{"cells": [{"cell_type": "markdown", "metadata": {}, "source": ["# cartopy\n", "\n", "*cartopy* aims at drawing maps based on [matplotlib](http://matplotlib.org/). It superimposes a geographical coordinate system on the top of matplotlib's one. It is usually used with modules such as [pyproj](https://jswhit.github.io/pyproj/) to handle [shapefiles](https://en.wikipedia.org/wiki/Shapefile) also with [shapely](https://github.com/Toblerity/Shapely) or [geopandas](http://geopandas.org/index.html), [fiona](http://toblerity.org/fiona/), [descartes](https://bitbucket.org/sgillies/descartes/)."]}, {"cell_type": "markdown", "metadata": {}, "source": ["[documentation](https://scitools.org.uk/cartopy/docs/latest/) [source](https://github.com/SciTools/cartopy) [installation](https://github.com/SciTools/cartopy/blob/master/INSTALL) [tutorial](https://scitools.org.uk/cartopy/docs/latest/tutorials/understanding_transform.html#understanding-transform) [gallery](https://scitools.org.uk/cartopy/docs/latest/gallery/index.html)"]}, {"cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": ["%matplotlib inline"]}, {"cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [{"data": {"text/html": ["
run previous cell, wait for 2 seconds
\n", ""], "text/plain": [""]}, "execution_count": 3, "metadata": {}, "output_type": "execute_result"}], "source": ["from jyquickhelper import add_notebook_menu\n", "add_notebook_menu()"]}, {"cell_type": "markdown", "metadata": {}, "source": ["## example"]}, {"cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEmCAYAAABWECYqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XdcleX/x/HXfdgbZMpUhis1tyKaK3OUmW2zNHOVTa0szabasnKUZeXX1FIrzTJn5koz956AgICg7D0OcM79+wPlp00QDjcHPs/Hw8cXOOdc9/v4TT7nuu5rKKqqIoQQQpiaTusAQgghGgYpOEIIIWqFFBwhhBC1QgqOEEKIWiEFRwghRK2QgiOEEKJWSMERQghRK6TgiAZDUZQLiqIUKYqSf80fX61zCdFQSMERDc0QVVUdr/mTfO2DiqJYahVMiPpOCo5o0BRFaaIoiqooyhhFURKA7Vd+vkpRlMuKouQoirJLUZSbrnnNEkVRFiiKskFRlDxFUfYrihJyzeM3KYryq6IomYqipCiKMu3Kz3WKorysKEqMoigZiqJ8ryhKo1p/00JoRAqOEOV6AS2BAVe+3wSEAV7AEWD5n54/HHgTcAPOA7MAFEVxArYCmwFfIBTYduU1zwB3XbmWL5AFLDDJuxGiDlJkLzXRUCiKcgHwAMqu/Ggn8BwQB4Soqhr7D69zpbw4uKqqmqMoyhKgTFXVsVceHwx8pKpqC0VRhgNTVFVt/zftnAWeUlV125XvGwMJgJ2qqmV/fr4Q9Y2MV4uG5i5VVbde/UZRlCZXvky85mcWlPdY7gM8AeOVhzyAnCtfX76mzULA8crXAUDMP1w7CPhRURTjNT8zAN5AUhXfhxBmR4bUhCh3bVf/IWAocCvgAjS58nOlEu0kAiH/8tggVVVdr/ljq6qqFBvRIEjBEeKvnAA9kAHYA29X4bXrAR9FUZ5TFMVGURQnRVG6XnlsITBLUZQgAEVRPBVFGVqTwYWoy6TgCPFXy4B4yoe5zgD7KvtCVVXzgP7AEMqH3aKBPlcengf8DGxRFCXvSrtd/64dIeojmTQghBCiVkgPRwghRK2QgiOEEKJWSMERQghRK6TgCCGEqBVScIQQQtSKKu00EBjoryYmyho1IYQQFeJVVW1SmSdWaVq0oihqVlb0jYYSotoSEi7y6qvvcfjICUY8/jJN2g9BUaSjfpU+L40ZE/uzbt1yWrYM0zpOnXH2bLT8fZiIm1sYqqpWZhcOGVIT5iE/v4CZMz+id+9heAW0YOqC7TTtMFSKzZ/sXPUu999/l/xyvWL79t18++1P8vdRR8i/VlGnGY1Gvv32J7p0GcC588m8+ukmOt4+CQsrO62j1TkZCYfZu3sXL7/8tNZRatS4cZNJSUnj7Nlopkx5C4AvvljG+vVbABgx4glycvI4cuQEr776LgBz5nzO1q27CAz0Jzg4SLPs4nqyW7SoszIzs7j//nGUGeHJ1z7DPaij1pHqLKOhjO8+fY033ngRZ2cnrePUqMceewhnZydsbW0YPnwYAH369MDOrvxDx8SJo7G3t6VJkwDuv/9OAAYP7oeLizM+Pl6a5RZ/JQVH1FmWlpakpWXw4PgpUmz+Q9Teb7Gzs+GBB+rXXqAbNvzK9u2/Ex7eCTs7W9q3bwNAWFhwxXMiIroA0KiRG40auQHQvHlo7YcV/0kmDYg67dixU9x772O89OEqnLxkHP7vlBRmMuOJW1nzw2LatGmldZwalZ9fgMFgxMWlfvXa6hOZNCDqjXbtWvPKK5NZ9PbjlOnztY5TJ+3+4QOG3jmo3hUbAAcHe44cOY5sMlw/SMERdd6jjz5Ahw5t2PTVVFTV+N8vaECyLp7gt22/MH36c1pHMQlFUVi8eAV5efJhoz6QgiPqPEVR+PDDN4mPieLs7mVax6kzspNOsWzOC0x/ZTKuri5axzGZr7/+tN5NhGioqnwPJzDQH5/G3jT28cbPzwdfX28aN/bG17f8ax8fL6ytrU0YWTRUsbHxDBhwP8/NXIR7YMOdRFCQcYHt33/Aof37eP75Jxg7dgQ6Xf397PjDD+uxtrZiyJABWkcRf6Mq93CqXHA++Po3CrKTyc+6TG7mZbIzLpOVfpm01BRSLl0mLS0DV1dnfHzKC1FjX2/8/XzKv75SmBo39sHZ2RFFqVRGISps2PArL708kxfnrMfGwV3rOLVKn5fCnrXz2bZ5AxMmjGTixNE4OjpoHcvkTp48i7W1lcw8q6NMWnA+2xj/r89RDWXoCzIozE6mIDuF3KxL5KSXF6b0tBRSU1K4fOkyAI0b/38h8rtSlK7tMXl6umNhYVHpfKJheO219zh6/BwPvbgUxaL+z+wvLc7h8OaF/LxqBQ8+OIznn38cd/dGWseqVQUFhTg42GsdQ/wNTQtOZaiqkTJ9HkU5KRRmJZOXdZmcK72lzLTLpKWkcPnyZXJy8vD0dKex75Vi9JfCVP61nZ1ttTMJ81FWVsadQ0fS8uZwOg95Xus4JmMoLeL0b0tZtexz+vfvzdSpzxIQ4KtZnoSEJI4fP8WQIQOYNm0Ww4ffTZs2LU1+3cuXUxk8eDhHjmwz+bVE1VWl4Gjy8VBRdFjZumBl64KzdzN8/uF5htJi9PmpFGZfJi/rEnmZl4mMTWHvgVOkp6aQkpJCyuUUHBwc8GnsjZ+vDy+8MJGuXTvU6vsRtcvS0pKvFs+jd+9h+IW2w7dlP60j1SijoZTzB1bz/eJ5tG17Ez///E2t7wWWmJhMQUEBLVqEMWTIw3zyyTuUlRm4dCkVgKFDBxES0oSLFy/h4uKEk5OjybJ4e3ty+PBWk7Uvak+dHo+wsLLF3i0Qe7dAPJr+/8+Lcy+RHLWPuLMHOH5oP5cuXaZxY2/CwzsRFOSvXWBRa7y9Pfnf/+Yw6tGnmTp3LfZuAVpHqjZVNZJ4cjOr//cBHh6NWLx4Hl26tDf5dXNy8gCwtrbiiSde5Kuv5nP06AkyMrJo0SKMBQvew8/PBwsLC0JCmgBUfKj74otleHl58NBD95gsn6IobN68nRYtQmnSJNBk1xGmp8mQWlWoqpHCzHiSovYRc/oAxw8fJD8/n27dOhER0Znw8M60bt0CS8s6XTuFiXz88f9Y/cMGxr+1Ggsr8xtaVVUj+WkxXIzcy67NqynIz+ORR+7jqafGkJOTi5OTY43ex1RVFVVVSU5OYcOGLUyYMIpp02bRpUsH7rprEFu27KRfv55VuqaqquzY8TtnzkTx1FNjaizrtZYu/Y4OHdrUy8Wt5q7O38P5N0ajgbzUSC5G7uf8qQMcOXgQCwsd3SO6ENG9M+HhnWjePFRmuAmg/JfdyJFPYevkQb9H3tE6zn+q+O/73D6iT+7n8KGD2Nna0r17FwYO7IOHRyOio2MZPXo4jzwykQkTRtGyZRgTJrzA6tWL2bPnAHq9nr59e3LixGlCQ4Oxt//3nbNjY+O5dOkyERFdGTLkYd58cwpBQf5s2rSNhx++r0beV1paBsnJl2nTpiVxcQkVPSFR/5lVwTEaSshOOkVC5H6iTx7gyKHDNGrkRnj3zvSIKC8wgYH+UmDE3yooKGTWrLksXfot736zHyvburUAUjWUkX35LBfP7SPq5H6OHDqEs4sTEd270KNHF7p370JgoN+/tlFSUkJkZAxt2rRk377D6PV6evXqztixk3j11clkZ+cydepMNm5cyfLlq/HwcKd//14MGjScH39cwsmTZzl3LppRox4gP7/ApFOpz56NZubMj1i+/LMabffQoWN8/fUq5s2bVaPtiuqr0wXHUFpERsJREs7t59yJgxw7coygJgF0D+9M9+6dCA/vJFuKi/+kqipr1mzg9dffp237jvR/aBp2rv/+i7s2GA2lVz5A7SPqxH6OHDqMp6cH3SM60yOiCxERXfD1/adpMjdGVVXy8wtwcnLkxInT2NvbExralFOnztGiRWitDzerqkpBQSEvvPAGc+bMqJFZpHl5+aSlZcjZNnVQnS04iSc28cWHrxAU6E/3K8Nj3bp1xM3N9YbbFA3PiROneemlmeTlF/DA42/gGdxNsyxGQwlZiSeIP7ePyBP7OXr4CH5+jele0YPpjLe3p2b5tGIwGNi2bTe33dabuLh4mjQJrPYoxblz0QQHB8lOJnVMnSs4ZSUF7Fj5Fkf27+Hzzz+slZk3ov5JT89g5sw5bNy4jYfGTaJ5+IO1vvCzrKSQrMRjxJ3ZR9SpQxw7cowmTQMqhsjCwzvh4dGwdkD4N6qqcvfdjzJnzoxqzzAbMeIJ3n57GkFB5j8jsT6pUwUnK+kki99/hg7t2zJ79muyCZ+ostLSUhYtWs6HH35K/8FDCR86CWv72ukV6/NSuBxziPjIQ5w9cZioyChatAjjwoUEZs9+k759I+r1xpk1QVVVFEVhzpzPiYjoIh8465k6sfDTaDRwavsiVi1byNtvv8J9991pqkuJemzHjt+ZOnUWHp7eTPnge5y9m5nsWkajgYLUaC5GHyTu7CFOHD1MTk4unTq1Izy8EyPum0KHDm2xs7OltLQUKysrk2WpT64OpXXr1pHg4EAyMjKxsrKq8ofPPXv2k5qawbBhg00RU9QCkxSc4twUfvh0MvriQrZuXS1dYFFlFy4kMG3aO5w5E8mIJ17Bv80AFKVmd0S+OjyWEHWI6NOHOX7kKK5uLnTt0pG+vToydcp4mjcP+dudmI1GI1OnzmTGjJdlDVglhYd3AuB//1tOXl4+zz03AaPRWOmdrl1cpCdp7mp8SO3iqS18MXsqo0cP58UXJ8o/RlEl+fkFfPTRQpYs+ZZ7Hx7DzbeOw8Lq39eZVJY+P5WUmENcOHfwuuGxrl07Eh7ekS5dOlTpBv+KFT8wbNjtspffDVBVlQsXEhg3bjK//roaoFKTCq4Oz4m6Q5N7OIbSIn77bib7f9/JwoWzKz7NCFEZqqry/fc/8+abs+nYJZx+w1/G1rlxtdoszIgn4ezuiuGx7OwcOnVqR7duHenWrQPt27f9z0WT/yUhIek/19GIf5aenoGHhzuPPfYcY8eOoHv3zv/43NLSUlq0iCAy8g/5IFuH1HrBybl0msXvPcNNrZsz56O3cHFxrnxa0eAdPXqSl16aQbG+lPsnvIFH03/+pVNZpcW5vDo6ggED+tKtWwe6dev0j8NjN6qkpIR+/e5h48aVJt28siHIzMzC3t6ew4ePsXz5D3z66ft/+zxTL1wVVVdrBUdVjZzZuZiViz9hxoypPPjgXdLdFZWWlpbBW299yJYtO3l4wvOEdL0fna5m9g2L2ruSyMPbWL780xpp75/IEE/NMhgMJCVdJjDQjwcfHM8777xC06b/v9jz2LFTODk5ytY5dUhVCs4Nf9wrzk/l29mPsnf7z/z66yqGDx8m//BEpZSUlPDJJ4sJDx+E0dKZ6Qu3ERY+vMaKDcAfv65h+PC7aqy9f1JWVsZjjz1HcbHe5NdqCCwsLCqGKN9440WCggJYu3YTH320EIATJ84QH5+oZURRDTdUcJLObOXdp2+nc8dWbNq08rpPIEL8m61bdxERMYQtW/fw0oer6Hn/azW+/1lhVgLRUdH079+rRtv9O1ZWVowYcQ95efmcORMFlPfc8vLygfK93qoyiiD+X4sWYeh0Onr3jmDo0IGUlZWxadM2OnVqp3U0cYOqPKT2wCOj2LPjVxYunE1ERBcTRhM3Ij09g8jI80RGxhAZGUNCQhKqqqLT6dDpFBSdDkVR0Cnl3+uufq+7/nvl6vfK3z9+7ff//zMFRdFhYXH991cf37f/MNFRsYyYOB3fVrfW+DTnqw5tmItalMqHH75hkvb/ztGjJ1m58kfef/813nhjNm3btuLuu28nOLgzp0/vZseOPaxZs55Fi+YwZcpb9OzZlSFDBtRavvrAaDTy9tvzSE/PYO7cmVrHEVeY9B7O0LsGM3fOW7K6WkOqqpKUdJnIyPNERZ3n3JXiEh0Vg8FgICQ0hMCmofgEhOLmHYSi04FRRVWN1/xRUY1GwIhqVK+ck3LNY1cfV40YVSOo5ffsVOPV5/D/zzcaUVGvtHP1Ode0Z1QBFVePxjTvPtyk59aoqpEPnunLws/eo3PnurOivaysjJKSUuzt7bh0KQUvLw+OHz+Nu7ubrFOrAlVVKSwswsHBXuso4gqT7jTw1eK59eJeTVlZGQsXLqOsrJRHHrkPd/dGWkf6i7KyMuLjL17XY4mMPE90dCwODvaEhIbg3yQU74CWDOpwJw96h2Hj5GmynoM5yEw8Cqpa54ZdLC0tK6byNm7sDcCZM5F4e3tJwamCHTt+p337NlJwzFSVC059KDbx8YmMn/AiFhbWeDb2ZW7H/gwefCvjxz9Cu3ataz2PXq/n/PkLREXFcO5ceXGJio4hLvYCnl6eBIeE4BcYim9YF1rfMgJn77Ba20vM3BzftcZsZktePfzs669X4e3tyW239dY2kBnYufMPQkODZYd5M1XlIbWsrGgTxjGtq4sLX3llFvePepzWfceh01mgL8jg7O/fsv6Hb2js48W4cQ8zdOhAbGxsavT6eXn5REfHXl9YomJISkomINCfpsGhNA4MwTsgjEaNw3D0DMHSWtYcVJahtJjXRndjx441BAb6ax2n0o4fP42zsyMBAX5YWFiYRbEU4iqT3sMx14KTk5PLpMmvcerkOR6bMh9Xv7/2ZFRDGRfPbGXnuqVER0Ux8pH7GT36Qfz8qrbiPSMjs6KYnDt3nsio8vsrmZlZBIc0JahpKI0DQvD0b4Zb4zAc3YPQWdZscWuIEk5s4refF7Nhw3Kto9yQt9+ei7+/LyNH3q91lDrp1KlzrFjxA2+//YrWUcQ1pOD8yZ49+3n88SlE9OpHz/tfqdTeXHmp0Rz6dSlbNvzMLbeEM378w3Tv3qXi06eqqiQnXyYqKua6Hkt0dAx6fQmhzUIJahqKt38Inn7NcPUJw97Vr9bPb2lI1swbx5Dbe/PII/dpHeWG5ObmYWlpSW5uHg4O9rJ7wZ/k5OQSGxtP+/ZttI4iriEF54qSkhLeeWc+K1f+yLgX38Gv1a1VbqO0OJeofavZtOZrrK0sadv2JqKjy4uMrZ0tISEhBDYNwysgFA/fUFy8m2Hr7NWgb9xroaQwk+mje3Ly5C5cXMz7zKU5cz7H3d1Nejp/kpqajouLU40PdYvqkYIDREfHMm7c87i5e3LXhNnYOFXvmF9VNZIS/TvZaYm4+4bi4h2GtX3dm9nWUJ35bQkXow+w+H9ztY5SbVf/Te7dewgnJwfatGmlcaK64bnnpjNoUD8GDOijdRRxjTpxAJtWVFVlyZLvmDXrI0aMn0SLHo/USG9DUXT4NLsFH9Od/yWq4fdf1zD15ae1jlEjrg7bZmRkUlpaqnGaukMWe5q/elVw0tMzeOaZ6SQmJvPSh6tw8grTOpKoBXmp50m6mEyfPhFaR6lRV3ciWLRoOZ6ejRg6dJDGibSTn1/A4sUreOaZcVpHEdVgkoJTUlLCunVbsLa2IjDQn4AAX9zcXE063XPr1l08/fQ0+t8+lDue+FRmfTUgZ/au4d57h9TbM1L69euBTqcjLy+f/PyCioWjDUlpaSk2NtZaxxDVVKP3cIxGIz/+uJEZMz7E1z8Ae3t7LiUnkXQxmbKyMgIC/PD39yUw0J/AQN+KYhQY6I+np/sNFaTiYj2vv/4+Gzb8yriXPsQ7tH59yhX/zmg08M4TPVmx/NN6f69j8+bt7N69j1mzpmkdRYgKmkwa2LVrL6+99j4oOu5+bCpeod2ve7y0OIfCrIvkZlwkJz2JrJSLpKde5HJyMkkXL1JQUIifny8BgX4EBvgRGOhXUYwCAnzx8fHCwuL67etPn45k3LjJBDYNZfBj78jq+wYoLeYPVn72Bnt+X9cgFkyqqkpiYhKzZy9g/vy3G8R7Bpg58yOaNAmo2J1B1B21WnBOnTrHG2/M5vz5OB4cP4Wgdnfc0E36spICCrOSyM+8SE5aIllpSWSkJnEp+SLJF5PJysrC19cHf//yYuTgYM+aNet59KlphHS5V6YhN1C/LH6e9m1CeOaZsVpHqTV6vZ5Dh44TEdGFU6fO0bp1C60jmVx+fgEGg9Hsp7zXR7VScBITk5k1ay7bt+/mgdETadnjYZPeNzGUFlGUc4m8jERyM5LIzUyhVfgwHNybmOyaom4rKylk+qiu7N27sUHe1ygqKuaBB8axfPln9X6R6M6de+jZs9tfRjmE9kxacOLiDvHhh5+xfPkPDL1/BB0GPI6VrfMNhxXiRl048hMHtq9mzQ+LtY6iuWeemcaTTz5G8+ahWkepcaWlpTz88ERWrvwcnU5GMuoak67D6dSpP7363carn/6CnYtP1dMJUU1F2UlEH97AxtXLmD59ktZx6oSRI+8nODiI8+fj8PR0x8XFfD8E6vV6fv/9AP369WTz5u1cvpxKnz4R6PUl2NmZ7iwlYXpV/rjw0oer6P/o+1JsRK0qzknm5PYvWfTaMGY8OZicS+f44IM3uOeeO7SOVid06tQOKysr1q/fwo4de7SOU2VGo5GxYyexceNWVBWWLfsOVVVp1iyEDh3aUlSkp6REFsGauyoPqX22Md6EcYT4f8W5l4g5vIF9OzcScz6GgQP7MmzYYHr1CsfaWtZk/Jt1634hMvI8L7zwpNZRKq2oqBhra6t/vE+TlZXNqlU/M27cIw1mdp45aNBb2wjzVpx7mfNHNnBg50aio6IZOLAvL77wOL17d5ciUwW9enWnZctmlJaWcuTISbp27aB1pH+1ZctOCguLuOuuf95NQafTUVpaVoupRE2TgiM0V5ybQsyRDez/bSNR5yIZOLAfz08eT+/e3WVn4Bvk7OyEs7MT0dGxLF+++j8LTnGxntzcPLy8PPjmm1WEh3fG0dGBu+4ayd69m1ix4geCgvyJiOhqkrx+fo0pLi7+1+e4uDjz5JOPcfz4aeLjE7nzzoEmySJMR6Z8CE3o81I4s2sJS966jzcm3ErqheNMenYMkZF/sHDh+wwY0EeKTQ0ICwtm/vy3KSgo5I47RlBQUMjJk2eIjY1HVVXuv38sJSUlbN++mw8++BQAOzs7dDoFT093NmxYAUCTJoF4eXmSk5PLxo3bajxnaGgTOna8uVLPtbS0lOnRZkru4Yhao89PJfbIJg78toGzZ87Sv39vhg0bTN++PbC1leJiamfORNGqVTOWLv0OX18f+vfvxe7d++jWrSNWVlaVaiMy8jzr1m3hhRcmcuFCAkFBAdW+n2I0GmnePJzjx3dib//fhyNC+f2eDRt+5d57h1Tr2qL6TLoORwqOqAp9fhqxRzdx8LcNnD51mv639ebuYYPp27enFBkzZjQaGTRoOMuWfYK7u1u1N04tKyurUhvp6RnMm/clM2a8XK3riuqTgiM0pc9PJ/bYRg7+tpHTJ09xa/9eFUVG1lHUH6qqoigKM2Z8hL9/Y0aPHn5D7Rw/fpqSkhI6d25fwwlFbZBZanXQ3jXv4h96M/439UexqH9/7fr8dOKObeLQ7k2cPH6CfrfewhMTRnDrrb2kyNRTV4fSpkx5kpKSUi5cSGDu3C+qfFBaenomRUVFVXrN6tXryMnJZcyYEVV6ndCW9HBqyZev3kX8hQu4uLgw5IExhHW7Dwuryo1X11UlhZnEHdvMwd/Wc+LYcfr2u4W7hw3i1lt7VXosXtQfhYVFnDhxhm7dOrJ06XfcfvuteHi4m+RaSUmX0OtLCA4OMkn7ovKkh1MHtetyC+HdOjB4cD8+/vh/LF80lzvvHUHbPqOwcfTQOl6llRRmcuHYZg7u2sDxo8fo27cn48Y8QP/+n0mRaeDs7e3o1q0jqqqSkZGFjY0N8fGJWFtb/+PmqkajkYEDH2Dt2q+r1BPW6XQEBPjWVHRRS6SHU0syEg6zfN7L/PHHBgCiomL4ZMFX/Lx2E/0H30G3QeNw8AjWOOXfKynMIv54eZE5duQoffr0YNiwwfTv3wsHB3ut44k6bOXKNRQWFjFmzAjy8vL/squ10WjkzJmoKh+xMHz4BKZNe7beH7pnDmTSQB2kGsqYPqoTu3atxc+vccXPU1PT+fLLb1iyZCXtO3ai19DxuDfpBGi7dUdpUTYXjm3m0O4NHD18hF69ujNs2GBuu603jo4OmmYT5ic+PpFHH32G7dvXXDeNOjn5MoqiNMjjJeoLKTh11M+fTmTQbRE88shfTy0sKChkxYo1fPrpYhq5ezDwvgm1PsGgtCib+BNbOLR7A0cOHuKWW8IZNmwwAwb0kSIjqk2v12NjY8PIkU8ybdpztGgRxsqVa8jNzWPChFGVbicnJ4/ly1czceJoE6YVlSUFp46K3vcd549tZ+nSj//xOQaDgfXrtzB//iKysnIqJhhYWptm6Kq0KJv4k79yeNcGDh04wC23dGfYsEEMGNCn3h/qJbQRGXme0NCm7N69j+zsXG6//dZKLzwFyMzM4vvv1/L444+aLqSoNCk4dVRxbgpvPt6f6Oh9/7nITVVV9u49xMcf/49Dh4/V6ASD0uIcEk78yuHd6zm4/wA9e4ZXFBlnZznCV9SOU6fOkZx8mZdfnsHBg1soKSnF1tZGdoI2M1Jw6rCPXxzARx++WaXde6OiYljw6Vf8vHYztw66/YYmGJQV55Jw8lcO7V7PwX37iYjoyrBhgxk4sK+cEy80dXUywdSpM2ndugUjRtxLdnYOrq4upKSkYTAY8PX14aefNtGnTw9++WU7u3fvY968WXICaB1QlYIj/2/Vsg5db2Hr1l1Vek2zZiHMmzuT/fs308TPjXcn38OaeePIuHAQ+OcPDKXFucQe+oHVc8YwbVQ4x/es4/57BnHq1G6+/fZzHnhgqBQbobmrQ7ezZk3j3nuHkJR0iUGDynct2LRpW8VmoadOnaWwsJD27duQmZmNqqrk5uZplltUnfRwalnK+T38vORdtm374Ybb+PMEgwH3jieg9W0oFpaUFeeReHorR3ZvYN8ffxAe3pm77x7MoEH9zPrYYSH+zn33jeWll56iU6d2WkdpsGRIrQ4zlul5eUQHjh7dhrt7o2q19ecJBk1DQjmwbx/dunWqKDKuri41lFyIukev12Ntbc3q1evIyspm/PiRWkdqcKTg1HG28YRIAAAgAElEQVTffzSahx64o8a2Vr86wSAhIYkBA3rj5uZaI+0KYS4yMjLJysohIMCXpUu/Y+zYh+X+Ti2Rezh1XOuOvdi2bXeNtacoCt27d+bBB++SYiMaJHf3RoSGNiUvL5+CgiJ0Oh0xMRcwGo1aRxPXkIKjgaDWfdi2fbf8YxCihnl4uDNp0gQApk9/h6ioGPl3VodIwdGAg3sQjg4OnD59TusoQtRbK1YspEWLMBYsWMyiRcsBWLbse3Jy8igqKiYzM0vjhA2PFByNdO5+S40Oqwkhrnd1Aem4cY8weHA/ABITk9DpFI4dO8Xzz78OwHvvfcy2bbtRVZUvvliGwWAgP7+AvLx8zbLXV1JwNNKsXW+2bpWCY07c3ZvTs+cQwsMH8+ijT1NYWLVDw555ZhrnzkWbKJ34J7a2Nvj6+gDwyiuTcHJyJDy8E199NR+Ae+8dQtu2rSgrKyMhIQmdTsevv/7GzJkfAfDii29y4sRpCgoK+frrVQDk5pb3kkTVSMHRiHdYOMeOnZJPUWbEzs6W3bvXsXfvRqysrPjqq5WVfq3BYGD+/Ldp0SLMhAnFjQgJaYKnpztWVlbMnDkVRVEYNmww7733GgCjRj1AUFAgxcXFJCdfBuCbb1bz6adfATBmzHMkJV0iJSWNtWs3AZCTk0tJSYk2b6gOk4KjEUtrB25ufzO7d+/TOoq4AeHhnYiNLV8iMGLEE/TufRfh4YNYsuTbiuf4+9/M22/P5dZb7+HAgaPccccIjh49icFgYOLEKYSHD6Z799srfnGJuql16xa4uDjh7t6Il156GoCJE0fz/PNPAPD446Pw8GhEfn4BSUnlBWn27AX88MN6VFXlnntGo9friYm5wI4dvwPlBclgMGjzhjQkJ35qqG3nW9i6dTeDB9+qdRRRBWVlZWzduot+/XoC8Mkn7+Dm5kpRUTF9+97NnXcOoFEjNwoKCmnZshnTpj133etPnjzLpUsp7N27ESj/5SPMV+fO7YHyntLVIxNmzpwKlB8wN2nS49jY2JCdnUNS0iUAnntuOiNH3k+fPj20Ca0R6eFoqGmb3mzbtouqLL5tSD744FPCwwcREXEHPXsO4dChY1V6fULCRcLDB9dYnqKiYnr2HEKfPsPw9/etONfo88+X0aPHEPr3v4+kpEvExFwAwMLCgjvvHPCXdpo0CeDChUSmTHmLrVt3yTEQ9ZhOp6NHj64AdOx4Mw8/XP7fTPv2bbC3b3in5UoPR0NO3s0pLS0lJuYCoaFNtY5Tpxw4cJQtW3awc+dP2NjYkJGRSUlJqaaZrt7Dudbvv+9n584/2LLle+zt7bjjjhHo9eVj97a2NlhYWPylHVdXF3bvXsf27btZtOgbfvppI5988m6tvAdRN3Tq1I6mTQO1jlHr6kXBMRpKyE+/QFZyJCmJUSTHRxF7PpqSkhKaBAfTOCAYL79g3BuH4uwVgo2TJ4qifedOUXR0jejJ9u27peD8SUpKKo0auWFjYwNQse/c++9/zObNOygqKqZr1w7MmTMDRVGIjY1n8uTXSE/PxMJCx5Il86/7ZZ+QcJEJE16ksLDwSjuv07VrByZMeIGhQwdWDGuOGzeZYcNur5hGC3A8qYhDCYUYjH/tiebm5uHq6oy9vR1RUTGV6oVlZGRiZWXFnXcOpGnTQCZOfOnG/6KEWUlNTefHHzdU6YTT+sSsCo7RUEpBxgUyk6NIvVheWOLORxMfn0Djxj60aBFGy5ZhhA/rT4sWE7G1tSE6Oo7z52OJij7B/h1riTkfi15fQtPgpgQ2DcHbrymeviG4+gTj6BGMhZVdrb6nFu178+uvq2TTwT/p06cH77//CZ069adXr+7cffdgIiK6Mm7cI0yZUn7jdsKEF9i8eTuDBvVj/PjJPPfcBO644zaKi/UYjUbS0zMq2vPwcOfHH5dga2tDTMwFxo6dxI4dPzJy5H18+ukSBg++lZycPA4cOMpnn71f8brjSUWMX5lIqUFFX6ZyPKmIm/3+/7+Rfv16snjxSiIi7iAsrGmldi1OTk7hqaderlgB/9prL9TUX5uo48rKynBwaHhDaVfVyc07ywtLPFmXo0lNjORSfDSxMdFciLuAT2NvWjQPo0WL0CsFJpSwsBDs7Gwr3X5WVnZFIYqOjiMqKpbz52OJj0/Ey9uLJk2b4hsYjJdvMO6+obh4h2Dj5G2SXlFJYTavPNqd6Oj92Nra1Hj75sxgMLB37yF2797HkiXf8vrrL+Do6MD8+V9SWFhMdnYO48Y9wtixI+jWbSCnT/9+3esTEi7ywAPj2bt3Izk5eUyZ8iYnT57FwqJ8n63k5JMAhIcP5uefv2bdul+Ii0tgxoyXK9r4394MFuxKx6iChQITb/FgTLh7rf49iPph06ZtRER0qXen6lZl805NeziqoYyCrASykqNIvRhJcnw0cVcKi5eXB82bl/dYhtzei5YtxxIWFoy9ffV7IG5urnTp0p4uXdpf9/OrC7+io2Ov/DnDoV3rOR8TR2FBEcHBTQhoEoxPQAgevsG4eYfg6BmMpfWNf2KxtnelWfNm7Nt3iN69I6r71uoVCwsLevToSo8eXWnVqhlLlnzL6dORbN/+I/7+jXn33fno9fpKTbr47LOv8PLy4Pff12E0GvHxaV3x2AMPDGXVqp9Zs2Y9H398/b2UToH2WFkolBlULC0UOgU23E+nonr27j1E69Yt613BqYpaKThGo4HCrESyLkWSlhhFckI0F2KiiI2Jw8PDnebNQ2nZMow7BvWgRYvRNGsWokm309LSkuDgIIKDgxgwoM91j+Xk5BIdHcv583FER8dxZv8GzkfHcuFCAu4e7jRt2hS/wGA8/UJo1DgYV+9QbJx90On+etP4z9p17cXWrbul4FwjOjoWnU5HSEgToHwqcWhoMKdPR+Lu7kZ+fgFr125m6NCBODs74evrw4YNv3L77f3R6/UYDNdv2Jibm4evrw86nY6VK9dctwbioYfuoV+/e/D29qBly7CKezadAu252c+OL4YHXPe9EFWRnZ1DRkYWb70l9+pqvOAYjQYuRf5GasJZLsVHcSEmmpiYWBo1cqN5izBaNA9lUP9utHj6EZo3D8XR0aGmI5iEi4sznTq1+8sYvcFgIDExiejoOKKjY4mKPsfRPZs4fz6O/Px8mjQNIrBJMN7+wXj6htCocQiOHsFY2vz/VNiQtr34eu4UZs58+c+XbbAKCgqZMuUtcnNzsbCwJDg4kLlzZ+Li4kRExO0EBvrToUObiucvXPgBkya9yttvz8PKypIlS+Zfdx7KmDEjGDnyKdau3USPHt2u+0BT3psOYfDgW6+7Z2NlofDF8ABu9rOTQiNu2KFDx9m37xDTp0/WOormavweTkHGBV4Z258xYx6mZcvy+yzNmoU0yG5kbm5eRY8oOjqW6PPl/3shLh5XVxeahoSU94oaN+HL+e9x9Og2/Pwaax27wSksLCIi4nZ27lzL6jMlcs9G1Jjk5MsV+7jVV5rew7F19kFVVd5880UsLc1qElyNc3Z2okOHtnTo0Pa6nxuNRi5eTK6YuBAZGUuPnt0oKCjUKGnDtXPnHp56aipPPjkaFxcnOgUWyT0bUSNKSkp46KHH+emnpXLU+xUmmaU2c3w469d9TZMmDW9hkzB/f76HI0RVFRfrsba2Aqj3R11rPkstMDCQuLgEKTjCLMk9G1Fdn3yyCEdHBx5//FGto9QpJik4Pv6BxMbGN7iN6YQQQlVVnn12PGVlDW836P9ikr6eZ+MmxMUlmqJpIYSos1JS0hg48EF0Ol2VFqM3FCYpOI28gyrOChFCiIbC29uTL7744G83bRUmKjgunk24cCHBFE0LIUSd9OabH/DHHwcJCgrQOkqdZZJ7OI7uQcTHJ6KqKopSqckLQghh1u6+ezCBgQ2j2BiMcDFTR2xq1fosJunhWNo6YW9vx+XLqaZoXggh6pQFCxYTFhaCi0v9XuCeXahwJM6Cnw9bEZuqI9jL+N8vuobJVmYGBgURF5dA48beprqEEEJozmAwkJmZjY2NtdZRTKLUAAnp5b2ZQr1CUy8j/duU4ngDcyJMVnB8A4K4cCGB7t07m+oSQgihOQsLC159tX7tk6aqkJmvEJOqIzFDh5ezSit/A41dVXTVuEtisoLj1Vhmqgkh6r+lS78jPT2T559/Quso1aYvhQvpOmJTdBiMCsHeBga3K8WuhjpvJis4jXyCiDm2zVTNCyFEnXDPPXdQWFikdYwbpqqQkqsQm6LjUrYOXzcjHZoa8HJWqek5XyYrOK6e5fdwhBCiPjtzJoq2bVtpHaNSSg2QU6iQXaCQXaiQVaCQU6jgaKsS7GWkU3Ap1ibcc9lkTTt6yFocIUT9N2fOQhYunF2njohXVSjQl88qKy8uOrILFIpKwdlOxdVexc1BJdDdiKuDatIicy2TXcbaoRFlZWVkZWXj5uZqqssIIYSmVq78vNptGIxwIsECVweVRg5GnOyo9M35squ9lmt6LtmFCpY6cHUoLy4B7kbaBFStXVMwWcFRFB1BTcp3jZaCI4Soj/bsOcC5c9GMGTOiWu2oKthaqSRnKZy+aEVxSXmxcLvyp5GDirO9SlFJeXHJulpYCnQUloCTrVpRXPzcjbjZq9hY1dCbrEEm7Uj5BwZx4sQZ2rdvIzsOCCHqHT8/nxo5aNLSAlr6XV1EaaCkDLIKygvL5WyFs0kW5OvBxhJc7a8UFjeVm/zKcLZTMZcjd0xyANtV8cfWsfTjGQBERHTlllu60aNHF5o0CZQCJIQwewUFhTg41M6psAYjWNTBwlKVA9hMWnAAVNVIYUY8iZF/cP7kPg7t34elpQUREV3p2bMLPXt2IzDQXwqQEMLs9O59F59//gHNm4dqHUUzdarg/JmqGslPjyMpci9RJ/Zy+MB+rK2t6NGjKz17dqVHj24EBvpV6xpCCFEbrv7+bMgfmOt0wfkzVTWSnxbDxXN7iT61j4P792FvZ0dERBduuaUbERFdCQjwrdFrCiFEdSUkXOTUqUgGD+5n0utc3XX/1VffZciQAXTu3I6iomLs7evGMehmVXD+TFWN5KXGcPHcHqJO7uPwgf04OjpcGYIrvwfk59fYpBmEEOK/nD4dyYEDRxg9erjJrqGqKg8+OJ4335wCgI+PF5mZ2Tz66NPs2vUzJ0+ewc3NDX9/7X4nmnXB+TNVNZKXEk1i5B9EHd/L4YMHcHZ2pkePrvToUX4PSHakFkLUN2VlZVhaWnLhQgJBQQHXDdtdfeyLL5YRHNyEXr3Cef3195k5cyq6Wp6yVq8Kzp8ZjQbyUiJJjNxL1In9HD5wAFdXlyv3f8r/+Ph4aZpRCFH/TZjwAk8+OZq2bW8ySftTprxFRERnhg4d9J/PLSgo5KefNjJixL3Mm/cFjo4OjBkzgosXL+Hn52PSe0z1uuD8WXkBOkfC2T+IOrGfQwcO4OHhXtH7iYjogre3p9YxhRD1TFxcPF5enjU+LdpgMFBWVkZhYRGOjg5YWVVtBWdubh56fQlubi706HEHW7f+wMWLyWRl5RAe3qlGs0LVCk4dnNVdNTqdBS6Nb6JN33Hc89wiZn1zlDEvfYy9eyjLV66ja9eBdO06kMmTX+fHHzeSlpahdWQhhJmLiopBry8hMvI8P/ywHoBvvllFTMwFCgoKmTu3fLubI0dOsG3bbgC++24tycmXycnJ4+uvVwFw7NgpDh48CsDatZvIyspm2bLvmT17AW5urlUuNgDOzk54erpjaWnJvn2bcXR0ID09k4SEJABefPFNLl1KwWg0UpUOR02opS3bao9OZ4GrX2tc/VrTpt847jWUkX3pDInn9vLNirVMmvQqPj5e9OjZjZ49ujBoUD+srevnSX1CiJql1+uxtrYmOjqWnJxc2rVrg7Nz+bHStra2WFxZmXl1CKuszEBJSQkAOTm5lJUZMBjKuHTpMgDp6ZkVj585E0Xnzu0ZOfJ+9PqSGs3do0fXiq/79InA3d2NzZt38PPPm1m4cDZnz0YTFOT/nzPfUlLSKCwspGnTIIqL9VXesNTsh9SqSjWUkX3pNAln/+DIH9soKMhj4Wezad26hdbRhBC1ICEhCWdnR1xdXar82pEjn2TChJFERHT97yfXcaqqkpubj4uLE08/PZXx40fi5eXBpk3bePTRBzl16hweHo1wcnJk1KinWLXqf6xZs4G0tHTGjBlBRMQdbNnyPU2bdmo493CqQ1WNnN/3PUs/fZennhrD00+PxcLCQutYQggTKCwsYvHiFRQX6wkODuKuuwYxYcILLFjwLoWFRaiq+rcbDRcX63n77blMnz6J4mJ9RY+mPkpISGLHjt8BOHXqHHfeOYAePbqyd+8hunXreN0MuPz8AhwdHRrWPZzqUBQdYeEPMm3+OjZv2c3g20cQF1d/CqoQ4v9ZW1uRl5fP888/wd13347RaOTOOwdgbW3Njh17mDv3CwDef/9j4uMTKSkpISoqBhsba8LCgjEYjPW62AAEBvoxatQD+Pv78sQTj9KzZzcURaF7985/mW7t6OhQ5fYbdA/nWkajgdM7F/PdVwuYNu05Ro8e3qC3qxCioVq37hd69uzGxYuXmDv3cxYtmqN1JE2UlJRU6v52g5oWXdNyU6JZPncSnh5uzJ8/C19fH60jCSFqyFNPvczw4cPqxT0YU0pNTad///s4fnzHfz5XCk41GQ0lHN70CT9//zXvvDOde+65Q3o7QtQDSUmXaNTIDTs7W62j1Hl6vR4bm/+ehSb3cKpJZ2FN5zsmM2nWV7z//gJGP/YcmZlZWscSQlSTtbU1ycmXtY5R50VGnmflyh9rvF0pOP+iUUA7npm9AQfXxkREDOGXX/67eymEqLvi4xNZsuRbrWPUeVZWVnh6utd4uzKkVkmpMX+waPaL9OkdwcyZL+Pk5Kh1JCFEJaWnZ7B+/a88+uiDGAwGWf7wLw4ePEqLFmGV/h0nQ2om4BXSnRfnbCKv0EjPnkPYs+eA1pGEEJVgNBqxtLQkNzcPVVWl2PyHtWs3m2x5iPRwbsDFU1tY9OEr3HvvEKZPn1Tl7R2EELVj377DfPHF1yxePFfrKGYhOzunyjswSA/HxPxb38bUTzYTHZtE7953cfz4aa0jCSGukZOTR2TkeTp3bsfMmS9rHccsJCQkMWzYoybd0FMKzg2ycXDnrqc+484RT3LvvY/x/vufUFZWpnUsIQSwb98hfvppExYWFrKWrpICA/2YO3cmq1evM9k1pOBUg6LoCO50N9M+3sBvuw7y8CNPVuz8KoSofevXb+G779YyYEAfXnrpaa3jmB1ra+uKNUrz539JRkZmjbYvBacG2Ln4MuLlpZQZLXjssecoLS3VOpIQDUpxsZ6SkhLCwoJp27aV1nHMVsuWYdxxx20VkyscHR3Yt+8w69dvqZH2peDUEJ2FNXc/tYBCvYGxYyfL8JoQtWjWrDmsXr2O5s1DadkyTOs4Zk9RFJ588jFsbGyws7PF0dEBVVWZNWsO+fkFN96uzFKrWYbSYlbNnUAjNwe++PwDLC3r3Rl3QtQZmzdvp1271ri6umBjYy1bUJlQSUkJS5Z8y7hxj7Bly04sLS3p16+nzFLTkoWVLfc9t5C09ByeeOIlDAaD1pGEqLfi4xNJS0vH1tZGio2JWVtbM378SBRFwdXVBReXqh/VID0cEzGUFrH8vdEEBfqwYMG7fzlLQghx4x577Fmef34iN93UXOsoDZ70cOoACys7HpqymLj4ZJ59djpGo1HrSEKYvejoWACmTHmKFi1CNU4jqkoKjglZWtszYspizkXGMXnya1J0hKgGo9HICy+8QXLyZVq0CJMtasyQFBwTs7JxZNTUJZw8FcWLU94y6SpeIeqjoqJi3nhjNqWlpfz001JZyGnGpODUAktbJx59ZRlHjpzi5ZdnStERogpsbW0IDg5CURSZGGDmpODUEitbZx6bvox9+48yffq7UnSEqKTc3HyGDh2ItbW11lFENUnBqUVWdq6MefUbdu3ax+tvzJaiI0Ql/PDDOr788mutY4gaINOiNVBSmMnC14YzaGAfpk+fJMMEQgizJdOi6zhr+0ZMeGM5GzZu4913P9Y6jhB12q5dezl06JjWMUQNkIKjERtHD554cwU//riR92cv0DqOEHVWUVExer1e6xiiBshGXxqycfLkyZkr+fiVB7G0tGTypAlaRxKizhkwoI/WEUQNkR6OxmycvHlyxkqWf7Oa+fMXaR1HiDpnxoyP2LhxW6Wem5OTJ/sX/otvv/2JjRu3AnDs2KlaP79LCk4dYOfiw1OzVrJ48Qo+/fQrreMIUaeMHj2c8PCO//h4Tk4uZ85EAfDQQxM4d+48H3zwKX/8cbC2ItZ5OTm57Nmzn9atWxAa2hSAN96YjV5fwu7d+3jttfcA+OOPg1y6lGKyHFJw6gg7F1+efftbPv98GV9++Y3WcYSoM4xGw98e87Fy5RoKCgo5efJsxbHI69Z9w003Nad37+6y19o14uMT2bVrH61bt6BZsxAAfvppKU5OjrRt24qHH74XgH37DpOSkkZGRibdu98OwKFDxyqKd3V7RFJw6hA7N3+efWcl8z9exOLFK7SOI0Sd8NFHCzl58iwAhw8f5+uvVwGQlHSJ7OwcevToymuvPQ9QsSt7p07tsLa25tVX323wx74XFRXTpk0rpk599m8fd3FxrihCkyc/Trt2rXFzc2XNmvLRloKCwopD12655U7i4xOJi4tn4cIlVc4ikwbqGHu3QJ57ewUfvfwgFhaWjBp1v9aRhNDUnDkzGDHiCUJCmtCokSv+/o0BeOGFJ//1dfb2drRq1azBHw0yb94XNGrkyvjxIyv9Gp1Oh4+PFwC9enWv+PmePRvQ6XQkJV2+oT3tZOFnHZWfHstHLz3IK69MYsSIe7SOI4Smjh07RcuWYdjY2FT5tSdPnuXChQSGDBlggmR1n8FgoKSkFDs7W5O0Lws/6wFHj2AmvbOCmTPn8N13a7WOI4Sm2rVrfUPFBsDCwqLBHg3y+uvvExeXYLJiU1VScOowJ69QJr3zDa+//n7FTVEhRNW0atWMoUMHsXbtJrKzc7SO869iY+NZseKHGmsvIqILfn6Na6y96pKCU8c5ezdj8jvLeOWVd/jxx41axxHCbMXFJZCenql1jL9VUFBIcbGe3Nw8PDzcKSsrIzMz64bbU1WVX37ZQb9+PetM7wak4JgFZ5+WTH57CS+9NIN1637ROo4QZum55yYQFOTPtm27tY7yF9Onv8OWLTto1641t93Wmy1bdjJjxkc33F5ubj4//bSpzu1IL5MGzEhW0kk+mjaKeXNnMnjwrVrHEcLspKam89ZbHzB//tuaz14zGo1MnPgSs2ZNxcnJ8S/n/ZT3crJJT8+kVatm/9pWWVkZqanp+Pr6cP58HJ6e7ri4OJsyfgWZNFBPufm1YdLMxTz77CucPh2pdRwhzI6XlweffPIuGRlZJCQkaZKhuFjP77/vR6fT8eCDd/1tsQGwtLTk2LFTbN36G3l5+bz66rsArF27iQULFgNw552PcPjwcZKTLzN27CQAjh49yTffrK69N1QFsg7HzDQKaEeTpk3Jzs7WOooQZmvLlh0UFBQxcGBfXFycaq03UFpaSkZGJt999xMREV3o3TviX59/2229ue223pSUlFQszuzSpQM331y+e/aKFQuxt7dDp9OxceNKAO67707TvolqkCE1M/TexJ6sWrWoYk8kIcSNWbhwCfb29owceT95efk4OTma7FrffLOK6Og43nxzismuoYWqDKlJD8cMpaWl4+XloXUMIczW7NmfMGTIAB5//FEAoqNjefLJl9iyZRWqqtboKbyff76Uvn17MmzY7VhYWNRYu+ZI7uGYmbLiPFRVNeknMSHqu06d2uHh0aji+7CwYNatK98094EHxnH2bHS1r3G1jYAAf2xsbHBwsMfW9sYWr9YXUnDMTHF+Gl5eHjX6CUyIhsRoNNK9e2c8PNyv+/nVnQw++OANmjcPYfPm7Sxb9v0/tpOTk4terycvL59Nm8rP69m0aRsbNvyKXq/nhRdeJycnj8GD+xEY6Ge6N2RGpOCYmaKcFLy8vbSOIYTZSkxMolevof/4eGCgPzqdjlatmtGu3U2UlZXxxhuzAfjpp028++58AMaOncypU+fQ6/Vs3/47AL6+Pvj5NcbGxoYNG1bg4uJk+jdkRmTSgJm5cPRnTu9bz9fLPtE6ihBmy2g0VnodTm5uHqtXr2P06OFkZWVTUlJasZOykHU49VpeVio+0sMR4oadPHmGrVt3Vfr5zs5OPPbYQyiKQqNGblJsqkEKjpnJy0rD21tmqAlxozw9PYiLk5EaLUjBMTM5Wan4+HhqHUMIs+Xj48WECaPYs+cA8fGJWsdpUKTgmJmsjDS8vKTgCFFd58/HcfHiJa1jNChScMxMelqa9HCEqAGjRj1A9+6d2b59d53bVbm+koJjZtLSpIcjRE3R60tYsWINubn5WkdpEKTgmBGjoZTsrBw8Pd3/+8lCiP9ka2vDokVzsLa2IioqRus49Z4UHDOiz8/ArZFrg9+PSYiatn//YZYu/U7rGPWebN5pRorzUvD2luE0IWpa794R9O4dQXLyZby8PLC0lF+NpiA9HDNSmCP3b4Qwpbfe+pD9+w9rHaPekjJuRvJzUvGRHo4QJvP880/IRpsmJD0cM5KXlSpDakKY0IIFizly5KTWMeot6eGYkbzsdMLaBGkdQ4h658cfN9KlS3vmzp2pdZR6TXo4ZiQrIxVv2bhTiBqXnZ1Dfn6B1jHqPenhmJHM9DQ5WlqIGvTmmx8wcGBfRo8ernWUBkEKjhlJS02VrdGFqAF6vR5ra2vuvHMAoaFNtY7TYMiQmplQVSNpaenSwxGiBjz77HS2bt1F+/ZtcHJy1DpOgyE9HDNRps9Dp7PA0dFB6yhCmK3Y2HgaN/bmvTx79gkAABf/SURBVPdexdlZjn+ubdLDMRPFuXL/Rojq+uqrlezZcwAXF2cUpVKnIosaJD0cM1GUK2twhKiuGTNe1jpCgyY9HDNRkJOKlxQcIaolOzuH++8fK+ffaEQKjpnIy5ZtbYSoLhcXZ55/fqIUHI1IwTETeVlpMqQmRDUpikLr1i04ffqc1lEaJCk4ZiInM1WOlhaiBsTHX2TRouVax2iQpOCYiawMOZpAiJrQqlUz5s2bpXWMBkkKjplIT5MhNSFqytatu5g37wutYzQ4Mi3aTKRJwRGixrRq1UzOvdGA9HDMgLFMT05OHu7ublpHEaJe8PX1wcnJkUuXUrSO0qBIwTED+oIM3N0bYWFhoXUUIeqNVat+Zs+eA1rHaFBkSM0MFMsuA0LUuGeeGad1hAZHejhmoCAnVfZRE8IEZs78iGPHTmkdo8GQgmMG8nPS8JZzcISocQMH9iUgwFfrGA2GFBwzkJeVio+39HCEqGkdO95MamqGbHVTS6TgmIHybW2khyOEKbzyyiyZrVZLZNKAGcjKSMXbu5vWMYSodxRFYc2aJVrHaDCkh2MGMjKkhyOEqeTl5fPEE1PMdlitsLCIzZu3M2nSawwZ8ghLlnxLXl6+1rH+lhQcM5CWmoa33MMRwiQcHR0YMuQ2jEaj1lEqLSHhIl9++Q333jeWZs3CmTvvf9i4BtLzjkfZsHk3bdv2ZtKk1zh58qzWUa+jVKWqK4qifrYx3oRxxJ+pqpFJdzcnNvYQ9vZ2WscRol4yGAxcvJhMUFCA1lH+VllZGfv3H2HLlp388ssO0tMziLilNy079cWvxS1Y2ble9/zi3Euc3PUtm3/6Fl9fHx57bDh33TUYOzvbGs/m5hb2f+3dd3iUVdrH8e+0dJIgaaRMJtWEEFLowuK62EBEV1YsoKILFlylCOjuioIoiKgs2HWBfVUUwbbACwuKIiqsCRpISKdkQiCJSUgmmdRp7x+hqK+FhCkp9+e65kqZmXPugWR+Oc9znnOw2WzntV+3BE4X19ZUx6N3jqK0NMvVpQjRY+XnF/PMMy+wbt1qdu7cTXp6MgEB/Vxak9ls5sMP/5ft//mc3Z9/RXh4GIMvuYzYtLH0C09BofrtU/BWi4mT+Z/z1fb15Bw8yOTJ13HnnTcTHx9jtzo7EjgyaaCLazXKtgRCOFpiYhyvvLICgIyM70hIiKOgoJiXXlrLCy8so6ysnL59/fD29nJKPadO1XLXXbNpMDYzZtxkHpv8GJ5+IR1uR6nSED7wSm4eeCUTa0s5uPsdJkyYSlxcNHfddQsTJlyBu7u7A17BL9TjtJ5EpzQZKmVZGyGcwMOj/Y330UfnotWGER4eyt133w7AmjXr2bVrD2azmYULn8ZqtTrsnM+hQwWMHTuJ8OhE/rxoExdfcmunwuanvPpqGfnHR1i0Zi9jrrmdNes2kpx8KY8vWkFJSakdKv9tMsLp4tqXtZHAEcLZfHy8SU5OBODxx+cB0NjYRHR0JEqlklWrXqetrY358/9itz4/+mgb8+cv4q5ZjxE95Aa7tftDSrU7kWnXcnvatRirjpC1ez2XX/4nBqUM5M933cJVV12GWu2YaJBzOF3cwU9eg+aTLFv2d1eXIoT4AavVSm5uAXl5xdx003UX1JbFYmHJkyv54IOt3P/Yq/iHDbJTlefZv6mZkgPb2L11PWXHy7jtthu5/fbJhIf3/83nyjmcHqSh7ntitTIlWoiuRqlU4u7ujkp1YWcm6uoMTJ8+l8bmNuY9txl3H+f/vqs0nsQMnUTM0EkYyvP4btc7jBkzkWHD0pk27SbGjBlpl1myMsLpwmwWM+uevJkZf76ZG2+c6OpyhBA/YbVaUSo7Hzj5+cVMmXIfw0dfxu9u/DtKtZsdq7sw5rZGju7/N1/u/IC8Q7kkJMQxYsQQRo4czPDhgwkMbJ/FJ9Oie4g9GxZx/Gg+H3ywBje3rvODKIRon7acmvoHMjJ2dOqv/y1bdjBnzkLu/MvfiRl+owMqtB+LqZlTpQcoLcqk+NB+DnyXRUBAP0aMGMz69e/LIbXuLm/3Wvbv+4KdOzdK2AjRBanVar7+emuHw8ZqtbJ06So2bPiIuUv/xUURqQ6q0H5UGk8CY0YSGDOSweNgstVCw/eFnCzKBN4/73ZkWnQXdCJ3J+/9z8ts3PgG/v5+ri5HCPEzvv76G+rqDB16jsHQwC233sueLzOZt3Jztwibn6NUqvALGUDimDs69jwH1SM6qe5ENq88vYD1b7+MTqd1dTlCiF+Qn3+Yqqqa8358YeFhxo6dRN+AcKYtfAcPn963IK8cUutCmutOsPqx6Tz//BMMGdI9//IRoreYPn3KeT9227ZdPPjgX7lj5sPEjbzFgVV1bRI4XYSppZ7Xl9zJvfdOY+LEq11djhDiV3z66R6++GIvS5Y88quPq66u4Y031vP225uY89Qa+mkHO6nCrkkCpwuwWk1sWnU/I4an8cADf3Z1OUKI3zBixGBiY3Vnv25ubqGw8DB5eYUcOlRIbl4h+flFtLa0MnjYUBas3Ix7n2DXFdxFSOC4mM1m5bO3F+KmhhUrHkehOK/ZhUIIF7Faraxd+w6NjU3k5ReTn1fEiRMn0UXpiIm7mFDdxYyZMJrr707Awz8UhUJOlZ8hgeNi2Z++RkFOFtu2veOw9YuEEPaRn1/M7DkLqak+xYhLryBx6Dh+98c5+AREo1Q7b9Xl7kre4VxIf2Arm9/7Fzt3bsTXt4+ryxFC/ILm5hZWrHiJN998jykz5pAwasp57UcjfkzGei5So/+WN557lHfffZWwsN9eIE8I4Rq7dn3JJZeMJ7+olEdf2kHimDskbDpJ/tVcoOlUKS8supeXXlrOoEFJri5HCPEzKiur+OvfnuLb/Qe5Y9YThCaOdXVJ3V6HRzi1J3IwtzU5opZeoa2pjlcW38FDD93HVVdd5upyhBA/cWZSwOjRE/DpG8781Z9I2NhJh0c4bz0/l2PH9AQGBRIdE0OYNpagiFj69Y/FNzgON6++jqjzZ1ktZsytRiymJhRKFQqlGyqVGoVKjUKpQdnFhr1WcyvvPn8Pl48dw4wZU11djhDiJ3JzC5kzZyEWK8x7Zj1+IQNcXVKP0uHVomtrizGbzej1ZRQWHqGo6PDpj+03D08PYmJiiIiKJTg8loCwOPxD4nDvE/z/pgdarRYsbY2Ym+tpazHQ2migtbmelsZ6WprqaW5svzUZDTQa6zHW19PQUE99fQP1hnqMxkZ8fLzx8vLCYjFjMpkxmUynb2YUCgUajRq1WoObmwa1Wn36azUaNzc06vbP1Ro1Go1b++dqNSq1Bo1Gg0rd/txzHzWoVGqUKjVqjQaVSoNSrUalOnefSt0edKrTj1eqNKiUapRqDft3v4+1rYm33noRlUpl7/9LIUQnNTY2sfyZF3ln/ftMvXsu8aOmoFTK7+j5uG98pOO2J6itLf7F+202G+XllWfDJz//MEVFRyguPkJLSytR0VHYrFYMBgP19Q00NBjx8PDAz68Pfn6+P7m1f69vX7+f3N8Hf38//Px88fHx/tU3bovFQltbewCZze2B1NZmwmw2nQ6nHweU2Ww+78f/8P5z3zfTZjJhPvO12Yyp7fRHkwlfXx8mXnuV7G0jugyTyUROTj6ZmVnkHCokKLAfUVFaoqK06HRaQkODL2i/l+5g587dzJ+/mIEpaVw5daFcoNlBLgucX1NbW8fhw8dQq9X4+fni7++Lr2+fXnXtyZEjJWzZsoPZs+9xdSmil6qsrCIzM4uMjCwyMg9wKCeP8IhwkgalER6dRGNDLdUVpZSXlaIv0WMwGIiICEOn0xIdHUl0dHsQRUVp0WrDcHfvvteelJdX8te/PsWBA4eYNutJQhJ+7+qSuqUuGTjinKysHA4ezGXatJtdXYrowUwmE7m5hafDJYv9mVnU1dWTkpZK7IB0wuPSCYhMRePxy1tgmNuaaDqlx1Clp7ZST3VFKRUn9BzX6zl5spygoEB0Oi26KC0x0dofjY666rVlFouFtWvfZfny1UyYdDNDr5mFSnPh2yf3Vh0JnN4zvOhCLrrIn/DwUFeXIXqYqqqac6OXjCyys3MJDw9jQEoausRRDJ8wC++A6A6dm1C7eeEbkohvSCIRyT++z2ox0Vx3kvrqEuq+13O4VM/e/2ZzvFTP8dLjeHi4nw2j6Kgfj46CggJcsoxTTk4es2cvRKl2Y8GKDfiGJDi9ht5MRjgutGnTZgyGhg4tcy4EtG9vfHb0kpHF/v1Z1NYaGJSaQtyAdCLi0umnS/vV0Ysj2WxW2oxVNFTrqfteT02lnqqTek6W6SnVl9LS0oo2MoKo0wEU/YPRUXh4qN0PtRuNjTz99Au8995H3HbvfGJH3CSTAuxEDql1EydPVtDa2kpkZESPPzErLkx1dQ0ZGQfOjmAOHswlLKw/SSlp6C5OJyRmCD6BMd3mTdTUUo+xRk99lZ5TlXqqykuoKCultLSUqu+rCA3r3z4a0mmJiYk8e5hOp4vo8JbO27fv4uGHl5CSPpTLb30U9z6BjnlRvZQETjfz1FMriY6O5JZbbnB1KaILMJvN5OUVkpFxgIyMLDL3Z3GqppbklEHEJ6UTHjeYgMg03Lz8XV2qQ1hMLTTVllFfraf2ez3V5SVUniil7LiesuMn8PPzQxelJUoXQXR05NmRUVSUlr59/c8eqjt5soKHH15Cbm4ht896kpD4Ma59YT2UBE43U1NzCk9PTywWCz4+3rJFQS9TU3OqPVgy2wPmwIFD9A8NJmlQOrqEdPrHpNMnKL7bjF4cyWq10FpfcfpQXQnV5XqqyvWcOF6KXl8KgE6nJUIbxr69mUy8cQpDxv9FJgU4kARON3XvvfOZNGkCV1xxqatLEQ5UUlLKZ599xTffZJGZmUV1dc3pcy9phMcPJkCbhru381bs6ClsNium5jqMpycxBGqT6RMU6+qyejwJnG6qqakZT08Pjh0rJSIiFI1G4+qShJ3ZbDYSE0czdOQlxAwYSv+YdHyD4mX1YdFtdSRw5Ex1F+Ll5YlCoeDJJ5+noKCYiorvWbNmvavLEnZUXl6J2Wxi/IyVJIyeil//ARI2wmVa6is5uv8jp/UngdMFrV27iuTkAZjNFtzd3QB46KHH2b59FzabjW+++Y6OjExF15GTk0/igAGy7bBwKauljexPX2XJzKtY/dQCp+0AID/1XVh4eH+mTr0RgIUL5zJq1DDq6gw899zLAGzbtovt23cB7VdPi64vOzsPXZzsgSRcp6JoD/+YezVFB79mx473uPjiOAwn85zSt4zluwl//3MX8G3c+E8AQkODsdls2Gw2UlP/wJ49/6axsZmKikqGDEl1VaniVxzMzmPAsPGuLkP0Qk21x9nx1hIK83NZuvRRxo37AwqFgtTUgVSUZNNPN8ThNcgIpxtLTR1IWloyCoWC//53O337+lNaWkZGRhYACxc+TVHREcxmM0Zjo4urFQC5h/IJ1A50dRmiF7GYmvl22z948i8TSE+9mH37tjN+/Nizl1+kpiZx/GiuU2qRwOkhvL29ALjkkqHMnHknAFdffRkhIUHk5xdx000zAPj8868oLj7qsjp7M4OhgaqqGnz6Rbm6FNFLnMjdyYoHr6D82CF27/6Ihx9+AE9Pjx89JjV1IEV5h5xSjwRODzZq1HB8ffuQnDyALVveBtpnSTU0GDEaG5kwYQo2m42qqhoMhnqn1XVmwsOMGXMpKyt3Wr+uduhQHvEJMgVaOJ6x+igbVtzBu68u5bnnFvP22y+j1Yb/7GMTE+MpOVaCxdTs8LokcHqJM2u13XrrJNLTB+Hu7sayZX9HoVCwZcsO3nxzIwCrVr2OwdDgsDoOHz7GTTfNwGazMW3azYSGBrNlyw5efHGNw/rsKnJy8omJlwkDwnHMbY389+OnWTb7Bi67dCh7925l7Njf/epzPDzciYmNoq7c8RMHJHB6KY1GQ3Jy+37td911Kw88MP3sBAQvLw82b/4PCxY8AUB2di4NDcYL6u/bbw+yZ88+oqMjWbq0PehGjRqGUqlk5MghXHnl77FYLEyePN2poy1nOngwj7CoAa4uQ/RANpuVkqzNPH3/WIynyvjyy83MmnU3bm5u5/X8lJSBfF/i+MNqEjjiLIVCwezZ96DRaBg3bizz5s0EYN26DRw/fpITJ8pZuvQfQPsCk+ejsrIKs9lMS0srTU3NKJVKYmN/fA4jIKAf8fExKJVK5s27Hz8/X9ate/fsqKunyM7JJ0grIxxhX/UVBbz51C1sWf8ir732LP9843lCQ0M61EZaahLHj+Q4qMJzJHDEz9JoNAQFBQCwcuUSBgyIx93djdTU9l245s59jPff34LNZuPjj7djtVp/tp0FCxbz3Xc5jBo1jKuv/sOv9qlQKBg2LA2Aa665gt///hIaG5uYOPE22tra7PjqnK+1tZWjR47Jhl/CrvJ3v84z82/m+olX8MUXHzNq1LBOtZOSkkRRvuNHOHL2Upy3gIB+jB8/FmgPIbPZTEODkc8++5Lrrx/Hpk2bsVgsTJhwJdOmPcBbb73MunWrO7XXz5mws1qtLFnyCG5ubjz77EvExkZz/fXj7Pq6nKGg4DCRkVrUbrJqsbCP6mMZrHtlFZmZOwkOvrA9fpKSEjh65BgWU7NDV9aWEY7oFJVKhbu7O76+fVi9eikAQ4emkp4+CB8fb/72t9l4eLhf8MZySqWSlJT2w1BTp97IyJFDqKys4vrr7+hWy/tkZ+cRlyiH04R92GxWPl63jOXLF15w2AB4enoQFa3DUFFoh+p+mQSOsBudTkt8fAwA6emD7L6vT0hIEMHBgQQEXMSyZY+iUCh45JElfPbZl3btxxGyc/KJiJYJA8I+ynJ20NzUyOTJ19mtzdSUJCpLHHseRwJHdDsqlYrExDgAHnxwBoMHp1BQUMyUKfe5uLJzbDYbBQXtW3kUFh5mzxf7CI6UEY64cFaLiY1rnmHRovmoVPbblC81dSBlRyVwhPhFoaEh+Pn5EhcXzRNPPAzA9Olz2L//gMP6PLNQ6p49+2hpaeXIkRJeeWUdAIsXP8umTZsBuPvuh2htbaWtzURTUzMad2+H1SR6j6J97xESHMTll9t3y+yUlCSKHbzigASO6BFUKhUxMToAFi9eQFJSAl999Q0zZy4AOO/zPc3NLdTW1gGwdetOqqpqOHGinDlzFgKwfPkLrFz5KgAbNnyEwVCPt7cXYWH9AZg5807Gj78chULBnj2bcXd3Jzk5kYsTYmluqLbnSxa9kLmtkffWruaJJxbY/ZD1wIEJHD58BKu51a7t/pAEjuhxwsL64+npwYgRg3nkkVkA3HDDNIqLj1JXZ6Co6AgAGzf+m4KCYozGRq68cjIAH364lRdfXAu0r4pgNBrp29efiROvAmDu3Ht56KH265NefvkZgoMDCQkJYuLEqwEIDOx3dl27HwoOCsBoqHLsCxc93sFP32DEyCGkpSXbvW0vL090Oi31lY6bOCDTokWPpVar0WrDAFi9ehlhYSHs3ZvJJ598weLFC3B3d0OpVOLt7cVzzy3CZrMxZcqfzj5/9ux7zn5+2WWjATq97XdQUADGOgkc0Xmtxmo+fOdffPrpJof1kZKSREVJDv5hgxzSvgSO6BUiIkIBGD16OKNHDwfguuvOXc9zZpkfRwkODqD8UKlD+xA9277Nq5j0pwlERUU6rI/U1CQyD+SQMMox7cshNSGcICgoEEOtnMMRnWNua+LjTRuYP+9+h/aTkjKQwwWO2xtHAkcIJwgKCuBUjQSO6ByVxgOtNoJjxxw7Sk5OTqS4qBirxTFLSUngCOEEQUEBVFfJORzROQqFkt9dcS0ffLDVof14e3sRERFGfUWRQ9qXwBHCCYKDA6mqkhGO6LyEYdfy8cfbz14H5igeHh4YG2od0rYEjhBO4Ovbh7a2Nqfsqih6pj5BsQQFBbJ3b6bD+vjuu2xO1dYRFjfSIe1L4AjhBAqFgsDAAFqNclhNdN6osRN434GH1V577S3G3zDFYdugS+AI4SRBQQE010vgiM6LHzaRrVt2YjKZ7N52VVUNO3Z8xoDRt9i97TMUHVniXaFQdJ/14IUQQjiD3maz6c7ngR0KHCGEEKKz5JCaEEIIp5DAEUII4RQSOEIIIZxCAkcIIYRTSOAIIYRwCgkcIYQQTiGBI4QQwikkcIQQQjiFBI4QQgin+D+1HfOEBZ2kAwAAAABJRU5ErkJggg==\n", "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}], "source": ["import cartopy.crs as ccrs\n", "import cartopy.feature as cfeature\n", "import matplotlib.pyplot as plt\n", "\n", "fig = plt.figure(figsize=(7,7))\n", "ax = fig.add_subplot(1, 1, 1, projection=ccrs.PlateCarree())\n", "ax.set_extent([-5, 10, 42, 52])\n", "\n", "ax.add_feature(cfeature.OCEAN)\n", "ax.add_feature(cfeature.COASTLINE)\n", "ax.add_feature(cfeature.RIVERS)\n", "ax.add_feature(cfeature.LAKES)\n", "ax.add_feature(cfeature.LAND)\n", "ax.add_feature(cfeature.BORDERS, linestyle=':')\n", "ax.plot([2.35, 2.20], [48.85, 48.71], '.')\n", "ax.text(2.35, 48.85, \"Paris\")\n", "ax.text(2.20, 48.71, \"Saclay\", ha=\"right\")\n", "ax.set_title('France');"]}, {"cell_type": "code", "execution_count": 4, "metadata": {"collapsed": true}, "outputs": [], "source": []}], "metadata": {"kernelspec": {"display_name": "Python 3", "language": "python", "name": "python3"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.0"}}, "nbformat": 4, "nbformat_minor": 2}