Bibliographie#
Livres sur le machine learning#
The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani, Jerome Friedman
Python for Data Analysis, Wes McKinney
Building Machine Learning Systems with Python, Willi Richert, Luis Pedro Coelho
Learning scikit-learn: Machine Learning in Python, Raúl Garreta, Guillermo Moncecchi
Modeling Creativity: Case Studies in Python, Tom De Smedt
Deep Learning, Yoshua Bengio, Ian Goodfellow and Aaron Courville
Artificial Intelligence: A Modern Approach, Stuart Russell, Peter Norvig
Speech and Language Processing, Daniel Jurafsky and James H. Martin, voir aussi Draft chapters in progress
The Hundred Page Machine Learning, Andriy Burkov (sur github : ` <aburkov/theMLbook>`_)
Critical Mass: How One Thing Leads to Another, Philip Ball
Livres sur les algorithmes#
Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein
The Algorithm Design Manual, Steven S. Skiena
Competitive Programming, Steven Halim
Livres sur la programmation#
Liens sur la programmation#
Quelques idées de livres : Python for Data Scientists
Ultimate guide for Data Exploration in Python using NumPy, Matplotlib and Pandas
Prédire les épidémies avec Wikipedia, Le Monde
FastML (blog sur le machine learning)
you can take the derivative of a regular expression?! (2016/06)
How to trick a neural network into thinking a panda is a vulture (2016/06)
Matrix Factorization: A Simple Tutorial and Implementation in Python (2016/06)
Top-down learning path: Machine Learning for Software Engineers
Tutoriels#
Pythonic Perambulations (2015/12)
Python Scripts posted on Kaggle (2016/02)
Pandas cookbook (2016/06)
Machine Learning & Deep Learning Tutorials (2016/06) : lien vers une liste assez longue de tutoriels, on y trouve aussi des cheat sheets comme Probability Cheatsheet
MOOC#
Machine Learning par Andrew Y. Ng (les chapitres X et XI de la semaine 6 aborde la construction d’un système de machine learning).
CS109 Data Science (Harvard) (la liste des vidéos disponibles est en bas)
Autres cours, notebooks#
Arthur Charpentier, lectures (français)
Notes and assignments for Stanford CS class CS231n Convolutional Neural Networks for Visual Recognition
Advanced Statistical Computing, Chris Fonnesbeck (Vanderbilt University)
machine learning et musique Audio Content Analysis, teachings
ogrisel’s notebook (2016/04)
L’apprentissage profond, Yann LeCun au Collège de France (2016/06)
MA 2823 Foundations of Machine Learning (Fall 2016) (2016/10)
Articles d’auteurs très connus#
Latent Dirichlet Allocation, David M. Blei, Andrew Y. Ng, Michael I. Jordan
Analysis of a Random Forests Model, Gerard Biau
Adaptivity of Averaged Stochastic Gradient Descent to Local Strong Convexity for Logistic Regression, Francis Bach
Counterfactual Reasoning and Learning Systems: The Example of Computational Advertising, Léon Bottou, Jonas Peter et Al.
Tutorial on Practical Prediction Theory for Classification, John Langford
Sparse Online Learning via Truncated Gradient, John Langford, Lihong Li, Tong Zhang
Low-dimensional Embeddings for Interpretable Anchor-based Topic Inference, Moontae Lee, David Mimno
ABC model choice via random forests, Pierre Pudlo, Jean-Michel Marin, Arnaud Estoup, Jean-Marie Cornuet, Mathieu Gautier, Christian P. Robert
Mondrian Forests: Efficient Online Random Forests, Balaji Lakshminarayanan, Daniel M. Roy, Yee Whye Teh
SiGMa: Simple Greedy Matching for Aligning Large Knowledge Bases, Simon Lacoste-Julien, Konstantina Palla, Alex Davies, Gjergji Kasneci, Thore Graepel, Zoubin Ghahramani
Learning from Partial Labels, Timothee Cour, Benjamin Sapp, Ben Taskar
Word Alignment via Quadratic Assignment, Simon Lacoste-Julien, Ben Taskar, Dan Klein, Michael I. Jordan
Contextual Bandit Learning with Predictable Rewards, Alekh Agarwal, Miroslav Dudík, Satyen Kale, John Langford, Robert E. Schapire
Learning from Logged Implicit Exploration Data, Alex Strehl, John Langford, Lihong LiSham, M. Kakade
The Metropolis-Hastings algorithm, Christian P. Robert
From RankNet to LambdaRank to LambdaMART: An Overview, Christopher J.C. Burges
Compétition de code#
Google Hash Code, a lieu chaque année en deux tours, le second tour a lieu chez Google à Paris.
Compétition de machine learning#
Sources d’articles scientifiques#
Pour finir, Choosing the right estimator :

Librairies#
Related Projects (of machine learning) (2016/03)
Chaque paragraphe recense des librairies connues sur le sujet.