.. _neuraltreeonnxrst: ===================== NeuralTreeNet et ONNX ===================== .. only:: html **Links:** :download:`notebook `, :downloadlink:`html `, :download:`PDF `, :download:`python `, :downloadlink:`slides `, :githublink:`GitHub|_doc/notebooks/ml/neural_tree_onnx.ipynb|*` La conversion d’un arbre de décision au format ONNX peut créer des différences entre le modèle original et le modèle converti (voir `Issues when switching to float `__. Le problème vient d’un changement de type, les seuils de décisions sont arrondis au float32 le plus proche de leur valeur en float64 (double). Qu’advient-il si l’arbre de décision est converti en réseau de neurones d’abord. L’approximation des seuils de décision ne change pas grand chose dans la majorité des cas. Cependant, il est possible que la comparaison d’une variable à un seuil de décision arrondi soit l’opposé de celle avec le seuil non arrondi. Dans ce cas, la décision suit un chemin différent dans l’arbre. .. code:: ipython3 from jyquickhelper import add_notebook_menu add_notebook_menu() .. contents:: :local: .. code:: ipython3 %matplotlib inline .. code:: ipython3 %load_ext mlprodict Jeu de données -------------- On construit un jeu de donnée aléatoire. .. code:: ipython3 import numpy X = numpy.random.randn(10000, 10) y = X.sum(axis=1) / X.shape[1] X = X.astype(numpy.float64) y = y.astype(numpy.float64) .. code:: ipython3 middle = X.shape[0] // 2 X_train, X_test = X[:middle], X[middle:] y_train, y_test = y[:middle], y[middle:] Partie scikit-learn ------------------- Caler un arbre de décision ~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code:: ipython3 from sklearn.tree import DecisionTreeRegressor tree = DecisionTreeRegressor(max_depth=7) tree.fit(X_train, y_train) tree.score(X_train, y_train), tree.score(X_test, y_test) .. parsed-literal:: (0.6179766027481131, 0.33709933420465643) .. code:: ipython3 from sklearn.metrics import r2_score r2_score(y_test, tree.predict(X_test)) .. parsed-literal:: 0.33709933420465643 La profondeur de l’arbre est insuffisante mais ce n’est pas ce qui nous intéresse ici. Conversion au format ONNX ~~~~~~~~~~~~~~~~~~~~~~~~~ .. code:: ipython3 from mlprodict.onnx_conv import to_onnx onx = to_onnx(tree, X[:1].astype(numpy.float32)) .. code:: ipython3 from mlprodict.onnxrt import OnnxInference x_exp = X_test oinf = OnnxInference(onx, runtime='onnxruntime1') expected = tree.predict(x_exp) got = oinf.run({'X': x_exp.astype(numpy.float32)})['variable'] numpy.abs(got - expected).max() .. parsed-literal:: 1.7421041873949668 .. code:: ipython3 from mlprodict.plotting.text_plot import onnx_simple_text_plot print(onnx_simple_text_plot(onx)) .. parsed-literal:: opset: domain='ai.onnx.ml' version=1 opset: domain='' version=15 input: name='X' type=dtype('float32') shape=[None, 10] TreeEnsembleRegressor(X, n_targets=1, nodes_falsenodeids=253:[128,65,34...252,0,0], nodes_featureids=253:[8,3,9...2,0,0], nodes_hitrates=253:[1.0,1.0...1.0,1.0], nodes_missing_value_tracks_true=253:[0,0,0...0,0,0], nodes_modes=253:[b'BRANCH_LEQ',b'BRANCH_LEQ'...b'LEAF',b'LEAF'], nodes_nodeids=253:[0,1,2...250,251,252], nodes_treeids=253:[0,0,0...0,0,0], nodes_truenodeids=253:[1,2,3...251,0,0], nodes_values=253:[0.00792999193072319,-0.12246682494878769...0.0,0.0], post_transform=b'NONE', target_ids=127:[0,0,0...0,0,0], target_nodeids=127:[7,8,10...249,251,252], target_treeids=127:[0,0,0...0,0,0], target_weights=127:[-0.9345570802688599,-0.6372960805892944...0.6169403195381165,1.0096807479858398]) -> variable output: name='variable' type=dtype('float32') shape=[None, 1] Après la conversion en un réseau de neurones -------------------------------------------- Conversion en un réseau de neurones ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Un paramètre permet de faire varier la pente des fonctions sigmoïdes utilisées. .. code:: ipython3 from tqdm import tqdm from pandas import DataFrame from mlstatpy.ml.neural_tree import NeuralTreeNet xe = x_exp[:500] expected = tree.predict(xe) data = [] trees = {} for i in tqdm([0.3, 0.4, 0.5, 0.7, 0.9, 1] + list(range(5, 61, 5))): root = NeuralTreeNet.create_from_tree(tree, k=i, arch='compact') got = root.predict(xe)[:, -1] me = numpy.abs(got - expected).mean() mx = numpy.abs(got - expected).max() obs = dict(k=i, max=mx, mean=me) data.append(obs) trees[i] = root .. parsed-literal:: 100%|██████████| 18/18 [00:01<00:00, 12.49it/s] .. code:: ipython3 df = DataFrame(data) df .. raw:: html
k max mean
0 0.3 0.568981 0.158758
1 0.4 0.608304 0.132576
2 0.5 0.692657 0.128525
3 0.7 0.780543 0.131497
4 0.9 0.809866 0.128368
5 1.0 0.813889 0.124802
6 5.0 0.392482 0.022466
7 10.0 0.341749 0.006350
8 15.0 0.270649 0.002939
9 20.0 0.299713 0.002110
10 25.0 0.305493 0.001842
11 30.0 0.306111 0.001767
12 35.0 0.299371 0.001665
13 40.0 0.233556 0.001011
14 45.0 0.233606 0.000801
15 50.0 0.233614 0.000547
16 55.0 0.233615 0.000499
17 60.0 0.233615 0.000484
.. code:: ipython3 df.set_index('k').plot(title="Précision de la conversion\nen réseau de neurones"); .. image:: neural_tree_onnx_20_0.png L’erreur est meilleure mais il faudrait recommencer l’expérience plusieurs fois avant de pouvoir conclure afin d’obtenir un interval de confiance pour le même type de jeu de données. Ce sera pour une autre fois. Le résultat dépend du jeu de données et surtout de la proximité des seuils de décisions. Néanmoins, on calcule l’erreur sur l’ensemble de la base de test. Celle-ci a été tronquée pour aller plus vite. .. code:: ipython3 expected = tree.predict(x_exp) got = trees[50].predict(x_exp)[:, -1] numpy.abs(got - expected).max(), numpy.abs(got - expected).mean() .. parsed-literal:: (0.2336143002078063, 0.0002511855017989173) On voit que l’erreur peut-être très grande. Elle reste néanmoins plus petite que l’erreur de conversion introduite par ONNX. Conversion au format ONNX ~~~~~~~~~~~~~~~~~~~~~~~~~ On crée tout d’abord une classe qui suit l’API de scikit-learn et qui englobe l’arbre qui vient d’être créé qui sera ensuite convertit en ONNX. .. code:: ipython3 from mlstatpy.ml.neural_tree import NeuralTreeNetRegressor reg = NeuralTreeNetRegressor(trees[50]) onx2 = to_onnx(reg, X[:1].astype(numpy.float32)) .. code:: ipython3 print(onnx_simple_text_plot(onx2)) .. parsed-literal:: opset: domain='' version=15 input: name='X' type=dtype('float32') shape=[None, 10] init: name='Ma_MatMulcst' type=dtype('float32') shape=(1260,) init: name='Ad_Addcst' type=dtype('float32') shape=(126,) init: name='Mu_Mulcst' type=dtype('float32') shape=(1,) -- array([4.], dtype=float32) init: name='Ma_MatMulcst1' type=dtype('float32') shape=(16002,) init: name='Ad_Addcst1' type=dtype('float32') shape=(127,) init: name='Ma_MatMulcst2' type=dtype('float32') shape=(127,) init: name='Ad_Addcst2' type=dtype('float32') shape=(1,) -- array([0.], dtype=float32) MatMul(X, Ma_MatMulcst) -> Ma_Y02 Add(Ma_Y02, Ad_Addcst) -> Ad_C02 Mul(Ad_C02, Mu_Mulcst) -> Mu_C01 Sigmoid(Mu_C01) -> Si_Y01 MatMul(Si_Y01, Ma_MatMulcst1) -> Ma_Y01 Add(Ma_Y01, Ad_Addcst1) -> Ad_C01 Mul(Ad_C01, Mu_Mulcst) -> Mu_C0 Sigmoid(Mu_C0) -> Si_Y0 MatMul(Si_Y0, Ma_MatMulcst2) -> Ma_Y0 Add(Ma_Y0, Ad_Addcst2) -> Ad_C0 Identity(Ad_C0) -> variable output: name='variable' type=dtype('float32') shape=[None, 1] .. code:: ipython3 oinf2 = OnnxInference(onx2, runtime='onnxruntime1') expected = tree.predict(x_exp) got = oinf2.run({'X': x_exp.astype(numpy.float32)})['variable'] numpy.abs(got - expected).max() .. parsed-literal:: 1.7421041873949668 L’erreur est la même. Temps de calcul --------------- .. code:: ipython3 x_exp32 = x_exp.astype(numpy.float32) Tout d’abord le temps de calcul pour scikit-learn. .. code:: ipython3 %timeit tree.predict(x_exp32) .. parsed-literal:: 513 µs ± 7.52 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each) Le temps de calcul pour l’arbre de décision au format ONNX. .. code:: ipython3 %timeit oinf.run({'X': x_exp32})['variable'] .. parsed-literal:: 186 µs ± 3.41 µs per loop (mean ± std. dev. of 7 runs, 10,000 loops each) Et le temps de calcul pour le réseau de neurones au format ONNX.m .. code:: ipython3 %timeit oinf2.run({'X': x_exp32})['variable'] .. parsed-literal:: 3.75 ms ± 311 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) Ce temps de calcul très long est attendu car le modèle contient une multiplication de matrice très grande et surtout que tous les seuils de l’arbre sont calculés pour chaque observation. Là où l’implémentation de l’arbre de décision calcule *d* seuils, la profondeur de l’arbre, la nouvelle implémentation calcule tous les seuils soit :math:`2^d` pour chaque feuille. Il y a :math:`2^d` feuilles. Même en étant sparse, on peut réduire les calculs à :math:`d * 2^d` ce qui fait encore beaucoup de calculs inutiles. .. code:: ipython3 for node in trees[50].nodes: print(node.coef.shape, node.bias.shape) .. parsed-literal:: (126, 11) (126,) (127, 127) (127,) (128,) () Cela dit, la plus grande matrice est creuse, elle peut être réduite considérablement. .. code:: ipython3 from scipy.sparse import csr_matrix for node in trees[50].nodes: csr = csr_matrix(node.coef) print(f"coef.shape={node.coef.shape}, size dense={node.coef.size}, " f"size sparse={csr.size}, ratio={csr.size / node.coef.size}") .. parsed-literal:: coef.shape=(126, 11), size dense=1386, size sparse=252, ratio=0.18181818181818182 coef.shape=(127, 127), size dense=16129, size sparse=1015, ratio=0.06293012586025172 coef.shape=(128,), size dense=128, size sparse=127, ratio=0.9921875 .. code:: ipython3 r = numpy.random.randn(trees[50].nodes[1].coef.shape[0]) mat = trees[50].nodes[1].coef %timeit mat @ r .. parsed-literal:: 49.8 µs ± 1.25 µs per loop (mean ± std. dev. of 7 runs, 10,000 loops each) .. code:: ipython3 csr = csr_matrix(mat) %timeit csr @ r .. parsed-literal:: 7.08 µs ± 173 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each) Ce serait beaucoup plus rapide avec une matrice sparse et d’autant plus rapide que l’arbre est profond. Le modèle ONNX se décompose comme suit. .. code:: ipython3 print(onnx_simple_text_plot(onx2)) .. parsed-literal:: opset: domain='' version=15 input: name='X' type=dtype('float32') shape=[None, 10] init: name='Ma_MatMulcst' type=dtype('float32') shape=(1260,) init: name='Ad_Addcst' type=dtype('float32') shape=(126,) init: name='Mu_Mulcst' type=dtype('float32') shape=(1,) -- array([4.], dtype=float32) init: name='Ma_MatMulcst1' type=dtype('float32') shape=(16002,) init: name='Ad_Addcst1' type=dtype('float32') shape=(127,) init: name='Ma_MatMulcst2' type=dtype('float32') shape=(127,) init: name='Ad_Addcst2' type=dtype('float32') shape=(1,) -- array([0.], dtype=float32) MatMul(X, Ma_MatMulcst) -> Ma_Y02 Add(Ma_Y02, Ad_Addcst) -> Ad_C02 Mul(Ad_C02, Mu_Mulcst) -> Mu_C01 Sigmoid(Mu_C01) -> Si_Y01 MatMul(Si_Y01, Ma_MatMulcst1) -> Ma_Y01 Add(Ma_Y01, Ad_Addcst1) -> Ad_C01 Mul(Ad_C01, Mu_Mulcst) -> Mu_C0 Sigmoid(Mu_C0) -> Si_Y0 MatMul(Si_Y0, Ma_MatMulcst2) -> Ma_Y0 Add(Ma_Y0, Ad_Addcst2) -> Ad_C0 Identity(Ad_C0) -> variable output: name='variable' type=dtype('float32') shape=[None, 1] Voyons comment le temps de calcul se répartit. .. code:: ipython3 oinfpr = OnnxInference(onx2, runtime="onnxruntime1", runtime_options={"enable_profiling": True}) for i in range(0, 43): oinfpr.run({"X": x_exp32}) .. code:: ipython3 df = oinfpr.get_profiling(as_df=True) df .. raw:: html
cat pid tid dur ts ph name args_op_name args_parameter_size args_graph_index args_provider args_exec_plan_index args_activation_size args_output_size args_input_type_shape args_output_type_shape args_thread_scheduling_stats
0 Session 78116 8820 387 4 X model_loading_array NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1 Session 78116 8820 2532 428 X session_initialization NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2 Node 78116 8820 0 3294 X gemm_fence_before Gemm NaN NaN NaN NaN NaN NaN NaN NaN NaN
3 Node 78116 8820 1315 3300 X gemm_kernel_time Gemm 5544 11 CPUExecutionProvider 11 200000 2520000 [{'float': [5000, 10]}, {'float': [10, 126]}, ... [{'float': [5000, 126]}] {'main_thread': {'thread_pool_name': 'session-...
4 Node 78116 8820 0 4635 X gemm_fence_after Gemm NaN NaN NaN NaN NaN NaN NaN NaN NaN
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
986 Node 78116 8820 0 210170 X Ma_MatMul2_fence_before MatMul NaN NaN NaN NaN NaN NaN NaN NaN NaN
987 Node 78116 8820 124 210172 X Ma_MatMul2_kernel_time MatMul 508 8 CPUExecutionProvider 8 2540000 20000 [{'float': [5000, 127]}, {'float': [127, 1]}] [{'float': [5000, 1]}] {'main_thread': {'thread_pool_name': 'session-...
988 Node 78116 8820 0 210305 X Ma_MatMul2_fence_after MatMul NaN NaN NaN NaN NaN NaN NaN NaN NaN
989 Session 78116 8820 4378 205930 X SequentialExecutor::Execute NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
990 Session 78116 8820 4388 205925 X model_run NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

991 rows × 17 columns

.. code:: ipython3 set(df['args_provider']) .. parsed-literal:: {'CPUExecutionProvider', nan} .. code:: ipython3 dfp = df[df.args_provider == 'CPUExecutionProvider'].copy() dfp['name'] = dfp['name'].apply(lambda s: s.replace("_kernel_time", "")) gr_dur = dfp[['dur', "args_op_name", "name"]].groupby(["args_op_name", "name"]).sum().sort_values('dur') gr_dur .. raw:: html
dur
args_op_name name
MatMul Ma_MatMul2 6778
Mul Mu_Mul 12923
Sigmoid Si_Sigmoid 14849
Mul Mu_Mul1 15151
Sigmoid Si_Sigmoid1 15608
Gemm gemm 31763
gemm_token_0 99047
.. code:: ipython3 gr_n = dfp[['dur', "args_op_name", "name"]].groupby(["args_op_name", "name"]).count().sort_values('dur') gr_n = gr_n.loc[gr_dur.index, :] gr_n .. raw:: html
dur
args_op_name name
MatMul Ma_MatMul2 43
Mul Mu_Mul 43
Sigmoid Si_Sigmoid 43
Mul Mu_Mul1 43
Sigmoid Si_Sigmoid1 43
Gemm gemm 43
gemm_token_0 43
.. code:: ipython3 import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 2, figsize=(12, 4)) gr_dur.plot.barh(ax=ax[0]) gr_n.plot.barh(ax=ax[1]) ax[0].set_title("duration") ax[1].set_title("n occurences"); .. image:: neural_tree_onnx_51_0.png onnxruntime passe principalement son temps dans un produit matriciel. On vérifie plus précisément. .. code:: ipython3 df[(df.args_op_name == 'Gemm') & (df.dur > 0)].sort_values('dur', ascending=False).head(n=2).T .. raw:: html
127 12
cat Node Node
pid 78116 78116
tid 8820 8820
dur 4603 4083
ts 37173 5949
ph X X
name gemm_token_0_kernel_time gemm_token_0_kernel_time
args_op_name Gemm Gemm
args_parameter_size 64516 64516
args_graph_index 12 12
args_provider CPUExecutionProvider CPUExecutionProvider
args_exec_plan_index 12 12
args_activation_size 2520000 2520000
args_output_size 2540000 2540000
args_input_type_shape [{'float': [5000, 126]}, {'float': [126, 127]}... [{'float': [5000, 126]}, {'float': [126, 127]}...
args_output_type_shape [{'float': [5000, 127]}] [{'float': [5000, 127]}]
args_thread_scheduling_stats {'main_thread': {'thread_pool_name': 'session-... {'main_thread': {'thread_pool_name': 'session-...
C’est un produit matriciel d’environ *5000x800* par *800x800*. .. code:: ipython3 gr_dur / gr_dur.dur.sum() .. raw:: html
dur
args_op_name name
MatMul Ma_MatMul2 0.034561
Mul Mu_Mul 0.065894
Sigmoid Si_Sigmoid 0.075714
Mul Mu_Mul1 0.077254
Sigmoid Si_Sigmoid1 0.079584
Gemm gemm 0.161958
gemm_token_0 0.505035
.. code:: ipython3 r = (gr_dur / gr_dur.dur.sum()).dur.max() r .. parsed-literal:: 0.5050352082154203 Il occupe 82% du temps. et d’après l’expérience précédente, son temps d’éxecution peut-être réduit par 10 en le remplaçant par une matrice sparse. Cela ne suffira pas pour accélerer le temps de calcul de ce réseau de neurones. Il est 84 ms comparé à 247 µs pour l’arbre de décision. Avec cette optimisation, il pourrait passer de : .. code:: ipython3 t = 3.75 # ms t * (1 - r) + r * t / 12 .. parsed-literal:: 2.013941471759493 Soit une réduction du temps de calcul. Ce n’est pas mal mais pas assez. Hummingbird ----------- `hummingbird `__ est une librairie qui convertit un arbre de décision en réseau de neurones. Voyons ses performances. .. code:: ipython3 from hummingbird.ml import convert model = convert(tree, 'torch') expected = tree.predict(x_exp) got = model.predict(x_exp) numpy.abs(got - expected).max(), numpy.abs(got - expected).mean() .. parsed-literal:: C:\xavierdupre\__home_\github_fork\scikit-learn\sklearn\utils\deprecation.py:103: FutureWarning: The attribute `n_features_` is deprecated in 1.0 and will be removed in 1.2. Use `n_features_in_` instead. warnings.warn(msg, category=FutureWarning) .. parsed-literal:: (4.3419181139370266e-08, 4.430287026515114e-09) Le résultat est beaucoup plus fidèle au modèle. .. code:: ipython3 %timeit model.predict(x_exp) .. parsed-literal:: 1.17 ms ± 34.8 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each) Il reste plus lent mais beaucoup plus rapide que la solution manuelle proposée dans les précédents paragraphes. Il contient un attribut ``model``. .. code:: ipython3 from torch.nn import Module isinstance(model.model, Module) .. parsed-literal:: True On convertit ce modèle au format ONNX. .. code:: ipython3 import torch.onnx x = torch.randn(x_exp.shape[0], x_exp.shape[1], requires_grad=True) torch.onnx.export(model.model, x, 'tree_torch.onnx', opset_version=15, input_names=['X'], output_names=['variable'], dynamic_axes={ 'X' : {0 : 'batch_size'}, 'variable' : {0 : 'batch_size'}}) .. code:: ipython3 import onnx onxh = onnx.load('tree_torch.onnx') .. code:: ipython3 print(onnx_simple_text_plot(onxh, raise_exc=False)) .. parsed-literal:: opset: domain='' version=15 input: name='X' type=dtype('float32') shape=['batch_size', 10] init: name='_operators.0.root_nodes' type=dtype('int64') shape=(0,) -- array([8], dtype=int64) init: name='_operators.0.root_biases' type=dtype('float32') shape=(0,) -- array([0.00792999], dtype=float32) init: name='_operators.0.tree_indices' type=dtype('int64') shape=(0,) -- array([0], dtype=int64) init: name='_operators.0.leaf_nodes' type=dtype('float32') shape=(0,) -- array([ 1.0096807 , 0.6169403 , 0.61055773, 0.37810475, 0.31796893, 0.13317925, 0.0193846 , -0.2317742 , 0.39089343, 0.23506087, 0.3711936 , 0.10317916, 0.14956598, -0.14193445, -0.05965868, -0.27377078, 0.4128183 , 0.19658326, 0.25545415, 0.08118545, 0.08400188, -0.1502193 , -0.36846825, -0.79687625, 0.35822242, 0.49021915, 0.30870998, 0.01033915, 0.6740977 , 0.6740977 , -0.15315758, -0.41128033, 0.42920846, 0.13145493, 0.21853392, -0.10986731, 0.4493652 , 0.11318789, 0.12666471, -0.0623082 , 0.2872893 , 0.09948976, 0.11439473, -0.08801427, 0.16091613, -0.02319027, -0.10097775, -0.37583745, 0.18612385, -0.00453244, 0.3287116 , -0.1499349 , 0.7919218 , 0.04704398, -0.15423109, -0.43160027, 0.10802375, -0.1073833 , -0.07759219, -0.29175794, -0.1528881 , -0.4909434 , -0.23361537, -0.43578717, 0.7831867 , 0.45349318, 0.34956965, -0.3199535 , 0.3061573 , -0.34267113, 0.34963542, 0.04491445, 0.35399815, 0.14815213, 0.06678926, -0.16095412, 0.3214274 , 0.01484008, -0.1012276 , -0.3257699 , 0.26727676, 0.01970094, 0.10760042, -0.09169976, 0.20044112, -0.0324069 , -0.11015374, -0.28358367, 0.8083656 , 0.13358633, -0.07912118, -0.27182895, -0.07054728, -0.24895027, -0.20600456, -0.42033467, 0.34701794, -0.0638995 , 0.14252576, -0.06025055, 0.4228329 , 0.06789401, 0.03919645, -0.17267554, 0.07274943, -0.487512 , 0.04517636, -0.18857062, -0.03975222, -0.2652712 , -0.30853328, -0.50844556, 0.03321444, -0.15481217, -0.20701212, -0.40578464, -0.25884995, -0.46550158, -0.4797585 , -0.7324234 , 0.43939307, -0.06170902, -0.51546025, -0.19215119, -0.3705445 , -0.57504356, -0.6372961 , -0.9345571 ], dtype=float32) init: name='_operators.0.nodes.0' type=dtype('int64') shape=(0,) -- array([0, 3], dtype=int64) init: name='_operators.0.nodes.1' type=dtype('int64') shape=(0,) -- array([1, 2, 5, 9], dtype=int64) init: name='_operators.0.nodes.2' type=dtype('int64') shape=(0,) -- array([5, 6, 3, 7, 2, 0, 7, 1], dtype=int64) init: name='_operators.0.nodes.3' type=dtype('int64') shape=(0,) -- array([3, 9, 5, 3, 6, 4, 1, 3, 6, 6, 1, 6, 5, 4, 6, 2], dtype=int64) init: name='_operators.0.nodes.4' type=dtype('int64') shape=(0,) -- array([3, 2, 7, 6, 2, 4, 7, 8, 9, 5, 7, 8, 9, 4, 6, 9, 7, 9, 0, 7, 7, 9, 2, 7, 6, 4, 6, 5, 4, 0, 6, 0], dtype=int64) init: name='_operators.0.nodes.5' type=dtype('int64') shape=(0,) -- array([2, 8, 7, 6, 6, 3, 4, 9, 7, 3, 2, 6, 3, 3, 0, 1, 1, 0, 4, 7, 9, 5, 7, 9, 5, 3, 5, 9, 0, 5, 1, 4, 9, 4, 7, 7, 1, 9, 1, 1, 6, 2, 7, 7, 6, 1, 4, 4, 0, 0, 9, 8, 8, 2, 6, 2, 0, 3, 4, 2, 5, 6, 7, 3], dtype=int64) init: name='_operators.0.biases.0' type=dtype('float32') shape=(0,) -- array([ 0.19169255, -0.12246682], dtype=float32) init: name='_operators.0.biases.1' type=dtype('float32') shape=(0,) -- array([-0.40610337, -0.1467492 , -0.01880287, 0.15879431], dtype=float32) init: name='_operators.0.biases.2' type=dtype('float32') shape=(0,) -- array([ 0.736786 , -0.32427853, 0.30860555, 0.17994082, 0.6917758 , -0.00594712, 0.35950053, -0.9819274 ], dtype=float32) init: name='_operators.0.biases.3' type=dtype('float32') shape=(0,) -- array([-1.3495584 , -1.082793 , -0.6906011 , -0.08978076, -0.4007622 , 0.10756078, -0.68507075, 0.15814054, 0.5132364 , -0.18426335, 0.13685235, 0.10721841, 0.01814443, -0.41644228, -0.59770894, 0.607365 ], dtype=float32) init: name='_operators.0.biases.4' type=dtype('float32') shape=(0,) -- array([ 1.4203796 , -0.49269757, -0.12210988, -0.09692484, 0.5076643 , -1.3609421 , 1.154743 , 2.8748922 , -0.08181615, 0.7741028 , 0.20604724, 0.666296 , -0.6474025 , 0.6459148 , 0.02262808, -0.42282397, 0.46360654, -0.10058792, 0.25486696, 0.60041225, -0.06933744, 0.21294908, 0.96443814, 0.07923891, 0.4797698 , 1.2852331 , 0.24348404, -0.3404966 , -0.07175394, -0.8248828 , -0.74071133, -1.2140133 ], dtype=float32) init: name='_operators.0.biases.5' type=dtype('float32') shape=(0,) -- array([ 1.0626682 , 1.4745288 , 0.01898679, 0.5451088 , 0.15444604, 1.0631477 , -0.7555804 , -1.7192128 , -0.20905146, 0.19752283, -0.40471953, 0.13069782, 0.60331047, 1.5060809 , 0. , -1.8283446 , -0.8124372 , -1.381897 , 0.59209645, 0.3239226 , -0.42840806, -0.43624896, 0.58229303, -1.0196047 , -0.5632828 , 0.91483426, 1.8038778 , -0.5665638 , -1.2530733 , -0.6500004 , -1.3069727 , 0.48267984, 0.73503745, -1.871724 , -1.4965518 , 1.3147466 , 0.03919952, -0.885836 , 0.5479692 , -0.8086383 , -0.74240863, 0.14582941, 0.6496967 , -0.00911551, 2.4541488 , -0.90482277, 0.26108736, 0.7569448 , -1.0786855 , -0.45229852, 1.2146595 , -0.6756766 , -2.3066258 , 0.7911504 , 0.57490873, -0.40741247, 0.24633038, -1.2022957 , -0.65162694, -0.04244827, 1.558136 , -1.6220782 , 0.1574643 , -1.4209061 ], dtype=float32) Constant(value=[-1]) -> onnx::Reshape_27 Gather(X, _operators.0.root_nodes, axis=1) -> onnx::LessOrEqual_17 LessOrEqual(onnx::LessOrEqual_17, _operators.0.root_biases) -> onnx::Cast_18 Cast(onnx::Cast_18, to=7) -> onnx::Add_19 Add(onnx::Add_19, _operators.0.tree_indices) -> onnx::Reshape_20 Constant(value=[-1]) -> onnx::Reshape_21 Reshape(onnx::Reshape_20, onnx::Reshape_21, allowzero=0) -> onnx::Gather_22 Gather(_operators.0.nodes.0, onnx::Gather_22, axis=0) -> onnx::Reshape_23 Constant(value=[-1, 1]) -> onnx::Reshape_24 Reshape(onnx::Reshape_23, onnx::Reshape_24, allowzero=0) -> onnx::GatherElements_25 GatherElements(X, onnx::GatherElements_25, axis=1) -> onnx::Reshape_26 Reshape(onnx::Reshape_26, onnx::Reshape_27, allowzero=0) -> onnx::LessOrEqual_28 Constant(value=2) -> onnx::Mul_29 Mul(onnx::Gather_22, onnx::Mul_29) -> onnx::Add_30 Gather(_operators.0.biases.0, onnx::Gather_22, axis=0) -> onnx::LessOrEqual_31 LessOrEqual(onnx::LessOrEqual_28, onnx::LessOrEqual_31) -> onnx::Cast_32 Cast(onnx::Cast_32, to=7) -> onnx::Add_33 Add(onnx::Add_30, onnx::Add_33) -> onnx::Gather_34 Gather(_operators.0.nodes.1, onnx::Gather_34, axis=0) -> onnx::Reshape_35 Constant(value=[-1, 1]) -> onnx::Reshape_36 Reshape(onnx::Reshape_35, onnx::Reshape_36, allowzero=0) -> onnx::GatherElements_37 GatherElements(X, onnx::GatherElements_37, axis=1) -> onnx::Reshape_38 Constant(value=[-1]) -> onnx::Reshape_39 Reshape(onnx::Reshape_38, onnx::Reshape_39, allowzero=0) -> onnx::LessOrEqual_40 Constant(value=2) -> onnx::Mul_41 Mul(onnx::Gather_34, onnx::Mul_41) -> onnx::Add_42 Gather(_operators.0.biases.1, onnx::Gather_34, axis=0) -> onnx::LessOrEqual_43 LessOrEqual(onnx::LessOrEqual_40, onnx::LessOrEqual_43) -> onnx::Cast_44 Cast(onnx::Cast_44, to=7) -> onnx::Add_45 Add(onnx::Add_42, onnx::Add_45) -> onnx::Gather_46 Gather(_operators.0.nodes.2, onnx::Gather_46, axis=0) -> onnx::Reshape_47 Constant(value=[-1, 1]) -> onnx::Reshape_48 Reshape(onnx::Reshape_47, onnx::Reshape_48, allowzero=0) -> onnx::GatherElements_49 GatherElements(X, onnx::GatherElements_49, axis=1) -> onnx::Reshape_50 Constant(value=[-1]) -> onnx::Reshape_51 Reshape(onnx::Reshape_50, onnx::Reshape_51, allowzero=0) -> onnx::LessOrEqual_52 Constant(value=2) -> onnx::Mul_53 Mul(onnx::Gather_46, onnx::Mul_53) -> onnx::Add_54 Gather(_operators.0.biases.2, onnx::Gather_46, axis=0) -> onnx::LessOrEqual_55 LessOrEqual(onnx::LessOrEqual_52, onnx::LessOrEqual_55) -> onnx::Cast_56 Cast(onnx::Cast_56, to=7) -> onnx::Add_57 Add(onnx::Add_54, onnx::Add_57) -> onnx::Gather_58 Gather(_operators.0.nodes.3, onnx::Gather_58, axis=0) -> onnx::Reshape_59 Constant(value=[-1, 1]) -> onnx::Reshape_60 Reshape(onnx::Reshape_59, onnx::Reshape_60, allowzero=0) -> onnx::GatherElements_61 GatherElements(X, onnx::GatherElements_61, axis=1) -> onnx::Reshape_62 Constant(value=[-1]) -> onnx::Reshape_63 Reshape(onnx::Reshape_62, onnx::Reshape_63, allowzero=0) -> onnx::LessOrEqual_64 Constant(value=2) -> onnx::Mul_65 Mul(onnx::Gather_58, onnx::Mul_65) -> onnx::Add_66 Gather(_operators.0.biases.3, onnx::Gather_58, axis=0) -> onnx::LessOrEqual_67 LessOrEqual(onnx::LessOrEqual_64, onnx::LessOrEqual_67) -> onnx::Cast_68 Cast(onnx::Cast_68, to=7) -> onnx::Add_69 Add(onnx::Add_66, onnx::Add_69) -> onnx::Gather_70 Gather(_operators.0.nodes.4, onnx::Gather_70, axis=0) -> onnx::Reshape_71 Constant(value=[-1, 1]) -> onnx::Reshape_72 Reshape(onnx::Reshape_71, onnx::Reshape_72, allowzero=0) -> onnx::GatherElements_73 GatherElements(X, onnx::GatherElements_73, axis=1) -> onnx::Reshape_74 Constant(value=[-1]) -> onnx::Reshape_75 Reshape(onnx::Reshape_74, onnx::Reshape_75, allowzero=0) -> onnx::LessOrEqual_76 Constant(value=2) -> onnx::Mul_77 Mul(onnx::Gather_70, onnx::Mul_77) -> onnx::Add_78 Gather(_operators.0.biases.4, onnx::Gather_70, axis=0) -> onnx::LessOrEqual_79 LessOrEqual(onnx::LessOrEqual_76, onnx::LessOrEqual_79) -> onnx::Cast_80 Cast(onnx::Cast_80, to=7) -> onnx::Add_81 Add(onnx::Add_78, onnx::Add_81) -> onnx::Gather_82 Gather(_operators.0.nodes.5, onnx::Gather_82, axis=0) -> onnx::Reshape_83 Constant(value=[-1, 1]) -> onnx::Reshape_84 Reshape(onnx::Reshape_83, onnx::Reshape_84, allowzero=0) -> onnx::GatherElements_85 GatherElements(X, onnx::GatherElements_85, axis=1) -> onnx::Reshape_86 Constant(value=[-1]) -> onnx::Reshape_87 Reshape(onnx::Reshape_86, onnx::Reshape_87, allowzero=0) -> onnx::LessOrEqual_88 Constant(value=2) -> onnx::Mul_89 Mul(onnx::Gather_82, onnx::Mul_89) -> onnx::Add_90 Gather(_operators.0.biases.5, onnx::Gather_82, axis=0) -> onnx::LessOrEqual_91 LessOrEqual(onnx::LessOrEqual_88, onnx::LessOrEqual_91) -> onnx::Cast_92 Cast(onnx::Cast_92, to=7) -> onnx::Add_93 Add(onnx::Add_90, onnx::Add_93) -> onnx::Gather_94 Gather(_operators.0.leaf_nodes, onnx::Gather_94, axis=0) -> onnx::Reshape_95 Constant(value=[-1, 1, 1]) -> onnx::Reshape_96 Reshape(onnx::Reshape_95, onnx::Reshape_96, allowzero=0) -> output Constant(value=[1]) -> onnx::ReduceSum_98 ReduceSum(output, onnx::ReduceSum_98, keepdims=0) -> variable output: name='variable' type=dtype('float32') shape=['batch_size', 'ReduceSumvariable_dim_1'] .. code:: ipython3 %onnxview onxh .. raw:: html
La librairie réimplémente la décision d’un arbre décision à partir d’un produit matriciel pour chaque niveau de l’arbre. Tous les seuils sont évalués. Les matrices n’ont pas besoin d’être sparses car les features nécessaires sont récupérées. Le seuil de décision est implémenté avec un test et non une sigmoïde. Ce modèle est donc identique en terme de prédiction au modèle initial. .. code:: ipython3 oinfh = OnnxInference(onxh, runtime='onnxruntime1') expected = tree.predict(x_exp) got = oinfh.run({'X': x_exp.astype(numpy.float32)})['variable'] numpy.abs(got - expected).max() .. parsed-literal:: 1.7421041873949668 La conversion reste imparfaite également. .. code:: ipython3 %timeit oinfh.run({'X': x_exp32})['variable'] .. parsed-literal:: 3.13 ms ± 445 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) Et le temps de calcul est aussi plus long. Apprentissage ------------- L’idée derrière tout cela est aussi de pouvoir réestimer les coefficients du réseau de neurones une fois converti. .. code:: ipython3 x_train = X_train[:100] expected = tree.predict(x_train) reg = NeuralTreeNetRegressor(trees[1], verbose=1, max_iter=10, lr=1e-4) .. code:: ipython3 got = reg.predict(x_train) numpy.abs(got - expected).max(), numpy.abs(got - expected).mean() .. parsed-literal:: (1.0246115055833722, 0.24094382754240642) La différence est grande. .. code:: ipython3 reg.fit(x_train, expected) .. parsed-literal:: 0/10: loss: 3.201 lr=0.0001 max(coef): 6.5 l1=0/1.5e+03 l2=0/2.5e+03 1/10: loss: 2.593 lr=9.95e-06 max(coef): 6.5 l1=2e+03/1.5e+03 l2=1.3e+03/2.5e+03 2/10: loss: 2.506 lr=7.05e-06 max(coef): 6.5 l1=1.4e+02/1.5e+03 l2=6.2/2.5e+03 3/10: loss: 2.461 lr=5.76e-06 max(coef): 6.5 l1=1.2e+03/1.5e+03 l2=6.8e+02/2.5e+03 4/10: loss: 2.429 lr=4.99e-06 max(coef): 6.5 l1=6.5e+02/1.5e+03 l2=2.1e+02/2.5e+03 5/10: loss: 2.405 lr=4.47e-06 max(coef): 6.5 l1=1.9e+02/1.5e+03 l2=13/2.5e+03 6/10: loss: 2.392 lr=4.08e-06 max(coef): 6.5 l1=1.6e+02/1.5e+03 l2=6.8/2.5e+03 7/10: loss: 2.375 lr=3.78e-06 max(coef): 6.5 l1=1.8e+02/1.5e+03 l2=9.5/2.5e+03 8/10: loss: 2.358 lr=3.53e-06 max(coef): 6.5 l1=1.1e+02/1.5e+03 l2=7/2.5e+03 9/10: loss: 2.345 lr=3.33e-06 max(coef): 6.5 l1=3.7e+02/1.5e+03 l2=56/2.5e+03 10/10: loss: 2.333 lr=3.16e-06 max(coef): 6.5 l1=6.1e+02/1.5e+03 l2=1.3e+02/2.5e+03 .. raw:: html
NeuralTreeNetRegressor(estimator=None, lr=0.0001, max_iter=10, verbose=1)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
.. code:: ipython3 got = reg.predict(x_train) numpy.abs(got - expected).max(), numpy.abs(got - expected).mean() .. parsed-literal:: (1.256860512819292, 0.25663312220721907) Ca ne marche pas aussi bien que prévu. Il faudrait sans doute plusieurs itérations et jouer avec les paramètres d’apprentissage.