Heap#
Links: notebook
, html, python
, slides, GitHub
La structure heap ou tas en français est utilisée pour trier. Elle peut également servir à obtenir les k premiers éléments d’une liste.
from jyquickhelper import add_notebook_menu
add_notebook_menu()
Un tas est peut être considéré comme un tableau qui vérifie
une condition assez simple, pour tout indice
, alors
. On en déduit
nécessairement que le premier élément du tableau est le plus grand.
Maintenant comment transformer un tableau en un autre qui respecte cette
contrainte ?
%matplotlib inline
Transformer en tas#
def swap(tab, i, j):
"Echange deux éléments."
tab[i], tab[j] = tab[j], tab[i]
def entas(heap):
"Organise un ensemble selon un tas."
modif = 1
while modif > 0:
modif = 0
i = len(heap) - 1
while i > 0:
root = (i-1) // 2
if heap[root] < heap[i]:
swap(heap, root, i)
modif += 1
i -= 1
return heap
ens = [1,2,3,4,7,10,5,6,11,12,3]
entas(ens)
[12, 11, 5, 10, 7, 3, 1, 6, 4, 3, 2]
Comme ce n’est pas facile de vérifer que c’est un tas, on le dessine.
Dessiner un tas#
from pyensae.graphhelper import draw_diagram
def dessine_tas(heap):
rows = ["blockdiag {"]
for i, v in enumerate(heap):
if i*2+1 < len(heap):
rows.append('"[{}]={}" -> "[{}]={}";'.format(
i, heap[i], i * 2 + 1, heap[i*2+1]))
if i*2+2 < len(heap):
rows.append('"[{}]={}" -> "[{}]={}";'.format(
i, heap[i], i * 2 + 2, heap[i*2+2]))
rows.append("}")
return draw_diagram("\n".join(rows))
ens = [1,2,3,4,7,10,5,6,11,12,3]
dessine_tas(entas(ens))

Le nombre entre crochets est la position, l’autre nombre est la valeur à cette position. Cette représentation fait apparaître une structure d’arbre binaire.
Première version#
def swap(tab, i, j):
"Echange deux éléments."
tab[i], tab[j] = tab[j], tab[i]
def _heapify_max_bottom(heap):
"Organise un ensemble selon un tas."
modif = 1
while modif > 0:
modif = 0
i = len(heap) - 1
while i > 0:
root = (i-1) // 2
if heap[root] < heap[i]:
swap(heap, root, i)
modif += 1
i -= 1
def _heapify_max_up(heap):
"Organise un ensemble selon un tas."
i = 0
while True:
left = 2*i + 1
right = left+1
if right < len(heap):
if heap[left] > heap[i] >= heap[right]:
swap(heap, i, left)
i = left
elif heap[right] > heap[i]:
swap(heap, i, right)
i = right
else:
break
elif left < len(heap) and heap[left] > heap[i]:
swap(heap, i, left)
i = left
else:
break
def topk_min(ens, k):
"Retourne les k plus petits éléments d'un ensemble."
heap = ens[:k]
_heapify_max_bottom(heap)
for el in ens[k:]:
if el < heap[0]:
heap[0] = el
_heapify_max_up(heap)
return heap
ens = [1,2,3,4,7,10,5,6,11,12,3]
for k in range(1, len(ens)-1):
print(k, topk_min(ens, k))
1 [1]
2 [2, 1]
3 [3, 2, 1]
4 [3, 3, 1, 2]
5 [4, 3, 1, 3, 2]
6 [5, 4, 3, 3, 2, 1]
7 [5, 6, 3, 4, 2, 3, 1]
8 [5, 7, 3, 6, 2, 3, 1, 4]
9 [5, 10, 3, 7, 2, 3, 1, 6, 4]
Même chose avec les indices au lieu des valeurs#
def _heapify_max_bottom_position(ens, pos):
"Organise un ensemble selon un tas."
modif = 1
while modif > 0:
modif = 0
i = len(pos) - 1
while i > 0:
root = (i-1) // 2
if ens[pos[root]] < ens[pos[i]]:
swap(pos, root, i)
modif += 1
i -= 1
def _heapify_max_up_position(ens, pos):
"Organise un ensemble selon un tas."
i = 0
while True:
left = 2*i + 1
right = left+1
if right < len(pos):
if ens[pos[left]] > ens[pos[i]] >= ens[pos[right]]:
swap(pos, i, left)
i = left
elif ens[pos[right]] > ens[pos[i]]:
swap(pos, i, right)
i = right
else:
break
elif left < len(pos) and ens[pos[left]] > ens[pos[i]]:
swap(pos, i, left)
i = left
else:
break
def topk_min_position(ens, k):
"Retourne les positions des k plus petits éléments d'un ensemble."
pos = list(range(k))
_heapify_max_bottom_position(ens, pos)
for i, el in enumerate(ens[k:]):
if el < ens[pos[0]]:
pos[0] = k + i
_heapify_max_up_position(ens, pos)
return pos
ens = [1,2,3,7,10,4,5,6,11,12,3]
for k in range(1, len(ens)-1):
pos = topk_min_position(ens, k)
print(k, pos, [ens[i] for i in pos])
1 [0] [1]
2 [1, 0] [2, 1]
3 [2, 1, 0] [3, 2, 1]
4 [10, 2, 0, 1] [3, 3, 1, 2]
5 [5, 10, 0, 2, 1] [4, 3, 1, 3, 2]
6 [6, 5, 2, 10, 1, 0] [5, 4, 3, 3, 2, 1]
7 [5, 7, 10, 6, 1, 2, 0] [4, 6, 3, 5, 2, 3, 1]
8 [5, 3, 10, 7, 1, 2, 0, 6] [4, 7, 3, 6, 2, 3, 1, 5]
9 [5, 4, 10, 3, 1, 2, 0, 7, 6] [4, 10, 3, 7, 2, 3, 1, 6, 5]
import numpy.random as rnd
X = rnd.randn(10000)
%timeit topk_min(X, 20)
5.59 ms ± 728 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit topk_min_position(X, 20)
7.85 ms ± 544 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Coût de l’algorithme#
from cpyquickhelper.numbers import measure_time
from tqdm import tqdm
from pandas import DataFrame
rows = []
for n in tqdm(list(range(1000, 20001, 1000))):
X = rnd.randn(n)
res = measure_time('topk_min_position(X, 100)',
{'X': X, 'topk_min_position': topk_min_position},
div_by_number=True,
number=10)
res["size"] = n
rows.append(res)
df = DataFrame(rows)
df.head()
100%|██████████| 20/20 [00:23<00:00, 1.78s/it]
average | deviation | min_exec | max_exec | repeat | number | context_size | size | |
---|---|---|---|---|---|---|---|---|
0 | 0.003916 | 0.000363 | 0.003336 | 0.004570 | 10 | 10 | 240 | 1000 |
1 | 0.005436 | 0.001039 | 0.004235 | 0.007412 | 10 | 10 | 240 | 2000 |
2 | 0.005306 | 0.001051 | 0.004090 | 0.007401 | 10 | 10 | 240 | 3000 |
3 | 0.005341 | 0.000830 | 0.004376 | 0.007003 | 10 | 10 | 240 | 4000 |
4 | 0.007047 | 0.001786 | 0.005223 | 0.012082 | 10 | 10 | 240 | 5000 |
import matplotlib.pyplot as plt
df[['size', 'average']].set_index('size').plot()
plt.title("Coût topk en fonction de la taille du tableau");

A peu près linéaire comme attendu.
rows = []
X = rnd.randn(10000)
for k in tqdm(list(range(500, 2001, 150))):
res = measure_time('topk_min_position(X, k)',
{'X': X, 'topk_min_position': topk_min_position, 'k': k},
div_by_number=True,
number=5)
res["k"] = k
rows.append(res)
df = DataFrame(rows)
df.head()
0%| | 0/11 [00:00<?, ?it/s]
9%|▉ | 1/11 [00:00<00:09, 1.11it/s]
18%|█▊ | 2/11 [00:02<00:09, 1.05s/it]
27%|██▋ | 3/11 [00:03<00:09, 1.20s/it]
36%|███▋ | 4/11 [00:05<00:09, 1.34s/it]
45%|████▌ | 5/11 [00:07<00:08, 1.44s/it]
55%|█████▍ | 6/11 [00:08<00:07, 1.54s/it]
64%|██████▎ | 7/11 [00:10<00:06, 1.64s/it]
73%|███████▎ | 8/11 [00:13<00:05, 1.86s/it]
82%|████████▏ | 9/11 [00:15<00:03, 1.93s/it]
91%|█████████ | 10/11 [00:17<00:01, 1.98s/it]
100%|██████████| 11/11 [00:19<00:00, 2.16s/it]
average | deviation | min_exec | max_exec | repeat | number | context_size | k | |
---|---|---|---|---|---|---|---|---|
0 | 0.018026 | 0.002823 | 0.015226 | 0.025344 | 10 | 5 | 240 | 500 |
1 | 0.027577 | 0.008949 | 0.018939 | 0.043367 | 10 | 5 | 240 | 650 |
2 | 0.031409 | 0.011282 | 0.020159 | 0.056507 | 10 | 5 | 240 | 800 |
3 | 0.032973 | 0.007518 | 0.025192 | 0.047946 | 10 | 5 | 240 | 950 |
4 | 0.033467 | 0.007725 | 0.025187 | 0.051844 | 10 | 5 | 240 | 1100 |
df[['k', 'average']].set_index('k').plot()
plt.title("Coût topk en fonction de k");

Pas évident, au pire en , au mieux en
.
Version simplifiée#
A-t-on vraiment besoin de _heapify_max_bottom_position
?
def _heapify_max_up_position_simple(ens, pos, first):
"Organise un ensemble selon un tas."
i = first
while True:
left = 2*i + 1
right = left+1
if right < len(pos):
if ens[pos[left]] > ens[pos[i]] >= ens[pos[right]]:
swap(pos, i, left)
i = left
elif ens[pos[right]] > ens[pos[i]]:
swap(pos, i, right)
i = right
else:
break
elif left < len(pos) and ens[pos[left]] > ens[pos[i]]:
swap(pos, i, left)
i = left
else:
break
def topk_min_position_simple(ens, k):
"Retourne les positions des k plus petits éléments d'un ensemble."
pos = list(range(k))
pos[k-1] = 0
for i in range(1, k):
pos[k-i-1] = i
_heapify_max_up_position_simple(ens, pos, k-i-1)
for i, el in enumerate(ens[k:]):
if el < ens[pos[0]]:
pos[0] = k + i
_heapify_max_up_position_simple(ens, pos, 0)
return pos
ens = [1,2,3,7,10,4,5,6,11,12,3]
for k in range(1, len(ens)-1):
pos = topk_min_position_simple(ens, k)
print(k, pos, [ens[i] for i in pos])
1 [0] [1]
2 [1, 0] [2, 1]
3 [2, 1, 0] [3, 2, 1]
4 [10, 2, 1, 0] [3, 3, 2, 1]
5 [5, 10, 2, 1, 0] [4, 3, 3, 2, 1]
6 [5, 6, 10, 2, 1, 0] [4, 5, 3, 3, 2, 1]
7 [6, 7, 10, 5, 2, 1, 0] [5, 6, 3, 4, 3, 2, 1]
8 [5, 4, 10, 7, 6, 2, 1, 0] [4, 10, 3, 6, 5, 3, 2, 1]
9 [3, 4, 6, 5, 7, 10, 2, 1, 0] [7, 10, 5, 4, 6, 3, 3, 2, 1]
X = rnd.randn(10000)
%timeit topk_min_position_simple(X, 20)
7.5 ms ± 810 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)