Sqrt#

Sqrt - 13#

Version

  • name: Sqrt (GitHub)

  • domain: main

  • since_version: 13

  • function: False

  • support_level: SupportType.COMMON

  • shape inference: True

This version of the operator has been available since version 13.

Summary

Square root takes one input data (Tensor<T>) and produces one output data (Tensor<T>) where the square root is, y = x^0.5, is applied to the tensor elementwise. If x is negative, then it will return NaN.

Inputs

  • X (heterogeneous) - T: Input tensor

Outputs

  • Y (heterogeneous) - T: Output tensor

Type Constraints

  • T in ( tensor(bfloat16), tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.

Examples

default

node = onnx.helper.make_node(
    'Sqrt',
    inputs=['x'],
    outputs=['y'],
)

x = np.array([1, 4, 9]).astype(np.float32)
y = np.sqrt(x)  # expected output [1., 2., 3.]
expect(node, inputs=[x], outputs=[y],
       name='test_sqrt_example')

x = np.abs(np.random.randn(3, 4, 5).astype(np.float32))
y = np.sqrt(x)
expect(node, inputs=[x], outputs=[y],
       name='test_sqrt')

Differences

00Square root takes one input data (Tensor) and produces one output dataSquare root takes one input data (Tensor) and produces one output data
11(Tensor) where the square root is, y = x^0.5, is applied to(Tensor) where the square root is, y = x^0.5, is applied to
22the tensor elementwise. If x is negative, then it will return NaN.the tensor elementwise. If x is negative, then it will return NaN.
33
44**Inputs****Inputs**
55
66* **X** (heterogeneous) - **T**:* **X** (heterogeneous) - **T**:
77 Input tensor Input tensor
88
99**Outputs****Outputs**
1010
1111* **Y** (heterogeneous) - **T**:* **Y** (heterogeneous) - **T**:
1212 Output tensor Output tensor
1313
1414**Type Constraints****Type Constraints**
1515
1616* **T** in (* **T** in (
17 tensor(bfloat16),
1718 tensor(double), tensor(double),
1819 tensor(float), tensor(float),
1920 tensor(float16) tensor(float16)
2021 ): ):
2122 Constrain input and output types to float tensors. Constrain input and output types to float tensors.

Sqrt - 6#

Version

  • name: Sqrt (GitHub)

  • domain: main

  • since_version: 6

  • function: False

  • support_level: SupportType.COMMON

  • shape inference: True

This version of the operator has been available since version 6.

Summary

Square root takes one input data (Tensor<T>) and produces one output data (Tensor<T>) where the square root is, y = x^0.5, is applied to the tensor elementwise. If x is negative, then it will return NaN.

Inputs

  • X (heterogeneous) - T: Input tensor

Outputs

  • Y (heterogeneous) - T: Output tensor

Type Constraints

  • T in ( tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.

Differences

00Square root takes one input data (Tensor) and produces one output dataSquare root takes one input data (Tensor) and produces one output data
11(Tensor) where the square root is, y = x^0.5, is applied to(Tensor) where the square root is, y = x^0.5, is applied to
22the tensor elementwise. If x is negative, then it will return NaN.the tensor elementwise. If x is negative, then it will return NaN.
33
4**Attributes**
5
6* **consumed_inputs**:
7 legacy optimization attribute.
8
94**Inputs****Inputs**
105
116* **X** (heterogeneous) - **T**:* **X** (heterogeneous) - **T**:
127 Input tensor Input tensor
138
149**Outputs****Outputs**
1510
1611* **Y** (heterogeneous) - **T**:* **Y** (heterogeneous) - **T**:
1712 Output tensor Output tensor
1813
1914**Type Constraints****Type Constraints**
2015
2116* **T** in (* **T** in (
2217 tensor(double), tensor(double),
2318 tensor(float), tensor(float),
2419 tensor(float16) tensor(float16)
2520 ): ):
2621 Constrain input and output types to float tensors. Constrain input and output types to float tensors.

Sqrt - 1#

Version

  • name: Sqrt (GitHub)

  • domain: main

  • since_version: 1

  • function: False

  • support_level: SupportType.COMMON

  • shape inference: False

This version of the operator has been available since version 1.

Summary

Square root takes one input data (Tensor<T>) and produces one output data (Tensor<T>) where the square root is, y = x^0.5, is applied to the tensor elementwise. If x is negative, then it will return NaN.

Attributes

  • consumed_inputs: legacy optimization attribute.

Inputs

  • X (heterogeneous) - T: Input tensor

Outputs

  • Y (heterogeneous) - T: Output tensor

Type Constraints

  • T in ( tensor(double), tensor(float), tensor(float16) ): Constrain input and output types to float tensors.