.. _300ConvolutionCIFAR10rst: ========================================================= 300 - Convolution network, gradient, tweaks, with pytorch ========================================================= .. only:: html **Links:** :download:`notebook <300_Convolution_CIFAR10.ipynb>`, :downloadlink:`html <300_Convolution_CIFAR102html.html>`, :download:`PDF <300_Convolution_CIFAR10.pdf>`, :download:`python <300_Convolution_CIFAR10.py>`, :downloadlink:`slides <300_Convolution_CIFAR10.slides.html>`, :githublink:`GitHub|_doc/notebooks/101/300_Convolution_CIFAR10.ipynb|*` Object detection on `CIFAR10 `__. **Note:** install `tqdm `__ if not installed: ``!pip install tqdm`` .. code:: ipython3 import time import numpy as np import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable print("torch", torch.__version__) from torchvision import datasets, transforms from tqdm import tqdm .. parsed-literal:: torch 1.5.0+cpu .. code:: ipython3 %matplotlib inline .. code:: ipython3 BATCH_SIZE = 64 TEST_BATCH_SIZE = 64 DATA_DIR = 'data/' USE_CUDA = False # switch to True if you have GPU N_EPOCHS = 2 # 5 .. code:: ipython3 train_loader = torch.utils.data.DataLoader( datasets.CIFAR10(DATA_DIR, train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=BATCH_SIZE, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.CIFAR10(DATA_DIR, train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=TEST_BATCH_SIZE, shuffle=True) .. parsed-literal:: Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to data/cifar-10-python.tar.gz .. parsed-literal:: HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value=''))) .. parsed-literal:: Extracting data/cifar-10-python.tar.gz to data/ .. code:: ipython3 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(500, 50) self.fc2 = nn.Linear(50, 64) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 500) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=-1) .. code:: ipython3 model = Net() if USE_CUDA: model = model.cuda() .. code:: ipython3 optimizer = optim.Adam(model.parameters()) .. code:: ipython3 def train(epoch, verbose=True): model.train() losses = [] loader = tqdm(train_loader, total=len(train_loader)) for batch_idx, (data, target) in enumerate(loader): if USE_CUDA: data, target = data.cuda(), target.cuda() data, target = Variable(data), Variable(target) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() losses.append(float(loss.item())) if verbose and batch_idx % 100 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) return np.mean(losses) .. code:: ipython3 def test(verbose=True): model.eval() test_loss = 0 correct = 0 for data, target in test_loader: if USE_CUDA: data, target = data.cuda(), target.cuda() with torch.no_grad(): data = Variable(data) target = Variable(target) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability correct += pred.eq(target.data.view_as(pred)).cpu().sum().item() test_loss /= len(test_loader.dataset) if verbose: print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) return [float(test_loss), correct] .. code:: ipython3 perfs = [] for epoch in range(1, N_EPOCHS + 1): t0 = time.time() train_loss = train(epoch, verbose=False) test_loss, correct = test(verbose=False) perfs.append([epoch, train_loss, test_loss, correct, len(test_loader.dataset), time.time() - t0]) print("epoch {}: train loss {:.4f}, test loss {:.4f}, accuracy {}/{} in {:.2f}s".format(*perfs[-1])) .. parsed-literal:: 100%|██████████| 782/782 [00:45<00:00, 17.31it/s] .. parsed-literal:: epoch 1: train loss 2.1118, test loss 1.6829, accuracy 3942/10000 in 49.14s .. parsed-literal:: 100%|██████████| 782/782 [00:41<00:00, 18.71it/s] .. parsed-literal:: epoch 2: train loss 1.8141, test loss 1.5836, accuracy 4203/10000 in 45.54s .. code:: ipython3 df_perfs = pd.DataFrame(perfs, columns=["epoch", "train_loss", "test_loss", "accuracy", "n_test", "time"]) df_perfs .. raw:: html
epoch train_loss test_loss accuracy n_test time
0 1 2.111783 1.682875 3942 10000 49.143509
1 2 1.814102 1.583610 4203 10000 45.540153
.. code:: ipython3 df_perfs[["train_loss", "test_loss"]].plot(); .. image:: 300_Convolution_CIFAR10_13_0.png