{"cells": [{"cell_type": "markdown", "metadata": {}, "source": ["# 2018-09-18 - Rappels sur pandas et maplotlib\n", "\n", "Manipulation de donn\u00e9es autour du jeu des passagers du Titanic qu'on peut r\u00e9cup\u00e9rer sur [opendatasoft](https://public.opendatasoft.com/explore/dataset/titanic-passengers/?flg=fr) ou [awesome-public-datasets](https://github.com/awesomedata/awesome-public-datasets/tree/master/Datasets)."]}, {"cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": ["import pandas"]}, {"cell_type": "code", "execution_count": 2, "metadata": {"scrolled": false}, "outputs": [], "source": ["df = pandas.read_csv(\"titanic.csv/titanic.csv\")"]}, {"cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [{"data": {"text/plain": ["pandas.core.frame.DataFrame"]}, "execution_count": 4, "metadata": {}, "output_type": "execute_result"}], "source": ["type(df)"]}, {"cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [{"data": {"text/html": ["
\n", "\n", "
\n", " \n", " \n", " | \n", " PassengerId | \n", " Survived | \n", " Pclass | \n", " Name | \n", " Sex | \n", " Age | \n", " SibSp | \n", " Parch | \n", " Ticket | \n", " Fare | \n", " Cabin | \n", " Embarked | \n", "
\n", " \n", " \n", " \n", " 0 | \n", " 1 | \n", " 0 | \n", " 3 | \n", " Braund, Mr. Owen Harris | \n", " male | \n", " 22.0 | \n", " 1 | \n", " 0 | \n", " A/5 21171 | \n", " 7.2500 | \n", " NaN | \n", " S | \n", "
\n", " \n", " 1 | \n", " 2 | \n", " 1 | \n", " 1 | \n", " Cumings, Mrs. John Bradley (Florence Briggs Th... | \n", " female | \n", " 38.0 | \n", " 1 | \n", " 0 | \n", " PC 17599 | \n", " 71.2833 | \n", " C85 | \n", " C | \n", "
\n", " \n", "
\n", "
"], "text/plain": [" PassengerId Survived Pclass \\\n", "0 1 0 3 \n", "1 2 1 1 \n", "\n", " Name Sex Age SibSp \\\n", "0 Braund, Mr. Owen Harris male 22.0 1 \n", "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n", "\n", " Parch Ticket Fare Cabin Embarked \n", "0 0 A/5 21171 7.2500 NaN S \n", "1 0 PC 17599 71.2833 C85 C "]}, "execution_count": 5, "metadata": {}, "output_type": "execute_result"}], "source": ["df.head(n=2)"]}, {"cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [{"data": {"text/html": ["\n", "\n", "
\n", " \n", " \n", " | \n", " PassengerId | \n", " Survived | \n", " Pclass | \n", "
\n", " \n", " \n", " \n", " 0 | \n", " 1 | \n", " 0 | \n", " 3 | \n", "
\n", " \n", " 1 | \n", " 2 | \n", " 1 | \n", " 1 | \n", "
\n", " \n", "
\n", "
"], "text/plain": [" PassengerId Survived Pclass\n", "0 1 0 3\n", "1 2 1 1"]}, "execution_count": 6, "metadata": {}, "output_type": "execute_result"}], "source": ["subset = df[ [\"PassengerId\", \"Survived\", \"Pclass\"] ]\n", "subset.head(n=2)"]}, {"cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": ["survived = subset[ [\"Survived\", \"Pclass\"] ].groupby([\"Pclass\"]).sum()\n", "compte = subset[ [\"Survived\", \"Pclass\"] ].groupby([\"Pclass\"]).count()\n", "compte.columns = ['total']"]}, {"cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [{"data": {"text/html": ["\n", "\n", "
\n", " \n", " \n", " | \n", " Survived | \n", "
\n", " \n", " Pclass | \n", " | \n", "
\n", " \n", " \n", " \n", " 1 | \n", " 136 | \n", "
\n", " \n", " 2 | \n", " 87 | \n", "
\n", " \n", " 3 | \n", " 119 | \n", "
\n", " \n", "
\n", "
"], "text/plain": [" Survived\n", "Pclass \n", "1 136\n", "2 87\n", "3 119"]}, "execution_count": 8, "metadata": {}, "output_type": "execute_result"}], "source": ["survived"]}, {"cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [{"data": {"text/html": ["\n", "\n", "
\n", " \n", " \n", " | \n", " total | \n", "
\n", " \n", " Pclass | \n", " | \n", "
\n", " \n", " \n", " \n", " 1 | \n", " 216 | \n", "
\n", " \n", " 2 | \n", " 184 | \n", "
\n", " \n", " 3 | \n", " 491 | \n", "
\n", " \n", "
\n", "
"], "text/plain": [" total\n", "Pclass \n", "1 216\n", "2 184\n", "3 491"]}, "execution_count": 9, "metadata": {}, "output_type": "execute_result"}], "source": ["compte"]}, {"cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [{"data": {"text/html": ["\n", "\n", "
\n", " \n", " \n", " | \n", " Survived | \n", " total | \n", "
\n", " \n", " Pclass | \n", " | \n", " | \n", "
\n", " \n", " \n", " \n", " 1 | \n", " 136 | \n", " 216 | \n", "
\n", " \n", " 2 | \n", " 87 | \n", " 184 | \n", "
\n", " \n", " 3 | \n", " 119 | \n", " 491 | \n", "
\n", " \n", "
\n", "
"], "text/plain": [" Survived total\n", "Pclass \n", "1 136 216\n", "2 87 184\n", "3 119 491"]}, "execution_count": 10, "metadata": {}, "output_type": "execute_result"}], "source": ["jointure = survived.join(compte)\n", "jointure"]}, {"cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [{"data": {"text/html": ["\n", "\n", "
\n", " \n", " \n", " | \n", " Survived | \n", " total | \n", " survie | \n", "
\n", " \n", " Pclass | \n", " | \n", " | \n", " | \n", "
\n", " \n", " \n", " \n", " 1 | \n", " 136 | \n", " 216 | \n", " 0.629630 | \n", "
\n", " \n", " 2 | \n", " 87 | \n", " 184 | \n", " 0.472826 | \n", "
\n", " \n", " 3 | \n", " 119 | \n", " 491 | \n", " 0.242363 | \n", "
\n", " \n", "
\n", "
"], "text/plain": [" Survived total survie\n", "Pclass \n", "1 136 216 0.629630\n", "2 87 184 0.472826\n", "3 119 491 0.242363"]}, "execution_count": 11, "metadata": {}, "output_type": "execute_result"}], "source": ["jointure[\"survie\"] = jointure['Survived'] / jointure.total\n", "jointure"]}, {"cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": ["%matplotlib inline"]}, {"cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAKYAAACmCAYAAABQiPR3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAADOFJREFUeJzt3X2MVfWdx/H3p8y0A0IxHdxtZKAXFbJSwGkdQGNop60daenO2oizbJdSN0W2SUmplkZtbaEPpFSbNkWbiOkDjasrT2ZBZTVLqSulSJmrPKkhpRbtFKwzUx5EpQLz7R/nDF4ulxkZ7rnnd+d+X4nh3nN/99zvmXw8j7/zOzIznAvNO9IuwLlCPJguSB5MFyQPpguSB9MFyYPpguTBTJikr0n6aULzniJpdxLzTpv8POa5kXQk5+0g4G/Aifj9f5rZ/TltM8AfgWozO16qGstRVdoFlDszG9z9WtJeYLaZrU+vov7BN+UJk7RQ0n/Fb5+M/z0o6YikKyVdLGmDpE5JHZLul3R+zvf3SpovaYekQ5KWS6qJP2uU1JbTdoSkhyS1x/O7u3RLWlwezNL6UPzv+WY22Mw2AwK+B1wIXAqMABbmfa8FmAqMAiYAN+TPWNIA4BHgRSADDAceLPYClIpvylNmZnuAPfHbdkk/BBbkNVtiZvsAJD0M1BeY1SSicH81Z//1NwmUXBIezJRJ+gdgCTAFGEK0FTuQ1+zlnNevEwUw3wjgxf5yUOWb8tIqdArke/H0CWb2bmAm0eb9bP0JGCmpX6xsPJil1Q50ARflTBsCHCE6IBoOfLWP8/4dsB9YLOk8STWSrjqnalPkwSwhM3sdWARsknRQ0hXAt4APAoeAR4GH+jjvE8A/A5cALwFtwL8Wo+40+Al2FyRfY7ogeTBdkDyYLkgeTBckD6YLUtmdjB02bJhlMpm0y3B9lM1mO8zsgt7alV0wM5kMra2taZfh+kjSi2+nnW/KXZA8mC5IHkwXpLLbx3w7Mrc+WrR57V087azaHzt2jLa2No4ePVq0GspRTU0NdXV1VFdX9+n7iQZT0lTgx8AA4KdmtrhAmxaiHtsGbDezzyRZU9La2toYMmQImUwGqS+918qfmdHZ2UlbWxujRo3q0zwSC2bc1f8nwMeJerpslbTWzJ7LaTMauA24yswOxJ1my9rRo0crOpQAkqitraW9vb3P80hyH3MSsMfMXjCzN4nuP/mXvDY3Aj8xswMAZvZKgvWUTCWHstu5/g2SDOZwol7V3driabnGAGMkbZL0VLzpdwFau3YtixeftieWmCT3MQv9L5Pf+bMKGA00AnXARknjzOzgKTOS5gBzAEaOHFn8ShNUzAMxOPuDsbNx/PhxqqoKR6K5uZnm5ubEfjtfkmvMNqIbpLrVAfsKtFljZsfM7I/AbqKgnsLM7jWzBjNruOCCXq9mVbzXXnuNadOmcdlllzFu3DiWL19OJpOho6MDgNbWVhobGwFYuHAhc+bMoampiVmzZjF58mSeffbZk/NqbGwkm82ybNky5s6dC0B7ezvXXXcdEydOZOLEiWzatKnoy5BkMLcCoyWNkvROYAawNq/N/wAfAZA0jGjT/kKCNVWExx57jAsvvJDt27eza9cupk7teQ8pm82yZs0aHnjgAWbMmMGKFSsA2L9/P/v27ePyyy8/pf28efO46aab2Lp1K6tXr2b27NlFX4bEghnfRjoXeBx4HlhhZs9K+rak7m3C40CnpOeAXxPdE92ZVE2VYvz48axfv55bbrmFjRs3MnTo0B7bNzc3M3DgQABaWlpYuXIlACtWrOD6668/rf369euZO3cu9fX1NDc3c/jwYV599dWiLkOi5zHNbB2wLm/aN3NeG3Bz/J8rkjFjxpDNZlm3bh233XYbTU1NVFVV0dXVBXDayf/zzjvv5Ovhw4dTW1vLjh07WL58OUuXLj1t/l1dXWzevPlkmJPglyT7oX379jFo0CBmzpzJ/Pnzefrpp8lkMmSzWQBWr17d4/dnzJjBHXfcwaFDhxg/fvxpnzc1NXH33W8Ni7Rt27biLgAezH5p586dTJo0ifr6ehYtWsTtt9/OggULmDdvHlOmTGHAgAE9fn/69Ok8+OCDtLS0FPx8yZIltLa2MmHCBMaOHcs999xT9GUou9t3GxoarLf+mGleK3/++ee59NJLi/b75azQ30JS1swaevuurzFdkDyYLkgeTBckD2YCym2/PQnn+jfwYBZZTU0NnZ2dFR3O7v6YNTU1fZ5Hv+zBnqa6ujra2trOqS9if9Ddg72vPJhFVl1d3ede2+4tvil3QfJguiB5MF2QPJguSB5MFyQPpguSny4qoWL1ekryhrRQ+BrTBcmD6YLkwXRB8mC6IHkwXZA8mC5IHkwXpESDKWmqpN2S9ki6tYd20yWZpF7vnnOVIbFg5gzc+glgLPBvksYWaDcE+BKwJalaXPlJe+BWgO8AdwCVPWi5O0WqA7dK+gAwwsweSbAOV4aSDGaPA7dKegfwI+Arvc5ImiOpVVJrpd9LUynSHLh1CDAOeELSXuAKYG2hAyAfuLXypDZwq5kdMrNhZpYxswzwFNBsZv6gSJf6wK3OFZTqwK150xuTrMWVF7/y44LkwXRB8mC6IJ1VMCVdIWlD/CSza5MqyrkeD34kvdfMXs6ZdDPQTHTy/LdEz+lxruh6Oyq/R1IWuNPMjgIHgc8AXcDhpItzlavHTbmZXQtsAx6R9Fngy0ShHAT4ptwlptd9TDN7GLgGOB94CNhtZkvMzC9au8T0GExJzZJ+A2wAdhFdVvy0pP+WdHEpCnSVqbd9zO8CVwIDgXVmNgm4WdJoYBFRUJ0rut6CeYgofAOBV7onmtnv8VC6BPW2j/lpogOd40RH486VRI9rTDPrAO4qUS3OneSXJF2QPJguSB5MFyQPpguSB9MFyYPpguTBdEHyYLog+VMrKlyoT9LwNaYLkgfTBSnVgVsl3SzpOUk7JP1K0vuSrMeVj7QHbn0GaDCzCcAqonEynUt34FYz+7WZvR6/fYpoRDjn0h24Nc/ngf9NsB5XRpI8XdTjwK2nNJRmAg3Ah8/w+RxgDsDIkSOLVZ8LWJoDtwIg6Wrg60RjY/6t0Ix84NbKk9rArXByDPalRKF8pcA8XIVKe+DWO4HBwEpJ2yStPcPsXIVJdeBWM7s6yd935cuv/LggeTBdkDyYLkgeTBckD6YLkgfTBcmD6YLkwXRB8mC6IHkwXZA8mC5IHkwXJA+mC5IH0wXJg+mC5MF0QfJguiB5MF2QPJguSB5MFyQPpguSB9MFyYPpguTBdEFKe+DWd0laHn++RVImyXpc+Uh74NbPAwfM7BLgR8D3k6rHlZdUB26N3/8yfr0K+JikQsMXugqT5NhFhQZunXymNmZ2XNIhoBboyG2UOz4mcETS7iLVOCz/t/Kp9Ovw/l7T2xpnP+2BW9/W4K5mdi9wbzGKOuXHpVYzayj2fM+F1xRJe+DWk20kVQFDgb8mWJMrE6kO3Bq//1z8ejqwwcwKDoftKktim/J4n7F74NYBwM+7B24FWs1sLfAz4D5Je4jWlDOSqucMir57UAReEyBfQbkQ+ZUfFyQPpguSB9MFyYOZMkn/JOljkgbnTZ+aYk2TJE2MX4+NH0b7yZLW4Ac/IOk/zOwXKfzul4AvEj1uph6YZ2Zr4s+eNrMPplDTAqL+DVXA/xFdrXsCuBp43MwWlaQODyZIesnMSv4sQEk7gSvN7Ejcs2oVcJ+Z/VjSM2b2gZRqqgfeBbwM1JnZYUkDgS3xk5ITl+hzfkIiaceZPgL+sZS15BhgZkcAzGyvpEZgVfzc9rQ6sxw3sxPA65L+YGaH4/rekNRVqiIqJphE4bsGOJA3XcBvS18OAC9LqjezbQDxmvNTwM+B8SnV9KakQfHjui/vnihpKODBTMAjwODuEOSS9ETpywFgFnA8d0L8qMNZkpamUxIf6n7YrJnlBrGaty4fJ873MV2Q/HSRC5IH0wXJg5kASSfix1zvkrRS0qAe2i6UNL+U9ZUDD2Yy3jCzejMbB7wJfCHtgsqNBzN5G4FLACTNkrRD0nZJ9+U3lHSjpK3x56u717SSro/XvtslPRlPe7+k38Vr5h2SRpd0qRLmR+UJkHTEzAbHt4usBh4DngQeAq4ysw5J7zGzv0paCBwxsx9IqjWzznge3wX+YmZ3xVdjpprZnyWdb2YHJd0FPGVm98d3CAwwszdSWeAE+BozGQMlbQNagZeIeup/FFhlZh0AZlbo3qZxkjbGQfx34P3x9E3AMkk3Et0NALAZ+JqkW4D39adQQmWdYC+lN8ysPndCfL98b5unZcC1ZrZd0g1AI4CZfUHSZGAasC2+WvSApC3xtMclzTazDUVejtT4GrN0fgW0SKoFkPSeAm2GAPslVROtMYnbXmxmW8zsm0T3d4+QdBHwgpktIbqprySdK0rF15glEt+Itwj4f0kngGeAG/KafQPYArwI7CQKKsCd8cGNiAK+HbgVmCnpGFEvoG8nvhAl5Ac/Lki+KXdB8mC6IHkwXZA8mC5IHkwXJA+mC5IH0wXJg+mC9Hcm6VEEaJMIwQAAAABJRU5ErkJggg==\n", "text/plain": [""]}, "metadata": {}, "output_type": "display_data"}], "source": ["ax = jointure[['survie']].plot(kind=\"bar\", figsize=(2, 2))\n", "ax.set_title(\"Titanic\")\n", "ax.set_ylabel(\"%\");"]}, {"cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfUAAADcCAYAAABpnDhbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHkBJREFUeJzt3X2UVNW55/Hvj24UFYUECCqgzY24RsNLRxvU5ZIQzSUYnda7FAWvUbMwJCoJiVdHzEyMcTQh6opXjVG5MSNx5AJK7oiE0fElxndDtwKChICGaF9IBBWUqJGXZ/6o003RXfQbfbq6T/0+a/Wqc/bZdeqpqt799NnnnL0VEZiZmVn316PYAZiZmVnHcFI3MzPLCCd1MzOzjHBSNzMzywgndTMzs4xwUjczM8sIJ3VrQtL3JP0ipX2fJGl1Gvs2s6bcnkuLfJ966ZG0NW91f+DvwI5k/RsRcX9e3QrgT0DPiNjeWTGaWeu4PVu+8mIHYJ0vInrXL0taB1wcEY8XLyIzay+3Z8vn7ndrQtK1kv53svp08rhZ0lZJJ0j6rKQnJb0jaZOk+yX1zXv+OklXSFouaYukeZJ6JdvGSarLqztE0q8lbUz297POe6dm2ef2XFqc1K0lY5PHvhHROyJeAAT8GDgUOAoYAlzb6HnnABOAocBI4KLGO5ZUBiwC/gxUAIOAuR39Bsysgdtzxrn73dosItYCa5PVjZJ+CvygUbXbImI9gKSHgcoCuxpD7g/JlXnn955NIWQz2wO352xxUrc2k/QZ4DbgJOBAcj0+7zWq9pe85Q/JNfbGhgB/9gU7ZsXj9pwt7n63lhS6PeLHSfnIiDgIOJ9cF15bvQUcJsn/XJp1DrfnjHNSt5ZsBHYC/5BXdiCwldzFNoOAK9u5798DG4CZkg6Q1EvSiXsVrZk1x+0545zUrVkR8SFwA/CcpM2Sjgd+CBwDbAF+A/y6nfveAfxX4AjgTaAOOLcj4jazptyes8+Dz5iZmWWEj9TNzMwywkndzMwsI5zUzczMMsJJ3czMLCO63f2E/fv3j4qKimKHYdbl1dbWboqIAcWOozluz2Yta0tb7nZJvaKigpqammKHYdblSfpzsWNoiduzWcva0pbd/W5me5TM0PWqpKWSapKyT0t6TNKa5PFTSbkk3SZpbTKj1zHFjd6s9Dipm1lLvhgRlRFRlazPAJ6IiGHAE8k6wKnAsORnKnBnp0dqVuKc1M2src4AZifLs4Ez88p/FTkvAn0lHVKMAM1KVbc7p25Wb9u2bdTV1fHxxx8XO5Si6tWrF4MHD6Znz55p7D6A/ycpgLsjYhYwMCI2AETEhmSWL8jNn/1W3nPrkrIN+TuUNJXckTyHHXZYkxf099o+Kf8eWDfhpG7dVl1dHQceeCAVFRVI7ZlUqvuLCN555x3q6uoYOnRoGi9xYkSsTxL3Y5L+0EzdQl9Ck3Gok38MZgFUVVU12e7vte064ffAugl3v1u39fHHH9OvX7+S/sMviX79+qV2VBsR65PHt4H/AMYAf63vVk8e306q15GbU7veYGB9W1/T32vbpf17YN1HSR6pV8z4TbFDAGDdzNOKHUK35z/86X0Gkg4AekTEB8nyeOA6YCFwITAzeXwoecpCYJqkucBxwJb6bvp2vPbehl9y/Jml5No+HbCPLXu/j1YqyaRuZq0yEPiPJFmUA3Mi4hFJS4D5kqaQm2JzYlJ/MfAVYC3wIfC1zg/ZrLQ5qVtmdHQPTLF6UhYuXMhrr73GjBkzWq6cooh4AxhVoPwd4JQC5QFc1tFxFON7veGGG5gzZw5lZWX06NGDu+++m+OOO26vXrcjv9fevXuzdevWvd6PZY+TulkRbN++nfLyws2vurqa6urqTo7I6r3wwgssWrSIl19+mX333ZdNmzbxySeftOq5/l6t2FK9UE7SBEmrkxGmCv57KukcSa9JWilpTprxmHW0v/3tb5x22mmMGjWK4cOHM2/ePCoqKti0aRMANTU1jBs3DoBrr72WqVOnMn78eC644AKOO+44Vq5c2bCvcePGUVtby7333su0adMA2LhxI2eddRajR49m9OjRPPfcc53+HkvNhg0b6N+/P/vuuy8A/fv359BDD+2w73XLli1UVFSwc+dOAD788EOGDBnCtm3beP3115kwYQLHHnssJ510En/4Q+5mgz/96U+ccMIJjB49mu9///ud+GlYd5NaUpdUBtxBbpSpo4HJko5uVGcYcDW522Y+B3wnrXjM0vDII49w6KGHsmzZMlasWMGECROarV9bW8tDDz3EnDlzmDRpEvPnzwdyiWT9+vUce+yxu9WfPn063/3ud1myZAkLFizg4osvTu29WM748eN56623OPLII7n00kv53e9+1+Jz2vK99unTh1GjRjXs9+GHH+bLX/4yPXv2ZOrUqdx+++3U1tZy8803c+mllwK534NLLrmEJUuWcPDBB6fwri0r0jxSHwOsjYg3IuITYC65EafyfR24IyLeg4bbZsy6jREjRvD4449z1VVX8cwzz9CnT/NXylZXV7PffvsBcM455/DAAw8AMH/+fCZOnNik/uOPP860adOorKykurqa999/nw8++KDj34g16N27N7W1tcyaNYsBAwZw7rnncu+99zb7nLZ+r+eeey7z5s0DYO7cuZx77rls3bqV559/nokTJ1JZWck3vvENNmzI3Tzw3HPPMXnyZAC++tWvdtRbtQxK85x6odGlGl9pciSApOeAMuDaiHik8Y5aGoHKrFiOPPJIamtrWbx4MVdffTXjx4+nvLy8oWu18X3DBxxwQMPyoEGD6NevH8uXL2fevHncfffdTfa/c+dOXnjhhYaEYZ2jrKyMcePGMW7cOEaMGMHs2bM79Hutrq7m6quv5t1336W2tpaTTz6Zv/3tb/Tt25elS5cWjMm3rFlrpHmk3prRpcrJTf4wDpgM/EJS3yZPipgVEVURUTVgQJeeHtpKzPr169l///05//zzueKKK3j55ZepqKigtrYWgAULFjT7/EmTJnHjjTeyZcsWRowY0WT7+PHj+dnPftawvqc/+NZxVq9ezZo1axrWly5dyuGHH96h32vv3r0ZM2YM06dP5/TTT6esrIyDDjqIoUOHNhzlRwTLli0D4MQTT2Tu3LkA3H///R3yPi2b0jxSb83oUnXAixGxDfiTpNXkkvySFOOyjCrGLWivvvoqV155JT169KBnz57ceeedfPTRR0yZMoUf/ehHLd4GdfbZZzN9+vQ9Xvx02223cdlllzFy5Ei2b9/O2LFjueuuu9J4K11WZ3+vW7du5Vvf+habN2+mvLycI444glmzZrFq1aoO+14h1wU/ceJEnnrqqYay+++/n0suuYTrr7+ebdu2MWnSJEaNGsWtt97Keeedx6233spZZ53VUW/VMki5W0tT2LFUDvyR3P2s/0kuUZ8XESvz6kwAJkfEhZL6A68Alcl9sAVVVVVFTU3NXsXmEeWyYdWqVRx11FHFDqNLKPRZSKrNmy61SyrUnv29tp8/uxR0gRHl2tKWU+t+j4jtwDTgUWAVMD8iVkq6TlL9zZqPAu9Ieg34LXBlcwndzMzM9izVwWciYjG5oSPzy67JWw7g8uTHzMzM9oJnabNuLa3TR92JPwMzq+ekbt1Wr169eOedd0o6qdXPo92rV69ih2JmXYDHfrdua/DgwdTV1bFx48Zih1JUvXr1YvDgwcUOw8y6ACd167Z69uzJ0KFDix2GmVmX4aRuZl1bR9xStNv+mr+9aPPmzcyZM6dh3PVC1q1bx/PPP895553X7L7WrVvH6aefzooVK9oVqllb+Zy6mVmezZs38/Of/7zZOuvWrWPOHE8qaV2Pk7qZWZ4ZM2bw+uuvU1lZyZVXXsmVV17J8OHDGTFiRMMkLDNmzOCZZ56hsrKSW265hXXr1nHSSSdxzDHHcMwxx/D8888X+V1YqXL3u5lZnpkzZ7JixQqWLl3KggULuOuuu1i2bBmbNm1i9OjRjB07lpkzZ3LzzTezaNEiIDcn+mOPPUavXr1Ys2YNkydPZm9HvjRrDyd1M7M9ePbZZ5k8eTJlZWUMHDiQL3zhCyxZsoSDDjpot3rbtm1j2rRpLF26lLKyMv74xz8WKWIrdU7qZmZ70NoxEG655RYGDhzIsmXL2Llzp8cNsKLxOXUzszwHHnggH3zwAQBjx45l3rx57Nixg40bN/L0008zZsyY3eoAbNmyhUMOOYQePXpw3333sWPHjmKFbyXOR+pm1rXt5QxXbdWvXz9OPPFEhg8fzqmnnsrIkSMZNWoUkrjxxhs5+OCD6devH+Xl5YwaNYqLLrqISy+9lLPOOosHHniAL37xixxwwAGdGrNZPSd1M7NGGt+udtNNN+223rNnT5544ondypYvX96w/OMf/xiAiooK36Nuncrd72a2R5LKJL0iaVGyPlTSS5LWSJonaZ+kfN9kfW2yvaKYcZuVKid1M2vOdGBV3vpPgFsiYhjwHjAlKZ8CvBcRRwC3JPXMrJM5qZtZQZIGA6cBv0jWBZwMPJhUmQ2cmSyfkayTbD8lqd8upTzzXnv5MzNIOalLmiBpddIlN6PA9oskbZS0NPm5OM14zKxN/hX4b8DOZL0fsDkitifrdcCgZHkQ8BZAsn1LUr8JSVMl1UiqKTTDnqfUbTtPwWv1UrtQTlIZcAfwj+Qa/xJJCyPitUZV50XEtLTiMLO2k3Q68HZE1EoaV19coGq0YtvuhRGzgFkAVVVVTep4St328RS8Bule/T4GWBsRbwBImkuui65xUjezrudEoFrSV4BewEHkjtz7SipPjsYHA+uT+nXAEKBOUjnQB3i3PS/sKXXN2i/N7veG7rhEflddvrMkLZf0oKQhhXbUUnedmXWsiLg6IgZHRAUwCXgyIv4Z+C1wdlLtQuChZHlhsk6y/clw/7lZp0szqbemO+5hoCIiRgKPs+tCm92fFDErIqoiomrAgAEdHKaZtcFVwOWS1pI7Z35PUn4P0C8pvxxocg2NmaUvze73+u64evlddQBExDt5q/+Gb4Mx63Ii4ingqWT5DXKn1hrX+RiY2KmBmVkTaR6pLwGGJYNV7EOuC29hfgVJh+StVrP7/bBmZmbWBqkdqUfEdknTgEeBMuCXEbFS0nVATUQsBL4tqRrYTu6imovSisfMzCzrUh37PSIWA4sblV2Tt3w1cHWaMZiZmZUKjyhnZmaWEZ6lzaiY8Ztih8C6macVOwQzs27PR+pmZmYZ4aRuZmaWEU7qZmZmGeGkbmZmlhFO6mZmZhnhpG5mZpYRTupmZmYZ4aRuZmaWEU7qZmZmGeGkbmZmlhFO6mZmZhnhpG5mZpYRTupmZmYZ4aRuZmaWEakmdUkTJK2WtFbSjGbqnS0pJFWlGY+ZmVmWpZbUJZUBdwCnAkcDkyUdXaDegcC3gZfSisXMzKwUpHmkPgZYGxFvRMQnwFzgjAL1/idwI/BxirGYmZllXppJfRDwVt56XVLWQNLngSERsai5HUmaKqlGUs3GjRs7PlIza0JSL0m/l7RM0kpJP0zKh0p6SdIaSfMk7ZOU75usr022VxQzfrNSlGZSV4GyaNgo9QBuAf6lpR1FxKyIqIqIqgEDBnRgiGbWjL8DJ0fEKKASmCDpeOAnwC0RMQx4D5iS1J8CvBcRR5Br2z8pQsxmJS3NpF4HDMlbHwysz1s/EBgOPCVpHXA8sNAXy5l1DZGzNVntmfwEcDLwYFI+GzgzWT4jWSfZfoqkQv/cm1lK0kzqS4BhSVfdPsAkYGH9xojYEhH9I6IiIiqAF4HqiKhJMSYzawNJZZKWAm8DjwGvA5sjYntSJf+0WsMpt2T7FqBf50ZsVtpSS+pJo54GPAqsAuZHxEpJ10mqTut1zazjRMSOiKgk19M2BjiqULXksdlTbvV8jYxZesrT3HlELAYWNyq7Zg91x6UZi5m1X0RslvQUudNkfSWVJ/+4559Wqz/lViepHOgDvFtgX7OAWQBVVVVNkr6ZtZ9HlDOzgiQNkNQ3Wd4P+BK5XrffAmcn1S4EHkqWFybrJNufjAgnbbNOlOqRupl1a4cAs5OBpHqQO4W2SNJrwFxJ1wOvAPck9e8B7pO0ltwR+qRiBG1WypzUzaygiFgOfL5A+Rvkzq83Lv8YmNgJoZnZHrj73czMLCOc1M3MzDLCSd3MzCwjnNTNzMwywkndzMwsI9qU1CUdL+lJSc9JOrPlZ5hZV+H2a5Z9zd7SJungiPhLXtHlQDW54SCfB/5PirGZ2d5p3L7dfs0yrqX71O+SVAvclNyDuhk4D9gJvJ92cGa2Vw6X9H3cfs1KRrPd7xFxJrAUWCTpq8B3yP1B2J9d0y2aWdf0Om6/ZiWlxXPqEfEw8GWgL/BrYHVE3BYRnl7JrItz+zUrLc0mdUnVkp4FngRWkBvL+Z8k/bukz3ZGgGbWbn3cfs1KS0vn1K8HTgD2AxZHxBjgcknDgBvwhA1mXdkgoBK3X7OS0VL3+xZyDX8S8HZ9YUSsiYgW/yBImiBptaS1kmYU2P5NSa9KWirpWUlHt/UNmNke7WAv2q+ZdT8tJfV/IndRzXZyV822WjJd4x3AqcDRwOQCSXtORIyIiErgRuCnbXkNM2vW67Sz/ZpZ99Rs93tEbAJub+e+xwBrk2kakTQXOAN4LW//+bfVHABEO1/LzJraHhHtbb9m1g2lOZ/6IOCtvPU64LjGlSRdRm5QjH2AkwvtSNJUYCrAYYcd1uGBmpmZZUGaY7+rQFmTI/GIuCMiPgtcBfyPQjuKiFkRURURVQMGDOjgMM3MzLIhzaReBwzJWx8MrG+m/lw8IIaZmVm7pZnUlwDDJA2VtA+5K3AX5ldIbq2pdxqwJsV4zMzMMi21c+oRsV3SNOBRoAz4ZUSslHQdUBMRC4Fpkr4EbAPeAy5MKx4zM7OsS/NCOSJiMbC4Udk1ecvT03x9MzOzUpJqUjcz6/Ku7dMB+9iy9/sw6wBpnlM3MzOzTuSkbmZNSBoi6beSVklaKWl6Uv5pSY9JWpM8fiopl6TbkiGhl0s6prjvwKw0OambWSHbgX+JiKOA44HLkmGeZwBPRMQw4IlkHXLDQQ9LfqYCd3Z+yGbmpG5mTUTEhoh4OVn+AFhFbpTIM4DZSbXZ7Bpb4gzgV5HzItBX0iGdHLZZyXNSN7NmSaoAPg+8BAyMiA2QS/zAZ5JqhYaFHrSH/U2VVCOpZuPGjWmFbVaSnNTNbI8k9QYWAN9pNAFTk6oFygpO0ORhn83S46RuZgVJ6kkuod8fEb9Oiv9a362ePNbP097WYaHNLAVO6mbWhCQB9wCrIuKneZsWsmvkxwuBh/LKL0iugj8e2FLfTW9mnceDz5jlqZjxm2KHAMC6macVO4QTga8Cr0pampR9D5gJzJc0BXgTmJhsWwx8BVgLfAh8rXPDNTNwUjezAiLiWQqfJwc4pUD9AC5LNSjrHB5hr1tz97uZmVlGOKmbmZllhJO6mZlZRjipm5mZZYSTupmZWUakmtQlTZC0Opm5aUaB7ZdLei2Z1ekJSYenGY+ZmVmWpZbUJZUBd5CbveloYHIyy1O+V4CqiBgJPAjcmFY8ZmZmWZfmkfoYYG1EvBERnwBzyc3k1CAifhsRHyarL5IbWtLMzMzaIc2k3upZmxJTgP9baINndTIzM2tZmkm91bM2STofqAJuKrTdszqZmZm1LM1hYls1a5OkLwH/HfhCRPw9xXjMzMwyLc0j9SXAMElDJe0DTCI3k1MDSZ8H7gaqI+LtAvswMzOzVkotqUfEdmAa8CiwCpgfESslXSepOql2E9AbeEDSUkkL97A7MzMza0Gqs7RFxGJyUzLml12Tt/ylNF/fzMyslHjqVTPrtipm/Gav97GuVwcEYtZFeJhYMzOzjHBSNzMzywgndTMzs4xwUjczM8sIJ3UzM7OM8NXvZmaWSaV4d4SP1M3MzDLCSd3MzCwjnNTNrCBJv5T0tqQVeWWflvSYpDXJ46eSckm6TdJaScslHVO8yM1Kl5O6me3JvcCERmUzgCciYhjwRLIOcCowLPmZCtzZSTGaWR4ndTMrKCKeBt5tVHwGMDtZng2cmVf+q8h5Eegr6ZDOidTM6jmpm1lbDIyIDQDJ42eS8kHAW3n16pKyJiRNlVQjqWbjxo2pBmtWapzUzawjqEBZFKoYEbMioioiqgYMGJByWGalxUndzNrir/Xd6snj20l5HTAkr95gYH0nx2ZW8pzUzawtFgIXJssXAg/llV+QXAV/PLClvpvezDpPqiPKSZoA3AqUAb+IiJmNto8F/hUYCUyKiAfTjMfMWk/SvwPjgP6S6oAfADOB+ZKmAG8CE5Pqi4GvAGuBD4GvdXrAVpIjqNnuUkvqksqAO4B/JNc1t0TSwoh4La/am8BFwBVpxWFm7RMRk/ew6ZQCdQO4LN2IzKwlaR6pjwHWRsQbAJLmkrvtpSGpR8S6ZNvOFOMwMzMrCWmeU2/1LS4t8S0wZmZmLUszqbf6FpeW+BYYMzOzlqWZ1H2Li5mZWSdKM6kvAYZJGippH2ASudtezMzMLAWpJfWI2A5MAx4FVgHzI2KlpOskVQNIGp3cKjMRuFvSyrTiMTMzy7pU71OPiMXk7l/NL7smb3kJuW55MzMz20seUc7MzCwjnNTNzMwywkndzMwsI5zUzczMMsJJ3czMLCOc1M3MzDLCSd3MzCwjnNTNzMwywkndzMwsI5zUzczMMsJJ3czMLCOc1M3MzDLCSd3MzCwjnNTNzMwywkndzMwsI1JN6pImSFotaa2kGQW27ytpXrL9JUkVacZjZulqqc2bWbpSS+qSyoA7gFOBo4HJko5uVG0K8F5EHAHcAvwkrXjMLF2tbPNmlqI0j9THAGsj4o2I+ASYC5zRqM4ZwOxk+UHgFElKMSYzS09r2ryZpag8xX0PAt7KW68DjttTnYjYLmkL0A/YlF9J0lRgarK6VdLqVCJum/40irOtlK1+ib36PPxZ7K6DPo/DO2QvrdeaNt/l2rM64Pvih9k5FvHnsbsu8nm0ui2nmdQLvYtoRx0iYhYwqyOC6iiSaiKiqthxdBX+PHYp4c+iW7bnEv6+CvLnsbvu9nmk2f1eBwzJWx8MrN9THUnlQB/g3RRjMrP0tKbNm1mK0kzqS4BhkoZK2geYBCxsVGchcGGyfDbwZEQ0+c/ezLqF1rR5M0tRat3vyTnyacCjQBnwy4hYKek6oCYiFgL3APdJWkvuCH1SWvGkoMt0H3YR/jx2KcnPYk9tvshhtUZJfl/N8Oexu271ecgHxmZmZtngEeXMzMwywkndzMwsI5zUzczMMsJJ3czMLCOc1K3NJP0XSadI6t2ofEKxYiomSWMkjU6Wj5Z0uaSvFDsus9Zwe94lC23ZV7/vJUlfi4j/Vew4OoukbwOXAauASmB6RDyUbHs5Io4pZnydTdIPyE1gUg48Rm5Y1KeALwGPRsQNxYvO2srtuXTbc1baspP6XpL0ZkQcVuw4OoukV4ETImJrMlXug8B9EXGrpFci4vNFDbCTJZ9HJbAv8BdgcES8L2k/4KWIGFnUAK1N3J5Ltz1npS2nOfZ7ZkhavqdNwMDOjKULKIuIrQARsU7SOOBBSYdTeOzvrNseETuADyW9HhHvA0TER5J2Fjk2K8DteTduz7tkoi07qbfOQODLwHuNygU83/nhFNVfJFVGxFKA5D/804FfAiOKG1pRfCJp/4j4EDi2vlBSH6Db/CEoMW7Pu7g975KJtuyk3jqLgN71v/j5JD3V+eEU1QXA9vyCiNgOXCDp7uKEVFRjI+LvABGR3/B7smteA+ta3J53cXveJRNt2efUzczMMsK3tJmZmWWEk7qZmVlGOKlbA0k7JC2VtELSA5L2b6butZKu6Mz4zKz13J5Lk5O65fsoIiojYjjwCfDNYgdkZu3m9lyCnNRtT54BjgCQdIGk5ZKWSbqvcUVJX5e0JNm+oP6IQNLE5ChhmaSnk7LPSfp9cgSxXNKwTn1XZqXJ7blE+Op3ayBpa0T0llQOLAAeAZ4Gfg2cGBGbJH06It6VdC2wNSJultQvIt5J9nE98NeIuD0ZoWlCRPynpL4RsVnS7cCLEXG/pH3IDX7xUVHesFmGuT2XJh+pW779JC0FaoA3gXuAk4EHI2ITQES8W+B5wyU9kzT6fwY+l5Q/B9wr6etAWVL2AvA9SVcBh/sPgFlq3J5LkAefsXwfRURlfoEkAS1159wLnBkRyyRdBIwDiIhvSjoOOA1YmoxcNUfSS0nZo5IujognO/h9mJnbc0nykbq15AngHEn9ACR9ukCdA4ENknqS+8+epO5nI+KliLgG2AQMkfQPwBsRcRuwEOgWkySYZYTbc8b5SN2aFRErJd0A/E7SDuAV4KJG1b4PvAT8GXiV3B8FgJuSC2dE7o/JMmAGcL6kbeRmQrou9TdhZoDbcynwhXJmZmYZ4e53MzOzjHBSNzMzywgndTMzs4xwUjczM8sIJ3UzM7OMcFI3MzPLCCd1MzOzjPj/aLZoLEVeDyQAAAAASUVORK5CYII=\n", "text/plain": [""]}, "metadata": {}, "output_type": "display_data"}], "source": ["import matplotlib.pyplot as plt\n", "fig, ax = plt.subplots(1, 2, figsize=(8,3))\n", "jointure[['survie']].plot(kind=\"bar\", ax=ax[0])\n", "ax[0].set_title(\"Titanic\")\n", "ax[0].set_ylabel(\"%\");\n", "jointure.drop('survie', axis=1).plot(kind=\"bar\", ax=ax[1])\n", "ax[1].set_title(\"Titanic\")\n", "ax[1].set_ylabel(\"%\");"]}, {"cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": ["jointure.to_excel(\"titanic.xlsx\")"]}, {"cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [{"data": {"text/html": ["\n", "\n", "
\n", " \n", " \n", " | \n", " PassengerId | \n", " Survived | \n", " Pclass | \n", " Name | \n", " Sex | \n", " Age | \n", " SibSp | \n", " Parch | \n", " Ticket | \n", " Fare | \n", " Cabin | \n", " Embarked | \n", "
\n", " \n", " \n", " \n", " 0 | \n", " 1 | \n", " 0 | \n", " 3 | \n", " Braund, Mr. Owen Harris | \n", " male | \n", " 22.0 | \n", " 1 | \n", " 0 | \n", " A/5 21171 | \n", " 7.2500 | \n", " NaN | \n", " S | \n", "
\n", " \n", " 1 | \n", " 2 | \n", " 1 | \n", " 1 | \n", " Cumings, Mrs. John Bradley (Florence Briggs Th... | \n", " female | \n", " 38.0 | \n", " 1 | \n", " 0 | \n", " PC 17599 | \n", " 71.2833 | \n", " C85 | \n", " C | \n", "
\n", " \n", "
\n", "
"], "text/plain": [" PassengerId Survived Pclass \\\n", "0 1 0 3 \n", "1 2 1 1 \n", "\n", " Name Sex Age SibSp \\\n", "0 Braund, Mr. Owen Harris male 22.0 1 \n", "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n", "\n", " Parch Ticket Fare Cabin Embarked \n", "0 0 A/5 21171 7.2500 NaN S \n", "1 0 PC 17599 71.2833 C85 C "]}, "execution_count": 16, "metadata": {}, "output_type": "execute_result"}], "source": ["df.head(n=2)"]}, {"cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": ["mat = df[['Survived', 'Age']].values"]}, {"cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [{"data": {"text/plain": ["array([[ 0., 1., 1., ..., 0., 1., 0.],\n", " [22., 38., 26., ..., nan, 26., 32.]])"]}, "execution_count": 18, "metadata": {}, "output_type": "execute_result"}], "source": ["mat.T"]}, {"cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [{"data": {"text/plain": ["array([[342., nan],\n", " [ nan, nan]])"]}, "execution_count": 19, "metadata": {}, "output_type": "execute_result"}], "source": ["mat.T @ mat"]}, {"cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [{"data": {"text/plain": ["array([[ 484., 836., 572., ..., nan, 572., 704.],\n", " [ 836., 1445., 989., ..., nan, 989., 1216.],\n", " [ 572., 989., 677., ..., nan, 677., 832.],\n", " ...,\n", " [ nan, nan, nan, ..., nan, nan, nan],\n", " [ 572., 989., 677., ..., nan, 677., 832.],\n", " [ 704., 1216., 832., ..., nan, 832., 1024.]])"]}, "execution_count": 20, "metadata": {}, "output_type": "execute_result"}], "source": ["mat @ mat.T"]}, {"cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [{"data": {"text/html": ["\n", "\n", "
\n", " \n", " \n", " | \n", " PassengerId | \n", " Survived | \n", " Pclass | \n", " Name | \n", " Sex | \n", " Age | \n", " SibSp | \n", " Parch | \n", " Ticket | \n", " Fare | \n", " Cabin | \n", " Embarked | \n", "
\n", " \n", " \n", " \n", " 889 | \n", " 890 | \n", " 1 | \n", " 1 | \n", " Behr, Mr. Karl Howell | \n", " male | \n", " 26.0 | \n", " 0 | \n", " 0 | \n", " 111369 | \n", " 30.00 | \n", " C148 | \n", " C | \n", "
\n", " \n", " 890 | \n", " 891 | \n", " 0 | \n", " 3 | \n", " Dooley, Mr. Patrick | \n", " male | \n", " 32.0 | \n", " 0 | \n", " 0 | \n", " 370376 | \n", " 7.75 | \n", " NaN | \n", " Q | \n", "
\n", " \n", "
\n", "
"], "text/plain": [" PassengerId Survived Pclass Name Sex Age SibSp \\\n", "889 890 1 1 Behr, Mr. Karl Howell male 26.0 0 \n", "890 891 0 3 Dooley, Mr. Patrick male 32.0 0 \n", "\n", " Parch Ticket Fare Cabin Embarked \n", "889 0 111369 30.00 C148 C \n", "890 0 370376 7.75 NaN Q "]}, "execution_count": 21, "metadata": {}, "output_type": "execute_result"}], "source": ["df.tail(n=2)"]}, {"cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [{"data": {"text/plain": ["'Braund, Mr. Owen Harris'"]}, "execution_count": 22, "metadata": {}, "output_type": "execute_result"}], "source": ["names = list(df['Name'])\n", "names\n", "nom = names[0]\n", "nom"]}, {"cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [{"data": {"text/plain": ["'mr'"]}, "execution_count": 23, "metadata": {}, "output_type": "execute_result"}], "source": ["nom.split(',')[1].split('.')[0].strip().lower()"]}, {"cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": ["mr = []\n", "for nom in names:\n", " mr.append(nom.split(',')[1].split('.')[0].strip().lower())"]}, {"cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": ["df['mr'] = mr"]}, {"cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": ["gr = df[ ['Sex', \"mr\", \"PassengerId\"] ].groupby(['Sex', \"mr\"], as_index=False).count()"]}, {"cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [{"data": {"text/html": ["\n", "\n", "
\n", " \n", " \n", " | \n", " Sex | \n", " mr | \n", " PassengerId | \n", "
\n", " \n", " \n", " \n", " 0 | \n", " female | \n", " dr | \n", " 1 | \n", "
\n", " \n", " 1 | \n", " female | \n", " lady | \n", " 1 | \n", "
\n", " \n", " 2 | \n", " female | \n", " miss | \n", " 182 | \n", "
\n", " \n", " 3 | \n", " female | \n", " mlle | \n", " 2 | \n", "
\n", " \n", " 4 | \n", " female | \n", " mme | \n", " 1 | \n", "
\n", " \n", "
\n", "
"], "text/plain": [" Sex mr PassengerId\n", "0 female dr 1\n", "1 female lady 1\n", "2 female miss 182\n", "3 female mlle 2\n", "4 female mme 1"]}, "execution_count": 27, "metadata": {}, "output_type": "execute_result"}], "source": ["gr.head()"]}, {"cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [{"data": {"text/html": ["\n", "\n", "
\n", " \n", " \n", " Sex | \n", " female | \n", " male | \n", "
\n", " \n", " mr | \n", " | \n", " | \n", "
\n", " \n", " \n", " \n", " capt | \n", " NaN | \n", " 1.0 | \n", "
\n", " \n", " col | \n", " NaN | \n", " 2.0 | \n", "
\n", " \n", " don | \n", " NaN | \n", " 1.0 | \n", "
\n", " \n", " dr | \n", " 1.0 | \n", " 6.0 | \n", "
\n", " \n", " jonkheer | \n", " NaN | \n", " 1.0 | \n", "
\n", " \n", " lady | \n", " 1.0 | \n", " NaN | \n", "
\n", " \n", " major | \n", " NaN | \n", " 2.0 | \n", "
\n", " \n", " master | \n", " NaN | \n", " 40.0 | \n", "
\n", " \n", " miss | \n", " 182.0 | \n", " NaN | \n", "
\n", " \n", " mlle | \n", " 2.0 | \n", " NaN | \n", "
\n", " \n", " mme | \n", " 1.0 | \n", " NaN | \n", "
\n", " \n", " mr | \n", " NaN | \n", " 517.0 | \n", "
\n", " \n", " mrs | \n", " 125.0 | \n", " NaN | \n", "
\n", " \n", " ms | \n", " 1.0 | \n", " NaN | \n", "
\n", " \n", " rev | \n", " NaN | \n", " 6.0 | \n", "
\n", " \n", " sir | \n", " NaN | \n", " 1.0 | \n", "
\n", " \n", " the countess | \n", " 1.0 | \n", " NaN | \n", "
\n", " \n", "
\n", "
"], "text/plain": ["Sex female male\n", "mr \n", "capt NaN 1.0\n", "col NaN 2.0\n", "don NaN 1.0\n", "dr 1.0 6.0\n", "jonkheer NaN 1.0\n", "lady 1.0 NaN\n", "major NaN 2.0\n", "master NaN 40.0\n", "miss 182.0 NaN\n", "mlle 2.0 NaN\n", "mme 1.0 NaN\n", "mr NaN 517.0\n", "mrs 125.0 NaN\n", "ms 1.0 NaN\n", "rev NaN 6.0\n", "sir NaN 1.0\n", "the countess 1.0 NaN"]}, "execution_count": 28, "metadata": {}, "output_type": "execute_result"}], "source": ["gr.pivot(\"mr\", \"Sex\", \"PassengerId\")"]}, {"cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": []}, {"cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": []}], "metadata": {"kernelspec": {"display_name": "Python 3", "language": "python", "name": "python3"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.0"}}, "nbformat": 4, "nbformat_minor": 2}