bWMhWGZktAsBhVB1Qk1Xy/4QS+zLnlB2RJD\nc+x5/Kh5IyDSz43zlIqm0hJB1Qk1Xy/gx0bQOIigbImkOeo8ftS8ERDp5wavvQiejr+wF+7am8/+\nhcgcVfh+DctYPM2PnbD7o3/D+xNUJF7eCIv0cyNBGfvMsf+gZSye5sc/9weUzsF/K9MyFgbtK6Yh\nkubnzmhf0fNzg8e1p7yg6sSe83jWC8qWGJrdOY/LXuJXJ2reCIj0cwNVFJsICgL3N3TuPrjm/zr9\nJKXt5/e/2zYUsfNGKKSfG7HTUX+DJoJrdn+DfsdL9iBoGQuD+9oLXUsVj3hrqf6jl+ChSJA3giD9\nrNA1wWkIrvn7T/0ZpSeGu5H26NY1wWFI9vxCub2o+qLPtvziO2v8bMvzXlKHQp9tCUPK5/C4c6/P\naFbUHHW+nkmZNyoi/XzY286r0ZienqYP8Z4nd9/lV3oef93Jpl+/+gv6kPleA2E1x56vJxLnjYpI\nPx94X5TZ2dna7ZnzzR+/V7s9c4Jojj1fT6TPG1WQfj5w563dbvP+Xp+tyd5vr7/7Me+jdr4me79V\n15xgvp5InzeqIP1M8PepbDab5Ebdp/IK3UP3MC2lOcF8PRhX3ihNjnsXA/7pAz0BJCKsRntxo8eF\nzApqtBd3dc0J5uuJceWN0uTYi+X3BkxOTrrvDZift5NJUTWHfafESz/dpOMZjsoCak4zXw/GmzfK\n0bXc3iVzimSZ3rZNQmPJ3n8z6jw+hi7P9vJrjd6NFFBzmvn6HPLGqFhZ0I1PImxcXCBNXkVFxu9x\ni6p51Hn8V3o5cvj78pCn85n8CKg5zXw9yCFvjApr7vZxRdhYKPI+UqQvRYiq+QW6h76rtoDmNPP1\n+eSN4riau4YCJ2IkhrvaMB7O+ub2CuJpLjiPz0MawNMGPm7vCw2IuEhiwmpOM1+fVd4oyJ5mbmFh\nMTYPKsht8/sG2eLiok2zAdbpdGzUmJoPnMf/mfkdyebCtY7Io4LrH37CWfaKd6lkBNecYL4+w7xx\nIK7mBmRBt3VM4ROxE+AKmp2d9bvavrlVQyTNw+fx3cz6zR+/5w9pfHiQA6qvbS9BcM0J5uvzzBvD\nEZoba2trN2/e5EVfsMSNLFKBBZ04ceLWrVuQBFswNjc3R0GtVouOXL58GaFbW1tnzpyhIFgkzev2\n8nIeH7mNM+v5H/zN2v/85zfeuwNWrt0Cyz95n4KeX12nI1fe+QeEoln4szduUhBI3GkMrjnBfH3B\nvAHDZzqI0J2dHTdvXPQuGxVfs3VgExMT9pOZvE4zM2NfPWDs6NGj9lNhS6DZn8fnrS/AV1/5H/y5\nIF979a/588VUM40xNMeer6+YNx58kOeGu1Vwjvn5i6bJE5cICL6zfRN9OIuh2Z3H/+5XllecnBeE\nFwI9dzwIlIcYmq/FnK+PkTe+MMb8/Gq/R3HYUFPFqABeQxNk7yDttJEENg2cLnd6RzCQTayZ5/Ef\nOvG5p77TFhkOvGhmw8GagcvM270jV0yo/5gW8904DdpVNEHevYiKmj8fbb6+RN4AdOSGCUXX47g9\nQxr+lOnzs42EG0PfebN1uDCcDN2hlK01Gnbb2P2GMoOO7EiLzZJpfqM7HrP2xJNPcz5D/sMgZ6RF\nfShI18wapSUnvxIoDMjToUraGy9f/1PvFiCI5rPP/eiB3nz9n2SZNwBK4HK/woa8gRuJyKUponnf\nCQQyrp9r0edGX7N0a4uboazzak42JEGQwpBM89Fjn/mTb70ZpDAg4/ol7Rkzdirde0ThQdvFK33d\nywbU/Ehvvp4s/7zBg2q2h4zmUcstM1yziCx9BqXQz7WwU2YEWfDXRqQ7vokvhSxgU0Mk0Az748r7\n6rigVfFLGnjWTOIhT4v4fUGZRMn0ixYRsHkEPF/vW855o28tDIMA3Auai9yunGbpu+AEnDaoa0uG\nGgJgtIeYAElMR3j6sq+hJS1dhQwnnuYv2f8D7KsjQAFAMUBTI8qGy0XDiokJUPzoCE/H9wU9w5G6\nhQfiztdP1y1vAMgYYqgjSCGkBtQsfR+U3eFJOaqhtRG3CE4kzUhrsor76vQFbdHwYjYqaCHFLaoj\n5utrmjfcl9xWtwM1S78vaBxcWTMzM91frwtYs9k8e/asdczfY9O7eCRiaA6yr84Q0KC5/b1vvPbu\nN3/8HrtDeH51/dtv/pJdlNU17+LV6bu+vqZ5g6tLGDTz42fDrZxm6Q8Css7ThY3x0zt3jW1vb+MI\nrNPp0BFa88J7LcDwl0AVIi4blRian7chIffHd0Exe9kpPPxk1/pHn4K3fvVbHAHXP/yEjtB6KN6H\nA6CUlp4yGc6g9fV1zBvA1wxJpHBjYyOgZukPx5WF23cTcrDt7u5OTU1RZAjCX0JcLQ1hNVffV6cI\nbjFDcaJiNgjxHErA6Q2XA9fXa94YhPQPhBtZ3A/F2t7fM5R7Xk6GJjXeKLYIYTVX2VenOBd7ZQzl\nB82UKFcM2jFeaoguYtgZDpci6+s1b/RF+geC4otCTNZqtagN9W1paclGGkc3QBBWM7pJpffVKY47\nNsNwa9Aa+e/99y2KAyJ1EUHB9fWaN/oi/SLgHijKZLi3VeEYml0bXGDWJQ1hNaOzRBZ8Ht/FnWlE\nWRKlC7jPd8WYRSRGWl+vecNH+gXZpBsaw4jQajGGmgD1AQVltd9dWM3cx4gxj8+s9YoQWP/oU7eA\noWWrshdicUZdX695QyD94vB4cWFhwcox1m6jqHftpGmIxVnjJaDm2PP4DM9/rFy75Zax19/9mI4v\nRZvnAOX2wznkeUMg/eJg2MfGe5ig0PPcS4lWNTZhNceexyfe7pUxwPvboBHjucR4vURQbj8czRsu\n0h8JXpmCxpQ08Qb/KPQiciYE1JxmHh/8Za+MoXNIZYxf/oBGTEQOSJX9cA553nCR/kig6eTBIsaF\nKPTWKfb791gIqxndJ7Ko8/joCvLkx/UPP0EjRp9BjPUcTJX9cDRvMNIfFS76i4uLPP1y2ouWFQE1\np5nHB9yUvbLW4enEF71oAam+H84hzxuM9EeFe7HotvL+VmPcc6sIYTWnmcfnURmGYShm9DneHnJB\n9sPRvEFIvwToqpIdP25bWggVcXIjrOY08/j8mNkz3/85fYi3qiPUfjiaN4D0S7BMQnpWZXSYjLCa\n0ZXizQjizeO7e0uBeLMd7nz9Fe/LjoTmDSD9EtwgLT0r9ztdYoJrfs5eKeI8/rX9ZSze784B96/X\nvAGkXw6ejYFlO2skCKs5zTy++xBnpBnFKvP1fdG8If1y8IAEVu638PQE15xgHp8X44NIazuqzNf3\nRfOG9MvhahJB2RJcc4J5fLeMiaAgxNi/XvOG9MvhPusmgrIlhubY8/jus5siqDqR9q/XvCH9crAm\nVAAiKFsiaeYqMMY8PpcxNGgiqDqR9q/XvCH9cmg6Mv/LXrXGFvZnYs0b0i8Hv++pRukYTzPvj19H\n+0Pv61RE84b0y6F1lYs7j187CzJf76J5Q/rl0HRMg2pOQ9ZlDCaCskU1p0E1S78cKO5sIihbVHMa\nVLP0y+FqOrTrPBKgmtMQVrP0y+G+1aIua9JUcxpUs/RLoGur06Ca05DjunuIcO2UFyFDVHMaVDOQ\nfgkgguzhh+3PQvk/66qa06CagfRH5TapaDQmJyfrsmeDak6DaiakPyq8j8/Kygrv4/OEFy0rVHMa\nVDMh/ZG468zAQFBd9tBTzQlQzYz0R4ILfbPZFPuqolMrImeCak6DamakXxwMBNn4VRco+ujI0sHM\n9zRXzfFQzS7SLw6v6ZqfnydBZPyeCxR9NL7irPGimtOgml2kXxB0T9m40JOh6KOppaBl78QxoprT\noJoF0i/CbWdouLi4aLU4hvGiDc6mV6Ca06CafaR/IGgun6C7maEhSrkVst9WVvhZ0u53EBdJjGpO\ng2rui/QPhJckYyw4/D3ws7OzFBOVBAaU4jopUc1pUM19kf5wLtBNjPG7BgcZZEE3RUZVgQpDXC0N\nqjkNqnkQ0h8ErugK2tjYoBv/xtjOzs6asa2tLToCQQhFxeDKStwxUM1pqKNm4GuGJFJIgmFBNEu/\nL2gZcUW26enpubk56wy1Vqt17tw565hGdtO7eCRUs7h4JOqoGZWC0LywsGCdoVZOs/R9UFhxrYCW\nYDZJNcNUc1+g2S1g1e1AzdJ3QXHn1SWDDENGMG9igvO9I+6bL3xDVTDSqLE4qtk11SwYrvlkT+Fy\nUM3SZ9YajUfpAvsNOnDjG178vqDOgNzT9lRp+A74U4lTqqCa+5pqBlD1iL32PoMA3AuhRW5XTrP0\nAe73GJ3kGMoxro57iMgFQSlHk+qLmwiUmqqZUM0+qBG+ZC+5Z6R5SOMznJE02/9w9B0z0+J3r6Em\nyFcloAy1nW8YciItRvrOqnkIh1wzQJm/OEAzbiQil6aI5m4awR9kaPpDpaDLVfNV+xrGo5AENg1c\nO0IuHXlNNRfmkGgGdAR1AUIxfBpkaLvSax5oaAfd7xAcfFX8kcKaavZRzWRZaJ6YQGfSGmoCnCOu\nEgPUOmzHjh2znwqbai7IIdR85Ih9qzUMuV9cPBL9Nbfb7Q8++GBmZsb6CQUR6NFyOzs5Obm+vg5J\nsHljvEis2WzSkdXVVYR2Oh3VPBK/x5ph+EwHEbq9ve1qRr4Xl42K0Ly5udm4f//+0tKSPWZiiHMS\ngEacZc3NzdG6leF26dIle4JqLoxqToPQ3Bi7IMKVtbCwYFNrgG1sbNioqnlEVHMaXM17lrgb4HPD\nCukaSr5NM8/cB+ZUcwlUcxpczV3DQFbEGAtXrZyuIb1syjm2u7s7NTVFEVRzaVRzGvY0n041U1QE\nVD9krVbL73zz46iquSKqOQ1W86YXMEaQOvzDebvdtuln7O5dBFpTzRVRzWnoykI5E0fHDoaqZGj6\n0QGwqXj/Pj/ko5qDoJrTMPIysDSgP02GDgAlIg9nj6vmcKjmBEg/E9Dcs1F11f2dwVjinxSLo5rT\nUDvN0s+HeUo2s9fCvXv36DMqKnRwRcx8UM1pqJdm6ecD97xRS/HW/hn2tl1UcxrqpVn6+dCdkOnZ\n448/Th9ueNGyQjWnoV6apZ8V3CUgQ2dARMgQ1ZyGGmmWflaI1SiZd2AI1ZyGGmmWfla4XQIYeuEi\nQoao5jTUSLP0c8O1rH6/H4JrqjkeruWsWfq5wT84wlB1idA8Uc1pqItm6efGWUpCYyIoW1RzGuqi\nWfq5gbEsGSotEZQtqjkNddEs/dzQv30aVHM8pJ8bP6RUrNXfXjWnoS6apZ8bL1Iq1upvr5rTUBfN\n0s8N7cOkQTXHQ/q5sUyp2Gic8oKyRTWnoS6apZ8bqKLYRFC2qOY01EWz9HND//ZpUM3xkH5uuK+9\nuO2F5olqTkNdNEs/K+5Q+vWsFmtVVXMaaqRZ+lnhblsJm/ciZIhqTkONNEs/K8RzeDARIUNUcxpq\npFn6+eA+IDQ9PU0fsn2enFDNaaiXZunnAz/oOjs7W5e9XFRzGuqlWfr5wDOz7Xab9/f6bN5PCqnm\nNNRLs/Qzwd+nstlskrvsRc4E1ZyG2mnOce9iwD99oCeARIS5Lw1QzaFQzQnIsRfbptQyr9N1X4Ez\nP28nk1RzEFRzGrqW1X4jqJFOkSzT27ZJaCzn99+o5gTUVHPXoBufRNi4uECavIqKjN/jpporoprT\nwJq7fVwRNhZetXK6tr29bRPPMYxxkb4UQTWXRjWnwdXcNRQ4ESMx3NWG8XDWN7dXoJpLoJrTsKeZ\nW1jYVS9eMm6b3zfIFhcXbZoNMH6nG0w1j4RqToOruQFZ0G0dU/hE7AS4gmZnZ/2utm9u1aCaC6Ka\n0yA0N9bW1m7evMmLvmCJG1mkAgs6ceLErVu3IAm2YIxfkdhqtejI5cuXEbq1tXXmzBkKgqnmA/k9\n1gzDZzqI0J2dnS9/ee8BzoveZaPia7YObGJiwn4ya1XSzMzg+7MdPXrUfipsqrkgh1Dzgw8+aD+Z\nqiFHzV80TZ64REDwne2b6MOZavZRzWRfGKPmV/s9isP2VXOyuFx1XkPVaO8g7bSRBDYNnC53ekcw\nkFXNBTkkmgEduWFC0dIet2dIe2Ecmm0k3Bj6zjcaJynEMZwM3aGUrTUaj9oL7zP8LdGRHWmxmWoe\nwiHXDFACl/sVNmjGjUTk0hTRvO8EAvWBn5oPm76mW3OMBG6Gsv6EvdieIQmC/JFUM6GafVBBoGUT\n9pDRTGWgBMM1i8jSZ1AK/dSEnTIjyHe8+H1BuuOb+FLIgqSgi2rua6oZoKT11QwBuBc0F7ldOc3S\nd8EJOA1Fc4ihhgAY7SEmQBLTEZ6+7GtoSUtXIcNRza6pZgFkDDHUEaQQUgNqlr4Pyu7wpBzVUAuK\nWwRHNcNUc1+guTsPEc4O1Cz9vqDScmXNzMx0f70uYM1m8+zZvdcd4u+BDr24eCRUs7h4JGqqGU0T\nGzTz42fDrZxm6Q8Css7ThY1tbGzQupW7xra3t9vGOp0OHaE1L/fu3ZuamqJT8JdAFSIuGxXVnIY6\naga+ZkgihXADapb+cFxZuHE3IQcbZLVaLYoMQfhLiKulQTWnQTUPQvoHwo0sCjSKtb1/P+PlZGhS\n441ii6Ca06Ca+yL9A0HxRSEmw11RuK2E/Xbp0iUbaRzdAIFqToNq7ov0i4B7oCiTLS0tWRWOoRdr\ng5PMFBVBNadBNftIvyA36IbGREcWNQGaXQrKar871ZwG1SyQfnF4vLiwsGDlGGu3UdS7dtI7Zeyo\n5jSoZhfpFwfDPjYu+m6hhzRxythRzWlQzS7SHwm/6G9sbNCRDCsqQjWnQTVbGo3/D0Se8idnb2f1\nAAAAAElFTkSuQmCC\n", "text/plain": [""]}, "execution_count": 5, "metadata": {}, "output_type": "execute_result"}], "source": ["from pyquickhelper.helpgen import NbImage\n", "NbImage(\"data/hexa.png\")"]}, {"cell_type": "markdown", "metadata": {}, "source": ["A vous."]}, {"cell_type": "code", "execution_count": 5, "metadata": {"collapsed": true}, "outputs": [], "source": []}], "metadata": {"kernelspec": {"display_name": "Python 3", "language": "python", "name": "python3"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3"}}, "nbformat": 4, "nbformat_minor": 2}