{"cells": [{"cell_type": "markdown", "metadata": {}, "source": ["# Jeu de donn\u00e9es avec des cat\u00e9gories\n", "\n", "Le jeu de donn\u00e9es [Adult Data Set](https://archive.ics.uci.edu/ml/datasets/adult) ne contient presque que des cat\u00e9gories. Ce notebook explore diff\u00e9rentes moyens de les traiter."]}, {"cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": ["%matplotlib inline"]}, {"cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [{"data": {"text/html": ["
"]}, "metadata": {"needs_background": "light"}, "output_type": "display_data"}], "source": ["from seaborn import clustermap\n", "\n", "clustermap(corr, center=0, cmap=\"vlag\", linewidths=.75, figsize=(15, 15));"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Ce n'est pas facile \u00e0 voir. Il faudrait essayer avec [bokeh](https://bokeh.pydata.org/en/latest/docs/gallery/les_mis.html) ou essayer de proc\u00e9der autrement."]}, {"cell_type": "markdown", "metadata": {}, "source": ["## ACM\n", "\n", "Ce qui suit n'est pas tout-\u00e0-fait une [ACM](https://fr.wikipedia.org/wiki/Analyse_des_correspondances_multiples) mais cela s'en inspire. On consid\u00e8re les variables comme des observations et on les projette sur des plans d\u00e9finis par les axes d'une [ACP](https://fr.wikipedia.org/wiki/Analyse_en_composantes_principales). On normalise \u00e9galement car on m\u00e9lange variables continues et variables binaires d'ordre de grandeur diff\u00e9rents. Les calculs sont plus pr\u00e9cis lorsque les matrices ont des coefficients de m\u00eame ordre. Le dernier exercice de cet examen [Programmation ENSAE 2006](http://www.xavierdupre.fr/site2013/enseignements/tdnote/ecrit_2006.pdf) ach\u00e8vera de vous convaincre."]}, {"cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [{"data": {"text/html": ["
"]}, "metadata": {"needs_background": "light"}, "output_type": "display_data"}], "source": ["ax = tr.plot(x='axe1', y='axe2', kind='scatter', figsize=(10, 10))\n", "for t, (x, y, z) in tr.iterrows():\n", " ax.text(x, y, t, fontsize=10, rotation=10)\n", "ax.set_title(\"ACP sur les variables - axe 1, 2\");"]}, {"cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsQAAAJcCAYAAAD+YLKtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3hUVf7H8feZVEgCCQkQQiAIAaQjRAQJogIiygJCFBWxr2JZxVWa7m8VCyjYUFfRXQRkRYFF11UBSyz0pkJooYSEGkihhfTMnN8fMxkTCK66YoD5vJ5nHph779w55wLDZ06+9xxjrUVERERExFc5qrsBIiIiIiLVSYFYRERERHyaArGIiIiI+DQFYhERERHxaQrEIiIiIuLTFIhFRERExKcpEIvIGcMYc6sxZml1t+OnGGMWGmNu+ZnHZhhjep9i36XGmL2/betEROTXUCAWOYcYY74xxhw2xgRVsa+LMWaBMeaIMeaQMWa1MeY2z75LjTEuY8xxY0yeMWZr+T6pzFrbz1o7s7rbcaYzxrzl+XvkMsbc+gtf+09jTKYx5pgxZpsx5s7T1EwREUCBWOScYYxpAvQALDDghH3dgK+Ab4F4IBK4B+hX4bD91tpQoBYwBvi7Mab1aWyv/+k69+lg3PSZ+fOtB+4Fvv8Vr50INLHW1sL9d/lpY0zn37JxIiIV6cNd5NxxM7ASmAGc+CP9ycBMa+1z1toc6/adtfa6E0/i2fdv4DBwUiA2xkQZYz6pMNK8pDwoGmOsMSa+wrEzjDFPe35/qTFmrzFmjDHmADD9v3XIGHO+MeYLz/tsNcZcV2HfVcaYzZ4R7X3GmEeqeH2Qp51tK2yra4wpNMbUM8ZEePqS7RlZ/8QYE1vh2G+MMc8YY5YBBUBTz7Y7PfubGWO+MsbkGmNyjDHvGmPCT2jGhZ52HjbGTDfGBJ+irzHGmPmetqQbYx6osK+LMWatZ8T0oDHmxf927X7imk4xxuzxnOs7Y0yPCvsWGGNeqPB8jjHm7QrPbzfGbPH05TNjTNyp3sda+zdrbTJQ9EvbaK3dZK0tLn/qeTT7pecREfm5FIhFzh03A+96Hn2NMfUBjDE1gW7Av37OSYwxDmPMNUA4sKGKQx4G9gJ1gfrAo7gDy88RDdQB4oC7/ks7QoAvgNlAPeAG4HVjTBvPIdOAu621YUBb3CPglXhC1Qee15a7DvjWWpuF+zNwuqc9jYFC4LUTTjPc09YwYNeJzcQ9mhkDtAIaAU+ccMwwoC/uQNcC+EsVfXUAH+MeVW0I9AJGGmP6eg6ZAkzxjJg2A+aeeI5fYA3QEfefw2xgXoWQfjsw3BhzuTFmGHAh8KCnjYNw/1kPxv1nvwR4739ox08yxrxujCkAUoFMYMHpei8REQVikXOAMSYRd6iba639DkgDbvTsjsD9bz3zv5wmxhhzBMgBHgeGW2u3VnFcKdAAiLPWllprl1hrf24gdgGPW2uLrbWF/+XY/kCGtXa6tbbMWvs9MB9IqtCO1saYWtbaw579VZlN5UB8o2cb1tpca+18a22BtTYPeAboecLrZ3hGLMustaUVd1hrd1hrv/D0Jxt4sYrXv2at3WOtPeQ5/w2c7EKgrrX2SWttibV2J/B34PoKfY03xkRZa49ba1eeoq//lbX2n55+l1lrXwCCgJaefQeAEcBM3CH8Zs91AbgbmGit3WKtLQMmAB1/apT4f2GtvRf3l5AeuL/UFP/0K0REfj0FYpFzwy3A59baHM/z2fxYNnEYdxBt8F/Osd9aG26trWOt7Witff8Ux00GdgCfG2N2GmPG/oJ2Zltrf+6P0OOAizwlD0c8YX0Y7lFmgCHAVcAuY8y3njrpqnwF1DDGXOQJbx2BD8E9em6MedMYs8sYcwxYDIQbY/wqvH7PqRroKbt431OycQz4JxB1wmEVX78L92hyVX2NOaGvj+IegQe4A/focqoxZo0xpv8p2rPQuG+MPO4Z4a3qmIc9ZQ9HPe9T+4Q2fwL4AVuttRVn/IgDplRo3yHcI+QNq3qf34K11ulpQyzumncRkdPirLqpRUROZoypgbsMwM9TmwvuUb9wY0wHa+16Y8wK3AHy6//1/Twjhg8DD3vKF742xqzx1IsWADUrHB6Nu7zC+/Jf8FZ7cJc29DlFO9YAA40xAcD9uMsIGlVxnMsYMxf3yOxB4JMKo54P4x4dvchae8AY0xH4AXfQ+zltnujZ395am+spKzix5KJimxoD+0/R13RrbfNT9HU7cIOntGIw8C9jTKS1Nv+E4/pV9fpynnrhMbhLMjZ5rs1hKvf3GWALcJ4x5gZrbXlZxB7gGWvtuz/1HqeJP6ohFpHTSCPEIme/QYAT9w1wHT2PVrhrPG/2HDMauNUYM8oYEwlgjOlgjDnVKPApGWP6G2PijTEGOOZ5b6dn9zrgRmOMnzHmSk4uH/glPgFaGGOGG2MCPI8LjTGtjDGBxphhxpjanjKG8nacymxgKO4R5tkVtofhrhs+Yoypg7tU5JcIA457Xt8QGFXFMfcZY2I9538UmFPFMauBY8Z9w2ENz/Vra4y5EMAYc5Mxpq611gUc8bzmp/r7U+0tA7IBf2PMX3HPKoLnfS4BbsP99+Zm4FVPvwCmAuPKa7iNMbWNMdee6o08f0bBuMN2gDEm2Px48+Wlxpgqv2h4Rt2vN8aEeq5DX9xfZk6qERcR+a0oEIuc/W4Bpltrd1trD5Q/cI9UDjPG+FtrlwOXex47jTGHgLf4dTcqNQe+xB0EVwCvW2u/8ex7EPgD7tA2DPj3r+2UZxT3Ctx1tPuBA8BzuEe/wX2zW4anVGEEcNNPnGsVkI+7XGFhhV0vAzVw102vBBb9wmaOBzoBR4FPcde6nmg28Dmw0/N4uor2OXFft45Auqc9/8BdzgBwJbDJGHMcd23v9b+g9KSiz3D3fxvu8o0iPCUdxphawDvA/dbafZ5ShWnAdGOMsdZ+iPv6v++55hupPG3fiT7H/WXjYtx/1wqBSzz7GuH+u1MVi7s8Yi/ucp/ngZHW2o9+RX9FRH4W8/PvhREREXHzhORf9R+IMeYfwDxr7We/cbNERH4VBWIRETmJ58ZCF7jnpq7m5oiInFYqmRAR8XGeuacdFZ4bzwwPtjwMG2Oiy+vPPc9fM8bcXn78799qEZHfjmaZEBHxAZ7A68Bdo+uqOOrruVmv/Dg/a63TMyNFAu6661q4p+1LBUYb92p+ZXhmENEIsoic7TRCLCJyDjFufidut9a6PItxOK211hjjX2HWhwHGvST1cjwr0+G+8e0vwHpr7d24b25rboxpAITy40wmIiJnvXO6hjgqKso2adKkupshInJa5OXlUVZWRkREBNZaKlYuVHzucrnIy8vjyJEj5Oe7py4OCgqicePGWGs5ePAg0dHR3t8HBQURHh7Otm3baNmyJQEBATidTnJzcykqKqJBgwZs376d1q1bV0u/Rc5V3333XY61tm51t8MXndMlE02aNGHt2rXV3QwRkV8tLy+PrVu30rRpU+rUqYO1FmstDoeDlJQUysrKuOCCCzDGkJaWxuLFi1m3bh2JiYkkJSVhjGHu3LlMmzaNmjVrEhgYyMsvv0y9evXw8/Nj8eLFJCUlkZCQwNatW/Hz8+PGG2/k4YcfplmzZnz77beEh4cDkJ+fT5cuXbjjjjvIyMhgwoQJBAcHV/MVEjl3GGN2VXcbfJVKJkREziD5+fmkpKRw8OBBALKysti+fTt+fu4qCGMMDof7ozsgIIApU6ZgjGHixIm0atWK5557ji+//JKnn36a5cuXU1xczOOPP85rr71G79692b17N5988gkbNmygsLCQo0eP0q5dOwYOHMjcuXP54YcfGDVqFA6Hg8jISLZu3QqA0+kkJCSEpKQkRo4cSXx8vMKwiJwzFIhFRKqBy+XC6XRyYtlaSUkJ8+bNIzs7G3CXPvj7+3PkyBG++eYbHnnkEe/2pUuX8u6777J3716+/PJLjDFMnz6dzp07U1RUxMKFC3E4HBQXF1NYWMjw4cO5++67KSoq4s4772T8+PE0aNAAh8NBTEwMMTExFBUV8c033wBQu3Ztli5dCuAtv7jvvvv45z//ycCBA3+nKyUicvqd0zXECQkJViUTIlKdnE4nxhhvoDzVDGXbt29n8+bNdOjQgcsuu4zs7GxCQkKIj48nNTWVPn368OKLL5KYmMjnn39OfHw8Q4YMISUlhUmTJjF69Gj27NnDBRdcQKdOnahVqxZZWVkcPXqUBQsWcOONN/LSSy8RFhYGQHJyMvPmzeOvf/0rycnJfPLJJ+zcuZOjR49yzTXX8Nxzz7Fy5UoiIiJo2bLl73a9RHyZMeY7a21CdbfDF53TNcQiIr+HzMxMoqOjvWE3NzeXefPmMWLECG+pQ7n8/HzS0tLYsWMHX3zxBRdffDF//etfycrKIigoiDfeeIOEhASWLl3KJZdcwpw5cxg1ahTvvfceO3bs4MYbb+Tdd99l2LBhlJSUEB0dTWpqKt26daNhw4bcdttt3HLLLXz11VfMmTOHiRMn8oc//IHPP/+c8ePH8+WXX5KXl0fNmjW5/fbbiYmJYfjw4XTv3p2ysjJatGjhbWvXrl2r7G/5QIqmHxaRc4UCsYjIL5CWlobD4aBx48Zs27aNYcOGERgYSHJyMiEhIYC71GDq1KnExcWxceNGjh49SosWLZg9ezYpKSkYY7jkkks4//zzefDBB+natSvp6elMmTKFVatWcemll5Kenk7Tpk0BaNq0KWFhYaxZs4a4uDgeeOAB5syZwzXXXENWVhb79u0jMjKStWvXsnDhQpxOJ6tXryY3N5cNGzZw00030axZM+bOnUvv3r3p2rUrV111FTVr1vT2q/y94OQZKsprlsspCIvIuUaBWESkCqmpqfzwww+sWbOG6OhoHnroIQICAnjqqado164dDz/8MEuWLGHo0KEMHTqUFStWULNmTS6++GLeeustMjIyGD58OE2aNCEpKYlXX32VYcOGMWHCBPr3709BQQG9e/dmxowZhIaGAu5QmpaWhr+/PzVq1GDz5s3e7TVq1GDjxo1Mnz6dkJAQRowYQXp6Ov369WPSpEksXrzYWx4REBBAt27dSExMpEWLFvj5+ZGYmEhiYuLP6nvFwHtiGBYRORcpEIuITysuLmbx4sWsWbOG9evXc8stt9CrVy/69OlD8+bNufHGG5k3bx4A99xzD7GxsWzevJlrr72W3bt3k5qayoQJE2jVqhUREREMHjyYW2+9lffffx9jDBMmTGDdunWsX7+e9PR0YmNjKSsro1GjRhQVFdGsWTPS0tKAH0dpg4KCiIiIYMWKFfz73//m0KFDZGVl0aFDBwD69u3LkCFDcDqdDBgwgOjoaCIiInj77bd/sq8ul3dBOgVdEZEK9IkoIj6pvA72/fff54UXXqCoqIjevXvTqFEjrLUkJibSv39/0tLSOH78OF9//TUrVqxg1apVLFq0iDZt2jB48GAaN27MzTffzMqVK7nvvvv46quvSE9Pp02bNixdupS3336b5cuX06VLF55//nk+/vhjbrrpJhITE+nevTudOnVi8+bNWGvJzs4mPT2d4uJiLr/8cg4dOsTo0aOZNWsWF110EUOGDAEgMjKS6dOn884771C7dm369Onj7ZfT6fQ+TuRwOLwPERH5kUaIReScVL6AhbX2pBvbwF0WUFhYSHJyMnfccQfXXnttpf0NGzbkgw8+4J577iEsLIwZM2awfv16zjvvPDZv3sytt95KQUEB7777LlFRUVhryc3NZevWrYwdO5ZbbrmF6dOnM23aNKy1PPfcc3z00UcMGzaMvLw8/v3vf5OYmMjo0aOZPHky7du3p06dOjRq1IgLLriAjh078tprr/HFF18QFxdXZR/Lysrw9/evVOdbVV9FROSnKRCLyFnNWovT6cTlcuHv7+8NhhWnOjuVwsJCGjduzEcffYTL5aJ27dp07dqV8PBwgoODWbt2Ld988w3JyckcP36cPXv20KVLFz7//HP27NnDeeedhzGGjIwMrLUUFxeTn5/PoEGDSExMJDAwkIEDB9KgQQOOHTtGeno6Xbp04dChQzRs2JDS0lJiY2PZvn078fHxJ7UvJCSEjRs3EhcXR2lpKf7+/pX65O/v/gjXiK+IyP9Gn6IicsZzuVwUFxcDsH//fl577TWSk5O9+/39/QkMDPQGw+LiYr7//nv+/e9/079/fwYNGsSaNWsAKi2EUadOHW6//XZycnKYOXMmM2bM4LLLLuOzzz4jPj6ekpISduzYwYABA1i0aBGvvPKKd1qy/fv3ExsbS/PmzUlOTubLL78kNDSU5s2bc/XVVxMdHc2f//xntm3bxpYtW+jZsyfvvPMOK1asYNeuXSxfvpzzzjsPa603DJcv1lFWVgbAN998w9VXXw24V6XT7A4iIqeHFuYQkTOGtZaioiKCgoJwOp04HA4KCwtZvnw5NWvWJDExEWstx48fJywsjGPHjhEQEMBLL73E9OnTKSgooF27drzyyiuMGDGCunXrctddd5GZmcnEiRPZtGnTKd87NzeXvXv38vXXX/PVV18xbtw4evfuTW5urneJ4tTUVJxOJ1deeSVJSUm89NJLjBo1itzcXA4fPozD4eD++++nZ8+ePzlqWz6q7efnp5ArIl5amKP6qGRCRKpN+YhoQEAA+/btY/LkySQkJHDTTTd5A6W/vz8rV64kIyODrKwsCgsLefbZZ8nOzqZr167ceeedzJs3j3bt2hETE8OBAwdo1qwZzZs3p06dOvTq1QuAP/3pTxw6dIg6depU2Y7IyEgiIyPJzs5myZIldOjQgbCwMAYMGEBMTAybN2+mS5cujBs3jj59+tC+fXsAHn/8ce+0aafqY3mtb3kZhzHGW+4gIiLVT5/IInJaHT9+nNDQUKy1uFyuSjd9VZzxIDw8nBo1apCens6//vUvkpOTOXDgAHv27GHz5s1ERkbi7+9PZmYmV155JTk5OfzjH/+gV69etGvXjmPHjtG+fXs+/PBDMjIyaNCgAfXq1ePo0aPUrl2bBg0a8P3339O7d+9KC09kZmayfv160tLS2L9/P99++y333HMPNWvW5E9/+hP+/v7Uq1eP+++/n/bt2xMYGFhperPyMFzeP2NMpdFhh8NBYGDg73GpRUTkV1IgFpHfVFlZmTfoZmdn07FjR9LS0ggKCqoUho8ePcrMmTP56quvaNGiBZMmTaKkpIT//Oc/XH755ZSUlBAWFsZXX33F6NGjWblyJW+99RZDhw5l9erVlJSU8MMPP1BcXMyQIUPIycnh6NGjHDt2jLFjx9K3b1/S09PJz8+ndu3atG3blqVLl9K7d2+cTqd3hDY8PJwdO3awatUq2rdvzzPPPONdsvixxx4DKq/cVv684jnAfROfZngQETk7KRCLyK9irfWG34pBsGJIrFu3LqGhoezatQtrLS+//DLt27dnzZo1pKWlkZaWRu3atdm/fz9paWm0bdsWay0DBw5k1apVPPfcc6SmppKZmYnT6WTWrFm8+eabvPnmm3z00UfccMMNREZG8tVXXzFlyhQAPv74Y4qKiryzP+Tm5hITE0Pnzp1JTU3FWktpaal3qrIaNWpw//33c//991fqX2lpKQEBAd4+wo8ruKnkQUTk3KJPdBH5SeWlANbak0ZEAwICKh27c+dOpk+fTnh4OOvWrSM9PZ2AgADS09NZv349n332GUlJSeTk5PDhhx/yt7/9jWHDhjFo0CA+/PBDWrduzVtvvcXSpUvp1KkTgYGB9OzZk5tvvpnrr7+ejRs3Mnz4cG644Qays7NxOp3s37+f3Nxc2rVrR2ZmJsYY741txhjq1auHy+Vi9OjR3kBbo0aNSu3evn07mzZtYt26daSmprJr1y5CQ0P54osvFHxFRHyAPulF5CdVVQqQkZHBDz/8wKJFi0hPT6d169a4XC7WrFnD9u3bqVOnDs8++yxz584F4Ouvv+bAgQO0aNGCuLg41q5dS6NGjbw3uPXo0YPt27dz3nnnkZWVxYwZM8jIyOCDDz7g8OHDFBQUkJOTw4IFC4iPj2fmzJns2rULl8vFK6+8Qrdu3Zg4cSJxcXEkJSXRpEkTgJPm9s3JyWHNmjX8/e9/Z/PmzWRlZVFUVETHjh0ZPHgwl112GXfddRd169Y9KeyLiMi5S4FYRE6prKyMbdu2MX/+fDZt2sSIESNo1KgRffr0oaysjPDwcEaOHElycjLLli3j66+/Zs6cOXz22WcMHjyYLVu2cOTIEZ5//nl69OhBgwYNSE9Pp1WrVhQUFJCcnEy/fv1o1KgRn3/+Oe3bt8day4wZM2jVqhUOh4NZs2aRmZnJDTfcwOrVq8nKyuK+++6jTZs23pkeAF599dVKbXe5XMyePZu1a9eSlpbGgQMHqFWrFu3ataNt27bce++9dOzYkaioqN/7soqIyBlGgVhEqrRv3z7GjBnDrl27qFu3Lh9//DG5ubn06NGDsLAwWrdu7V3YorS0lCVLlrBy5Uo6duzIrFmzAGjTpg3/+c9/aNq0KYMHD2bChAnUr1+fJ598Ej8/P2bNmkVeXh7JyclccMEFNG/enCuuuIKVK1cSHR3NrFmzOHbsGP379ycoKKjKdpbf8OZyuYAfV21zOBzUqlWL4cOH06xZM2rVqqUV3UREpEoKxCJSSe7xYjbtP0pZmYMjefkcOXKEf/3rX6xevZqjR4+yd+9eSktL6d69O5mZmQB06dKF48ePs2/fPq688kqys7MBuPjii9m5cycOh4PGjRsTHh7ORx99RM2aNWnSpAnNmjVj2bJltGvXjocffhiAqVOnnrJtZWVlJ5VwlNcFVxV2BwwY8JtdFxEROXcpEIuI10fr9vHIvPWUOi3WWo5mgt/BLPLy8ryrxB04cICDBw9y/vnn8/777wNwwQUXEBgYyHfffUfnzp3Jzs7m008/5eqrr2by5Mk8+OCDzJw5k+eee46AgAA6derEyJEjSUxM5I033jipHU6nE3CHXGttpUU6REREfmv630VEAPfI8Oh/pVDqdC/nbozBr05D8rY7ePKZiVx22WXMnDmTI0eOUFxczP79+3E6nXTo0IGoqCgSExOJiorixRdfJCEhwbtgxa233sqtt94K4F2xDeC8887j0KFDFBcX43A4vCu5AVWOAIuIiJwuxlpb3W04bRISEuzatWuruxkiZ4X1e45ww99XUlDi9G5zFh4j+71xFGfvYuDAgbhcLo4dO0ZISAgRERGUlZVRp04drrjiCnr16kVYWBhOp/OkWSnKF7KoWN8rIiKVGWO+s9YmVHc7fJFGiEUEgNiIGjhdlb8g+9WoRb2rRxK5fhZBQUGMGTOGZs2aUbt27VOexxhzUq2vFrIQEZEzmf6HEhEAIkODmJzUnoc9NcQA/g548cFrGdBxJIB3dTf4ccEOcI/4Vry5TSPAIiJyNlEgFhGvAR0b0j0+ik37jwKGNjG1iAwNwuVyVar/haoX7BARETkbKRCLSCWRoUFc0qJepW0Oh4PAwMBqapGIiMjppZ9rioiIiIhPUyAWEREREZ+mQCwiIiIiPk2BWERERER8mgKxiIiIiPg0BWIRERER8WkKxCIiIiLi0xSIRURERMSnKRCLiIiIiE9TIBYRERERn6ZALCIiIiI+TYFYRERERHyaArGIiIiI+DQFYhERERHxaQrEIiIiIuLTFIhFRERExKcpEIuIiIiIT1MgFhERERGfpkAsIiIiIj5NgVhEREREfJoCsYiIiIj4NAViEREREfFpCsQiIiIi4tMUiEVERETEpykQi4iIiIhPUyAWEREREZ+mQCwiIiIiPk2BWERERER8mgKxiIiIiPg0BWIRERER8WkKxCIiIiLi0xSIRURERMSnKRCLiIiIiE9TIBYRERERn6ZALCIiIiI+TYFYRERERHyaArGIiIiI+DQFYhERERHxaQrEIiIiIuLTFIhFRERExKcpEIuIiIiIT1MgFhERERGfpkAsIiIiIj5NgVhEREREfJoCsYiIiIj4NAViEREREfFpCsQiIiIi4tMUiEVERETEpykQi4iIiIhPUyAWEREREZ+mQCwiIiIiPk2BWERERER8mgKxiIiIiPg0BWIRERER8WkKxCIiIiLi06o1EBtj3jbGZBljNlbYVscY84UxZrvn1wjPdmOMecUYs8MYk2KM6VR9LRcRERGRc0V1jxDPAK48YdtYINla2xxI9jwH6Ac09zzuAt74ndooIiIiIuewag3E1trFwKETNg8EZnp+PxMYVGH7O9ZtJRBujGnw+7RURERERM5V1T1CXJX61tpMAM+v9TzbGwJ7Khy317OtEmPMXcaYtcaYtdnZ2ae9sSIiIiJydjsTA/GpmCq22ZM2WPuWtTbBWptQt27d36FZIiIiInI2OxMD8cHyUgjPr1me7XuBRhWOiwX2/85tExEREZFzzJkYiP8D3OL5/S3ARxW23+yZbaIrcLS8tEJERERE5Nfyr843N8a8B1wKRBlj9gKPA88Cc40xdwC7gWs9hy8ArgJ2AAXAbb97g0VERETknFOtgdhae8MpdvWq4lgL3Hd6WyQiIiIivuZMLJkQEREREfndKBCLiIiIiE9TIBYRERERn6ZALCIiIiI+TYFYRERERHyaArGIiIiI+DQFYhERERHxaQrEIiIiIuLTFIhFRERExKcpEIuIiIiIT1MgFhERERGfpkAsIiIiIj5NgVhEREREfJoCsYiIiIj4NAViEREREfFpCsQiIiIi4tMUiEVERETEpykQi4iIiIhPUyAWEREREZ+mQCwiIiIiPk2BWERERER8mgKxiIiIiPg0BWIRERER8WkKxCIiIiLi0xSIRURERMSnKRCLiIiIiE9TIBYRERERn6ZALCIiIiI+TYFYRERERHyaArGIiIiI+DQFYhERERHxaQrEIiIiIuLTFIhFRERExKcpEIuIiIiIT1MgFhERERGfpkAsIiIiIj5NgVhEREREfJoCsYiIiIj4NAViEREREfFpCsQiIiIi4tMUiEVERETEpykQi4iIiIhPUyAWEREREZ+mQCwiIiIiPk2BWERERER8mgKxiIiIiPg0BWIRERER8WkKxCIiIiLi0/jZo34AACAASURBVBSIRURERMSnKRCLiIiIiE9TIBYRERERn6ZALCIiIiI+TYFYRERERHyaf3U3QERE5HQ7ePAgy5cvZ+XKlQwZMoQuXbpUd5NE5AyiQCwiIueM3Nxc1q9fT2lpKRkZGVx22WW0aNGCN998k5ycHC644AJmzJhBeno6Q4cOxVqLMaa6my0i1UyBWEREzjqlpaWkpKSwYsUKwsPDueaaa8jJyeGPf/wjISEhhIaGsmHDBhISEli4cCG7du1i+PDh5OTksGDBAgoKChg6dGh1d0NEzhAKxCIictb55JNPmD59OgkJCezcuZNDhw4RFRVFREQEc+bMYdOmTfzf//0fu3btonHjxsycORM/Pz9q1arF5MmT6dmzJ4BGh0UEUCAWEZGz0B/+8AcSExNJS0vj73//O1OnTmX48OE0b94cgJiYGHr06MHWrVvp0aMHMTExvPXWW97X5+TkVFfTReQMpEAsIiJnjdzjxew9XEhEoIvHHvkzTqeT1q1bs23bNpo3b87HH38MQEREBGvXriU8PJy6detyzTXXcOedd9KiRQs2bdqEtZY33niDkJCQau6RiJwJFIhFROSs8NG6fYyZn0KAw8Gx3ZupuSGVLevWADBt2jTy8/NZtWoV7733HgEBAVhrKS0tJScnhylTpjB16lTS09O55JJL6NGjh8KwiHgpEIuIyBkv93gxY+anUFTqoggXpX7B7CnwY+LkF6kZ6EdJSQn5+fm8/vrrvPvuuzRo0IAmTZpQWFiItRaAESNGVHMvRORMpUAsIiJnvL2HCwlwOCjCBUBgVGPCW3Xnm8VLuap3T+bNm0f79u0JCAigefPmHD58mBdeeIHExETq1q2Ly+XC4XDgdDoxxngfIiKgQCwiImeB2IgalLpclbaFtu/N7DGXExka5N22detWnn76afLy8ujZsycDBw4EwOFwL8zq5+f3+zVaRM4aCsQiInLGiwwNYtKQ9oz21BCXulxMGtKe8Br+3lFfh8NBy5YtmTVrVnU3V0TOMgrEIiJyVhjQsSHd46PYe7iQ2IgalUaGRUT+FwrEIiJy1ogMDVIQFpHfnKO6GyAiIiIiUp0UiEVERETEpykQi4iIiIhPUyAWEREREZ+mQCwiIiIiPk2BWEREzmjWWu/yyyIip4MCsYiInDFcJ6xGB2iZZRE57RSIRUTkd1c+4rtv3z6eeuopPvnkE+DHJZbLFRcX88MPP/Cvf/2LI0eO/O7tFBHfoIU5RETktDh27BgZGRk0bNiQyMhIysrK8Pd3/7dTPuIbFBREbm4u2dnZZGZm8t1339GxY0diY2PJyclhyJAhhIeHExcXx6effsr06dOrs0sico5SIBYRkd/U9OnTef755/H39ycmJoakpCTuuOMObxgGyMvL4/PPP2fIkCFERUWxePFi5s+fj8vlwlrL9OnTiY6O5tNPP6WoqIitW7dy+eWXc++993LhhRdWY+9E5FykkgkREfnNbNy4kdmzZ/PBBx+wfv16Fi5cSNu2bQEYOnQo27ZtAyAzM5MnnniCrKwsmjZtyrJly5gyZQoLFiwgMDCQefPmAfD+++/Tr18/Zs+eTbNmzVi1alW19U1Ezl0KxCIickpV3eT2U6ZMmcJVV11Fy5Ytva+/6KKLAEhPT2fdunUAREZG0qJFC3bt2kXDhg1JTEykoKAAgKSkJHJzc1m2bBmrV6/mqaee4m9/+xtXXnkly5cv/w17JyLipkAsIiLeUgWn01lp+4k3uZ1K+etSU1OpW7eu95wOh4OSkhIAunXrRkpKCgA1a9YkNjaWDRs2EBsbS0BAALt27QIgICCA1NRU6tevT0BAABs2bGDp0qWkpKSwbdu2XxzSRUT+GwViEREfcvToUbKzsyktLa203eFwYIzBz8+v0vZFixaxZs0agJ+cC7j8Jrl27drx/fffVzo+MDAQgPbt27N582YA/P39sdaSkZFB48aNyc7OZsaMGWzfvp1vv/2WFi1aEB8fzy233MIHH3zAtGnTuO2223jppZc0BZuI/OZ0U52IyDmoPIyWL2pRHnSXLFlCQUEB1113nffY3NxcNm/eTEZGBitWrODCCy/ktttuA2DOnDmcf/75XHjhhVhrTxlGy7d369aNN954A6BSuN65cyc9e/Zk+vTp/PDDD95txcXFBAQE0KhRIxwOB4899hgNGjTgvvvuA6BLly6sWLHit7w0IiInUSAWEakm5WG1YmD9X89XHkxP/LXctm3bmD17NjNmzGDQoEGEhITwxhtv0Lp1a/r370+zZs345ptv6NmzJ0FBQQQFBXH11VcDP10+Uf4+/fr14+OPP+ZPf/oTr776Knv27GHp0qXk5uZy//3389BDD3H99dfTvHlzhg0b5n3ds88+S40aNU55fqfT6T3255ZxiIj8XArEIiKnWcWlhyuGuV+6Apu11luXe+LryreXy83N5dtvvyUvL4+33nqLK6+8krFjxxIQEMCxY8fo378/1113Henp6RQVFdG3b18GDBhAWVkZ06ZN48UXX+SJJ55g1apVTJ069SdHhyuKiopiypQpvPjii7Rt25bg4GDi4uIYM2YMAEOGDGHIkCEnva48DJfXMp/Yx9/iC4OIyKnoa7aIyG/I5XKddGOaMQaHw1EpsJaVlbFp0ybef/99br75Zh599NFKNbrl56m4rbzGt2JQPHz4MOnp6TgcDrZs2cIf//hHDh8+zMaNG0lKSsLhcDBq1CjS0tKYOXMm99xzDz179qR///6Eh4fTpEkTQkNDadu2LS6XC39/f4YPH87SpUtJTk6mSZMm3vf+b8oDe4MGDXjyySdZu3Yta9euZf78+XTp0uWk61T+qMjhcJzURxGR002BWETkN1Qe6CrauHEjb7/9Ng8++KD3prKUlBSSkpJYvnw5gwcPZtmyZbz77rveMF1VMFy/fj3PPvss48eP5/DhwxQXF/Paa6/x8ssvA1CnTh0yMjLYt28fHTt2JCAggAEDBjBo0CD69OnD6tWr8ff3x+l0snXrVoqKioiIiCA4OJh9+/Z5A3vNmjV55JFHuPfee7n88sur7Gd5YK8Y2suDP7hHfIODg70zV1QVfE/8kiAiUl30SSQi8hs5fPgwn332GY899hjfffcdAAUFBbz55pvs2LGDCy64gKeffprvvvuO1q1b4+fnR69evRg0aBBDhgxhy5YtHDx4kJKSEmbNmsWDDz7ovbktMzOT0aNHc+jQIRwOB1dddRX+/v7ExcUB7oBav359wsLC2LVrF7Vr16ZmzZreKc8aNGhAfn4+hYWFNGjQgGPHjhEcHAy4yxxSU1O9wdbpdHLTTTfRunVrateuDbhHtCuG2vLAXh7aS0pKWLduHQsWLGDv3r3AjzXNfn5+Cr4ickZTDbGIiEf5j/zh59esloe+Bx54gP379xMdHU1RURHPP/88999/P927d2fChAls3ryZVatWsXDhQhITE+ncuTOJiYnk5OQA0KxZM7Zv386hQ4dYsmQJn3zyCT179qRZs2a4XC7mzJlDy5YtmTRpEuCeDm3x4sXUqVOH0tJS9uzZQ1xcHJGRkaSlpQHQokULli9fzsCBA4mIiMDPz4+0tDQGDBjASy+9xJQpU3jhhRfo0KEDxhhvHbKfnx85OTl07NjRG7grLruckZHBpk2bWLZsGStWrMDlclFSUkKrVq3o27cvYWFhwM8rsxARORMoEIuIz6l4g9iJMzP83CBcVlaGv78/x48fZ+rUqQQGBpKbm8vLL79MbGwsI0eO5D//+Q/du3dn/vz5TJ8+ndjYWKKiopg4cSLXX389sbGx7NixA4C4uDiKi4vJzs5m/PjxvPnmm/To0cP7fjt37qRTp07k5+cTEhJC586dSUtLo3PnzuTn55OVlUVcXBx5eXne5Y2bNm3KokWLGDhwICEhIURGRrJ7926uuuoqRo4cyZEjR+jRo4d3Folyu3fvZvjw4TRq1IiePXsCkJ2dzejRo/n+++9p0aIFXbt2pXfv3owYMYIGDRoQEBDwv/2hiIhUIwViETmnFRcXs23bNmJiYoiMjAR+HLk8cWaGgwcPMnPmTJKTk2nYsCGjRo2iVatW3lkiHA4H1lo++ugj4uPjadu2LSEhIdx8882sWbOG3bt3c+TIEaKjo+ncuTPvvPMOSUlJWGu59NJLCQoKolGjRkybNo1nn32WunXrsnr1aqy1NGzYkOLiYrKysujQoQPFxcUAHD9+nNDQUOLj41m3bh1XXHEFISEhlJSUsGPHDu68806io6N5/PHHSUhI4ODBg5x33nlYa7n11lvZv38/APHx8bz00kvevnbt2rXSdap4LRo2bMinn35KaGiod39UVBRvvPGGt8xCRORcYn5q5aGzXUJCgl27dm11N0NEfidVTUtWUlLCiy++yMUXX8wll1xCQUEBBw8exOl0Eh8fz0cffcTChQt54YUXWLRoEXPnzmXUqFGEh4fTsGHDKufGfeihhwgLC6N58+YkJiayatUq9u7dy9y5cwkODuapp56idu3aDBo0iKFDh1JUVMTHH39M3bp18fPzY8WKFVx00UXcc889HDx4kFGjRmGMIT8/n+DgYMaOHQvA5MmTve+ZlpbG1KlTyc3NJSoqirS0NJ588knatGnDgQMH+Oc//0m9evW4+OKLiYuLO+WIbcUR8RO/EIhI9TLGfGetTajudvgijRCLyFmlPMSVlJSwatUqwsPDadeuHVC55KGkpITAwEB27NjBe++9x9SpU7nooosYOHAgKSkp1K5dm3HjxhEVFUVubi4HDx6ksLCQbdu2UVJSQnBwMDVq1CA7O5vvv/+e3bt3e6cqS0lJYcuWLbRp04bu3buzf/9+9u7dS3BwMOeddx6ffPIJ//d//0dmZiaFhYVMnDiRzz77jJycHO68804efvhhrr766pNGW2vWrIkxhv79+zNp0iQeeeQR0tPTiYyM5K233mLMmDFMmzYNYwzXXnstbdq0ASA6OppHHnmkyutVXtpRrmJdr8KwiIibArGInFXKQ5yfnx/r1q3j0KFDNG3alCNHjnDkyBHGjh3L/v37ady4MePHj6dhw4a0bt2a48ePM2fOHIqKisjKyuLQoUMAtGzZkoKCAnJzc2nbti2NGzfmoYceIjg4mJiYGO9Ia2hoKNnZ2dx+++08/PDDJCcn88QTTxAWFkbr1q1JTU0lMjKSSy+9lPXr1/PFF1/w5JNPkpOTQ0hICHfeeSdpaWmMGzcOgNLSUrZv306zZs28fSoPqz179qRJkya8++67JCYm0qlTJ8BdtlC+wMWJym8GPDHkVgzDIiJSNQ0PiEi1czqdLFq0iH/+858AJ81ZWy4rK4svv/yS+fPnc+jQIV599VWmTJlCUlISKSkphISEMGbMGJYsWcLYsWO54YYbiIyM5IEHHiAoKAiA4OBg6tSpw7FjxyguLiYqKgqHw8HkyZO54YYb6N69Oy1btiQ6Opp169Yxfvx4Jk2aRHx8PB9//DGrVq3i/PPP5+DBg6SkpOB0OomNjaWwsJBx48Zx22230bdvX5588klKSkro1q0bAIMHD2bnzp3ccccd9OvXj+7du7N7924cDod3Tt+K/Y6Li+PRRx9l0KBBNG7c2Lu9fF7fE8vdNKeviMivp09PEfndnRj+XC4X27dvZ9GiRUDV03V9+eWXXHHFFbz++uusXr2asLAwxo0bR/fu3Vm4cCH9+vWjSZMm7Ny5kwEDBnD//fezZcsWDh8+TGhoKEVFRezbtw+A2NhY9uzZQ+ahPNbvOcKOtJ0UFxdjrfXeeLds2TLOP/98li5dSlJSElu2bKFt27asXLmS2NhYb4j18/OjRYsW+Pv7k5WVBUC/fv0IDAzkiSee4JJLLgHcMz689957dO/enTFjxrBgwQJ69eoF/Dinb3mgLSws9N7Id+KXg6pWqxMRkf+NfpYmIr+53Nxcli5dysCBA1m/fj3Hjx+ne/fu3v0nTm0WEBDA+eefz9dffw1UHYj/8Y9/MHHiRPr27esNjt27d+eDDz5g165dxMXFsWHDBpKTkxk1ahR9+/alefPmrFmzhh49euBwOMjMzKRhw4Z06NCBPBtE2x79CIqIpuCYk/OCI7x1wwkJCYSHhxMWFsZf/vIXduzYQUBAAGPGjCErK4vAwEBq1arFSy+9xDPPPIO/vz8bN24kJiaGvn37EhAQwNSpU9mzZw/h4eHePtSpU4fbb7+9Ur/27t3Ll19+SUpKCjt27GDbtm388Y9/5N5776VGjRoKviIivwMFYhH5n1WclgwgPz+f3NxcwD2n7eLFi2nRogWlpaUAPP3002zYsIHi4mImTJhAr169qF+/vnfasXr16lU6tzGGvn378txzz/HBBx9Qv359Bg4cSMOGDQkLCyM9PZ24uDhWrVpFUFAQPXv2JDs7myNHjrBs2TKuuOIKEhISGDJkCAkJCfzfUxNJa9SPoMIoAuo0pG7izWyjhODN33vn7H399dfJz8+nqKiISZMmsW3bNr755hvy8vJYvHgxtWvXJjg4mLCwMJ588kmio6Np0KCB9xp07tyZzp07V3mtwD0q7ufnx86dOwG4+eabadKkCbVq1VLpg4jI70yBWER+EafTiTGmUmgzxnhHMvPy8oiJieH888+nrKyMN954g2XLlrFgwQIeffRRunbtynXXXcczzzzDwYMHeeihh4iKiiIuLo4aNWqwY8cO6tWr5w3C5ee97bbbuPbaa8nNzWX06NG8/vrr/OUvf6Fhw4Z8/fXXtGnThvj4eDIyMmjTpg2XX345vXv39tYOP/jgg9x66600btyY9XuOUDO8Hs4Ofb19CPaviTV+bNiwgS5dunhnqJgwYQJvvvkmNWvW5KmnnqJDhw60bdv2Zy3gUdW0ZuX9KX/9JZdc4i2rEBGR6qFALCInOdWMBVC53KF8Sq9t27bxxRdfsHLlSlJTU5k5cyb33Xcfr7zyCiNHjiQyMpK//OUvtGzZEoDMzEzuuusu0tPT2bNnD+vXr6djx45ERUWRmprKxRdfXGm+XHDX1WZnZ1OjRg06derEgQMHaNasGVdffTUjR45k27ZtjBs3jj//+c8MHjyYNm3aeMOwtZbatWtTu3ZtAGIjalDqcmGtC3CH7jLjoHvXizh27BgOh4NrrrmGIUOGEBERwR133FHldSq/we1UNb0a6RUROTvo01pETnLijAWZmZnk5uZSWFjIU089Rbdu3WjdujVvvvkmBQUFlJaW8o9//IP4+HjWrFlD69at6dy5M5s3b6Z79+5ERESwefNmwF1CMX/+fHr16sXatWu59957WbJkCQCNGzf2lhCc6PDhw4wZM4ZrrrmGHTt2kJSUBMCll17KunXreO+992jfvj116tShU6dO3jBcPqJdUWRoEJOGtKdGoD+1ggMIDnAwaUh7pr01lSuuuAKXy0VkZCQRERHAj8HX5XJVmt3BGIO/v7/qfEVEznIaIRYRr9LSUjIyMli9ejU7d+7kiiuu4LPPPuPVV19l6NChDBs2jMGDB3P33Xfj5+fHuHHjePvttxkxYgTt27evVPvbunVrfvjhB+6++25CQkLYs2cPAIcOHWLDhg3e+XjXrVtHZmYmAJGRkaxcudJ7jvJZFowxREdHM3fu3FO2vfw4Y0yl0eVTlTYM6NiQ7vFR7D1cSGxEDSJDg7znqarM4eeUSIiIyNlJI8Qi4vXXv/6VAQMGsGfPHtLS0rj77rtp1aoV2dnZ1K1blzlz5tCsWTMefPBB+vTpw9dff82aNWvw9/enadOm5OXlec/Vpk0b72hvTEwMW7ZsYffu3QQEBNCnTx/vo3Pnzt55dgcNGsQrr7wC4F1+uXw6svKQWnG0tqKKyzX/3BHbyNAgOjQK94bh8vOIiIhvOWNHiI0xGUAe4ATKrLUJxpg6wBygCZABXGetPVxdbRQ518TExOBwOBg7diz79u3jjjvu8M7Le9FFFzF+/HhmzpxJixYtmD17NqtWreLuu+8GoH79+pXKHZo2bcqGDRsAuP766xkyZAg33XQTjz32GA888ACXXHIJLVq08J6//BzlDh06REpKCikpKaxbt47S0lLGjx9P06ZNNVorIiK/qTM2EHtcZq3NqfB8LJBsrX3WGDPW87zqdUxF5GfJPV7sLRvo1KkTNWrUACAkJIQGDRpQVFQEQHx8PAUFBcydO5dHH30UYwwLFy4kIyODwsJCateuzZ49e8jLyyMsLIxGjRrx+OOPk5+fT926dVm8eHGl9y1fwQ1OLlNYt24dr776KlFRUSQmJnLVVVcRGxtLcHDw73BFRETE15zpgfhEA4FLPb+fCXyDArHIr/bRun2MmZ9CgMNBqcvFuJ7RlJaWcvz4ccLDwwkJCSErK4uysjLq169PWVkZPXr0YPLkyYwcOZJhw4bRp08fjhw5Qt++fenRowdhYWGAe4nkESNGVHq/inW+FZ1YptCxY0emTZt2ejsvIiLicSYHYgt8boyxwJvW2reA+tbaTABrbaYxpt6JLzLG3AXcBXjrEkXkZLnHixkzP4WiUhdFuOtxJ3y1lxp+/mzYsIFu3boRGBhIeno6BQUF1KpVi1tvvZWkpCSGDRtGeHg4devWrXTOOnXqVHpePiNDeQBWfa6IiJyJzuRA3N1au98Ter8wxqT+nBd5gvNbAAkJCfa/HC7is/YeLiTA4fCGYYDAgEBatruAY8eOATBy5EjCwsKoVasWAKNGjTrpPKca9YWff3ObiIhIdTpjA7G1dr/n1yxjzIdAF+CgMaaBZ3S4AZBVrY0UOYuVL05RUanLxet/+xuRoUE4nc6Tfspy4hLNoFFfERE5+52R/5MZY0KMMWHlvweuADYC/wFu8Rx2C/BR9bRQ5OxXvjhFcICDsCB/7+IUkaFBuFyuKmdyOHHJZhERkXPBmTpCXB/40PPjVn9gtrV2kTFmDTDXGHMHsBu4thrbKHLWO9XiFAq9IiLiS87IQGyt3Ql0qGJ7LtDr92+RyLkrMjSo0sIUIiIivkbDQCIiIiLi0xSIRURERMSnKRCLiIiIiE9TIBYRERERn6ZALCIiIiI+TYFYRERERHyaArGIiIiI+DQFYhERERHxaQrEIiIiIuLTFIhFRERExKcpEIuIiIiIT1MgFhERERGfpkAsIiIiIj5NgVhEREREfJoCsYjI/8DlcmGtre5miIjI/8C/uhsgInK2KA++xhjvNodD4wr/i7y8PABq1qyJn59fNbdGRHyVPslFRE4wb948tm/fftJ2Y0ylMLxv3z7mzp3Lu+++S25u7u/ZxLOStRaXy4XT6fR+ufjggw9YvXr1bxqG8/PzOXbsGKARfBH5eRSIRcTnLVu2jC1btnifG2Pw9//xB2jlgerAgQO88847pKWlsWPHDh555BGWLFnC999/z9SpUzl+/Pjv3vYzkbUWp9OJy+XybisuLvZ+ofDz8/N+sUhNTeWZZ57hj3/8I++884739b9EecguLS0F4LbbbuOll14C3CP4Fb/EiMj/s3feYVGcax++Z5cuvUgVBaQHKRELGlHsGDWRaDRqLNHoiUaNMXYTe2KNPRpbLKjEFmNDo4kigoqIICrYKIL0Kp0t3x+4E1BSzjkxJ8m393V5yS4zOzPvDDu/ed7n+T1qGkMtiNWoUfOPprS0lLS0NPF1fZGmEl5RUVGEhYUBkJ+fT8eOHXnw4AHJycl88skn/PjjjwDcunWLI0eOYGBgQHh4OC4uLixatAhtbW327t3LtWvX/sQj+2ugEqPPIwiCmE4SGxvLtm3biIqKYvv27bz11lvs3r2b8vJyMjMzSUpKws7ODj8/P3HdxlAJ7ecFs0QiQSqVoqmpCUC7du149OgRAA8ePGD8+PHExsb+YcesRo2afx5qQaxGjZp/FCqBphJpO3bsYM6cOZSXlwM/5/xmZmaK0+p37txh2bJleHp6cvDgQe7cucPkyZNxcXHBycmJTZs2AaCrq0thYSFNmzbl+vXrfPvttwwfPpzq6mpWrVpFmzZt/gdH/PLJz88XI771HyhUCILQQKTeu3ePlStXMn36dC5dukRlZSVLly6lW7duxMfH07FjR5YtW0br1q3JyclBU1OTYcOG8corr4hR3urqavbv38/BgwcbbKd+dBnqRPKVK1eYMWMGY8eOJS4ujg4dOnDv3j0A1qxZg7u7O6+++urLGh41atT8A1AX1alRo+ZviSoftX4kEl4scvP19SUyMhK5XE5eXh4ff/wxN2/exNTUlC5dujBnzhwGDBhAZGQkt2/fBiArK0sUeEOGDGHjxo08evSI/Px8vL29ATAzM2PixIlMmDBB3FZFRcXLPuyXjlKpFP9JpVJOnDjB5s2bOXToEJqamg3EaGlpKYcPH+bmzZsolUrWrVvH/fv3mT17NnK5nKCgIDGVpLi4GJlMxmuvvYafnx/79++nd+/evPnmm7Ru3Zru3bujp6dHx44dmTt3LnZ2dty/f5/c3FwGDhxIWVkZV69e5caNGygUCqZOnYqmpiapqaksXryYgIAAOnbsiI2NDRoaGuTl5bF79250dXUZNWrUSx83Va6yujBQjZq/J+oIsRo1av7y/FJUUiqVNhDApaWlbNu2jWnTprFy5UoAXFxcKCgooKCgABMTE2bMmEFCQgKHDh3i4MGDXL58mb59+6JQKMjNzUUul2NtbY1MJuPhw4cYGRkxYsQI9uzZw65du+jZsydQJ5QPHDjAli1b2Lx5M4MGDeKnn376cwbkJSIIAiUlJcTHxwPg5uZGbW0tV69e5fPPP2fy5Mnk5eUB8M033xAWFsbjx4+5evUqBQUFvP/++1y7dg1DQ0O2bNnCmTNn6Nq1Kx4eHjg5OdGjRw/i4+NJT09n/fr1DBo0CLlcTq9evdi/fz/29vYsWrRI3HZRUREA165dY+fOnUgkEjQ1Nfnkk0+AugJIJycnZs+eTd++fbG0tMTMzAx9fX3mzp2Lrq4uhoaGb/prLQAAIABJREFUf9j4VFRUiA9O9aPiqrQNNWrU/D1RC2I1atT8JVBFfBsrqGrM2qy0tJRNmzaxYsUKunTpQk5ODgcPHiQ1NZWAgADKy8tZvXo11tbWaGhokJGRgYaGBqWlpQQGBtK7d2/kcrmY92tmZsbdu3dFUWNra8udO3cAGDt2LCkpKRw7dgxtbW0AWrduzZdffkl8fDxxcXF069btLz0t/7y7w/O/gzp3hoiICNatW8f06dMBcHBwoLq6mjVr1hAREcHZs2cJCgpCJpMRFhbG7du3uXv3Lu7u7hgYGNCtWzcsLCzIzc0lJSWFMWPGMH78eOzt7VEqlSQkJFBRUYGvry+9e/dmx44dODs7U1xczIQJE0hKSsLd3R0AOzs7SkpKqK6upmPHjnz55Ze4uLhw9+5djhw5Qnl5OY8ePaJz587U1tZSU1ODTCYD6s7fyJEjKSkpYdKkSTx58uQ/HrP6D2RyuZwlS5YAP+c6FxYWsmfPHj744AO++uorcR/UqFHz90EtiNWoUfOn05gwU6U+1M9HLS4u5vHjx2zevPmF6GtZWRmTJk1CQ0ODnTt3YmZmxsaNG3F1daWwsJAzZ85w4sQJFAoF1tbWYpHV6tWrGTt2LDExMQwfPpzU1FSgLhp548YN0tPTAWjRogUXLlwAwMjIiO7duzNq1ChatGgh7kPr1q3ZtGkTW7Zs4f3338fKyuoljNa/R2MiDn7dbUH1wLFy5Uo2b97MrVu3uHz5Mg4ODrz11lsoFAoePHhATk4OQUFBpKSksHDhQubMmUNtbS0SiYTTp09z/vx5srKyyMnJwcPDg6CgIAoLCykrK8PNzQ1BELh8+TLdu3dHS0uLhIQE8vPzKS4u5tKlS6SlpXHkyBHc3NwAsLS0RCqV8ujRIzQ0NJg1axahoaF0794dc3Nz4uPj8fX15eLFixQXF6OlpSUei62tLVpaWqxduxYzMzPGjRsnns/f62KhivrWfyC7ceMGZ8+epWfPnowfP57y8nK+++47EhMTeeONN0hMTGT37t1UV1f/W+dNjRo1/1vUgliNGjV/KCqxIZfLKSwsBKC2tpZ9+/YxdepUgBcKo6DOwWH79u2sWbNGFBP+/v4sWrSIjIwMzMzMGkTebGxscHJywt3dnRYtWnD//n0MDQ3Zt28fRUVFzJ07l7CwMCQSCfb29jx+/JjKykrkcrlYYBcbG0tiYiJZWVl8/PHHXL58mY4dO3LmzBmmT5/OwIEDxe0NHTqU7du34+zs/MLxNiZAXzbPb6+6uprz58+zbNkyhgwZQnBwMEeOHBEbX4SGhjJs2DDatm3LwYMHxTGQyWSsXr0aDw8Ptm3bRp8+ffD09ERLSwtTU1OmTZuGgYEBEomEwMBAjIyM8PDw4MyZM4SGhmJsbIy+vr7otJGTk4OnpyfZ2dlIJBL27dvH6tWr8ff3p6KigvT0dG7cuMHGjRvp3Lkzn376KQqFAk9PT+Lj44mOjmbVqlUcPHgQR0dH9PX1yc3N5dixY8jlcg4cOMCgQYPQ09Pjxo0bjBw5UswpHjNmDMOHDyctLY0+ffpQVVUFwKxZs9i6dSuBgYHIZDIEQSAkJISUlJRGx7a8vBy5XM7333/PiBEj8PPz44svvkAmk1FcXEzTpk159dVXWb9+PdnZ2Vy4cAFTU1OKi4v56aefOHXqFFlZWS/x7KtRo+aPRi2I1ahR819RWVnJ5cuXWbduHTt27BCF7pMnT9i2bRsAmpqaSKVSysvLSU5O5ujRo5w6dYqamhqgTpiuWLGCjIwMcnJyWLt2LVBnnyWTyVi8eDGtWrUSvYFVBVpt27YVI7y6urp4enoycuRIPvnkE4KDg2nSpAlyuRwPDw/i4uKQSqW8//77fP311/j7+2NnZ8fEiRORSqV4e3tz4MAB0tPT6dmzJx4eHrRv377BsTYmfBvLZf4jUQnu563Nnt9edHQ0U6ZMISYmhvLych4/fsy4ceOYPn06d+7c4cmTJzg4OFBRUcHo0aMZN24cFRUV3Lx5k/DwcKysrNiwYQNHjhwhPT2dVq1aAaChoYFEIqGkpARLS0vS09NxdHTk0aNHFBYW0qJFC/Lz83n8+DHh4eGkpKRgZGSEmZkZjx8/RkNDgzFjxtCrVy+GDh2KVCpFX18fW1tb1qxZQ3x8PCEhIfTp0wdDQ0O8vLxwd3fn7NmzCIKAjY0NDx8+xMHBgaqqKpYuXcrixYsBOHfuHNra2sybN49OnTrRunVrxo4dS2JiIomJiQiCQH5+PlpaWlhZWTXwlz5w4AAODg7k5+cTHx8vPjicPHmS6dOnk5eXh5aWFiEhIVy6dInU1FQWLlxI//796du3L4aGhmhqapKbm0tWVhZXrlzh0aNHrFq1im3btjWYSVCjRs1fH7XLhBo1av4jlEolgiAwdepUEhMTeeWVVygrKyMmJoZFixZRUlJCWFgYOTk5tGrVCj09PSQSCdOmTcPY2Jh79+5RVFTE0KFD2bJlC61ataJ///6sXLmS48eP079/fzG3FOoiojt27ODTTz8lKCiIBQsW4O3tLRY4tWjRgoCAAHbs2EFCQgJJSUnI5XLWrl2Lv7+/GA3s2bMn7du3x8jI6IVj0tDQEB0WJBIJCoWigfB8mUVTz7s7qFAJ7vrU1tYSFRWFg4MDzZo1Y+vWrURHRxMUFERtbS2ampp88803XLlyhSNHjjB//nzxYaNFixY8fvyY1NRUVq9eTXJyMrGxsfj7+3PgwAGio6Oxs7PD2dmZs2fPkpCQQGRkJLW1tZw5c4b4+HhkMhmVlZX4+flx6dIlKioqMDIy4tChQ6LfcOfOnVm4cCHW1tbY29sjkUhYunQpcrlcPB6JRIJSqcTd3Z3k5GQkEgnV1dVoaWlhY2MDgLm5OZcuXWL06NGMGjWK7du306dPH3bv3o2ZmRkAFhYWjB49GqlUSps2bSgqKmLy5MkkJCSwdOlSJk2ahJWVFbGxsVy6dIlXXnmFuLg4JBIJPXr0YP369QQHBzN48GDu379PdXU1VlZWtG/fntDQUEaMGMHFixcJCAgA6q618+fPA2BqaoqbmxudOnUSZxSqq6spKirCxMTkpV0vatSo+WNRC+L/J+Tn53P37l1sbW1xdHQUxYwaNf8Jqutn9erVVFVVcfHiRSQSCbW1tfTp04cTJ05QUFBATk4OSUlJDB48GE1NTTZs2EDfvn2ZNm2aWKQVFBSERCJh/fr13LlzBwcHBzZt2oSbmxvOzs7s3bsXqBNP/fv3JyQkRBQaNjY2hIaGivs1dOhQPD09OXr0KEOHDsXHx4fmzZsDMGfOHHE5lRhWRXvri9767ZlfVtRXVTz4vGWcavv1hXhhYSGhoaGcOHGCTp06MW7cOLS0tFi/fj09e/Zk7NixDfKG09LSOHv2LP7+/nh5eeHi4sKlS5dISUlBW1ubFStWYGxszJQpU1i+fDl2dnbo6OjQrFkzbty4gUwmw8jIiG+//RaFQsG6deswNTXFysqKlJQUKisrcXZ2Fi3SbG1t2bBhA6Wlpbz33nuYm5szadIkRo0aJaZaqMZTlU5T//gEQaBly5Z89NFHpKWlkZqairOzM/Pnzwdg5MiR4vo9evSgR48evzimgiDg7e2Nra0tEydOpHPnzmzcuJG4uDhSUlJYt24dEydOxNvbm+zsbI4fP86cOXMICgpi7969DB48GENDQzE1JyoqijNnzrBs2TJKS0sZMWIEMpmMVq1asXnzZqDOxaRfv34sWrSI+Ph4kpOTKSgoYMeOHWpBrEbN3wi1IP6HUVlZyePHj3FxcaG2tpbvv/+eo0ePUlhYSEVFBVpaWnz//ffo6Oj8r3dVzV+IxoTh7yE+Pp5XXnlFnFI3MjJi6NChXLlyhUmTJgGgo6ODv78/WVlZtGnThiZNmgDg4+NDXFwceXl5uLu7Y2hoyPLly8XPLisro3Xr1g2ErIWFRYPtd+7cGV1d3Qbv+fj44OPj0+gxPn98L0vwAjx+/Bg9PT1MTU1/8+FTLpeTlpYm2sFZWVkxfvx4WrZsybFjx7hw4QJz5sxhw4YNdOjQAS8vLzw8PMjIyADqCr2Ki4sxNzfH1dWVxMRE9uzZw5MnT8jNzcXZ2RlTU1MqKirw8/Pjww8/RENDA1dXVw4fPkzXrl2Jjo4mIyMDV1dXcnNzMTMzw8jIiIKCAoqLi/niiy+4ePEiBw4cYPbs2WRkZHD8+HFGjBhBs2bNqKmpoVu3bmzevLmB4K9PY9FuqEuN+eabb/D29sbV1RVtbW2xCYilpeULYwUvRutVaSuqqC6AgYEBWVlZmJmZUV1djVQqZdq0aQC0bduWNWvWAHVC++jRo4SHh5OZmUm3bt1QKpXExMTg5uaGm5sbV69eJTk5mfT0dNq2bYuOjg6dOnXCx8eHdevWYWhoyA8//MDgwYPx8fFRp0yoUfM3Q51D/Dfm8ePH4s/x8fEEBgbSqVMnJk+ezL59+9DU1KSqqoqIiAj27NnDhQsXKCoqEiut1fz/ZOPGjeJ0rwqJRPJviUNBEKioqMDW1lbsLKavrw+Ap6cnJSUlVFVVYWBgwM2bN4E6Ydy0aVOys7MBcHV1paSkBIlEQs+ePTlx4gTbt29n/vz5DBw4kIiICFq2bImjo6PYUe55rK2teeONN154v7GOai9T/Da23Q8//JAtW7YgCAI3b95k8eLFpKSkoFAoiIiIYPz48bzxxhscPXqUjIwMJkyYwKeffoqZmRlbt27Fw8OD/v37ExsbS1BQEJ06dcLBwQGJREJUVBQSiYSMjAyqqqpISEjg8uXLbNmyhWPHjlFbW0tkZKTo41teXk7Xrl3Jzc3Fy8uLnTt3cv/+ffr27YutrS3btm2jtLSUsrIyKisr2bhxIy4uLpSUlNCkSRMMDQ05ffo0PXv2xNjYmKKiIqZMmSK6N6SmpiKRSLCwsODBgwds3bqVsrKyF5wt6ncRrB8tNjEx4d1338Xb21u0tfulvGypVNqoqFZtp02bNty4cYOwsDDmz59P06ZN6dSpE66uruLDmCpNo7y8nMLCQmxsbBgzZgy7du1i3759BAQEIAgCHTt2JC4ujp49e7J9+3b8/PwoLi4WnU3WrVvHihUrgDqBPXfuXEJCQnBycvoDryo1atT8GagF8d+MKVOmsG7dOjp06ECXLl0IDQ1FLpdjY2PDoUOHiImJYcaMGaxcuZL09HRatmxJQEAABQUFALz22mskJyerLYH+4eTl5fHDDz+IBWfw83R1QEAAnp6eQF207cGDB+zfv5+5c+cSGRnZYNlfQxAErKysRJsy1TSzq6srN27coFmzZtjY2JCfnw+AiYkJFhYW4mtra2sKCgp49OgRbm5uHDt2jGvXriGXy3n77bfp0KEDgiBw7ty5X22s0Ji7w78r8H8P9T1unxfcqsI31bbz8/ORSCSi1Zu7uzszZ87EwcGBlJQUli9fTmZmJrm5uURERGBoaIiZmRm3b9/m0qVLYoT0zJkz/PDDD1haWqJQKAgJCaF169bY2tpy+PBhrl27xokTJyguLqa8vBwtLS00NTVFH98ff/wRIyMj3Nzc0NfXZ9GiRWhra6OtrY2enh49Xn+TuNQCXnm1HePHj8fExIT9+/djZWVFZmYm9vb23L9/H0tLS65fv067du3Iy8sjMTFR9BJesWIFx44do3fv3pw8eZIhQ4YQFRVFTU0NCoVCdLNQiWCVlZkgCFRVVXHjxg3RkaGwsBBBEMjIyGD06NEEBATQu3dvsTnHr6ESxJ6enpSXl3Pp0iVee+015s2bB4C9vT0aGhrk5+eLxXWGhoYkJSUB0LdvX3Jzc8nMzBTPbVBQEDNmzGD69OmsWLGC69ev4+fnh1KpxMPDAx8fH1HAN3ZdqFGj5u+DOmXib4JqujciIoL8/HzOnTtHUlISCxcuxNXVldatW7N+/Xq2bt1K06ZNKSwsJD4+Hh8fH4yMjMjIyMDFxYUWLVqQkZFBdXV1gy9yNX9v6t+EJRIJDx48IDQ0lDFjxohTtwqFQqzw/+qrr1iwYAEbN25k3bp1DBkyhNraWhYtWsQXX3yBr6/vb25TV1eX1157jbVr11JaWiqK1oiICCwtLTE0NMTPz4/Fixczbtw4/Pz8aNKkCVpaWhQUFGBmZsbnn3+Oh4cHAM7OzmzZsuWF7ajE+W956P7RqBqFSKVSrly5wk8//cSIESOwsrJqUPhWUVGBnp4eUqmUmzdvMnbsWKytrbl+/TpNmjRhyZIlvPPOO2zYsIH27dvTpk0bLl68SP/+/Rk1ahTHjx9nxYoVODo6YmhoiIGBASkpKfTr149bt25RUlLC5s2bKSoq4s6dO1y+fJkWLVoQFxfHq6++ytKlS6moqMDCwgJzc3MKCwvJzMwUx23QoEGYmZmxcuVK+vfvz6RJk0hOTib+URYjj2agIWRSXVXOuFatqK6uJiUlBU9PT6qrq5HL5VRXV5OXl0fXrl2xsLDg22+/Zf369XTt2hUzMzO++uorWrZsyZIlS5BKpWhpaSGVSsnMzGTq1Km0bt2aYcOGkZ6ezrVr14iLiyMtLY20tDQkEgnGxsZkZ2cjl8tp3rw53333HadOnaJ58+Z8+umnWFhY/O4UL9X3pLW1NfPmzWuQbmFiYoKGhgZxcXF0794dgGbNmpGSkiIWy23atAldXV3s7e3F9bp27frCdVE/J7r+dflnzEKoUaPm5aAWxP9Dnjx5QkREBN27dxerpX8J1c3N398fExMTdHV1cXJyomnTpiQnJ2Nubk5sbCy7d+/Gx8eHcePGcf36dXr16oW+vj5paWlAXXV0eHg4xcXFf2g7UzV/DnK5XCz6+qUbsUwmo2XLllhYWHD69GkWLFhAXl4eY8aMYeLEichkMpYuXcqCBQuwsrKitLRUbJW7aNEiwsLCfpcgBvD19aVLly5MmTKFoKAg0tPTuXDhAosWLRKdAj766CMeP35MQEAArq6uDBs2DKgTLx07dmzweSoRWr/Y7M8q/pTL5Q2m+FX5rnK5nHbt2tGuXTuxCUVKSgoTJ04kNzcXBwcHXn/9dZ48eUJYWBiTJ0/G1dWVXr16iakjdnZ2VFVVkZubi729PQYGBgiCwPnz57lx4wYFBQUEBgZSXV2NpaUlTZo0EYvgPDw8SElJ4dtvv+XevXt4eXnRvn17rl27xuuvv05JSQkxMTFIpVL8/Pw4e/YsAwYMYPPmzbz11lu0bt0aBwcHzp8/z/79+1EqlUReu8G6ER8iuzIbRXU5Os28+Fo6AiNjE5RKJQ4ODvTr149Lly4RHBzMwIEDCQoKoqysjA4dOtChQwf09fXFMVMoFGLKjOoc6uvr8+DBA44cOcK6deswMDAgJyeH2tpaWrZsyf79+2nevDnDhw9n8uTJdOzYES0tLQCys7OJi4vD2tqarl27YmNj80KueGOoBLG9vT2hoaFMnTqVmpoasWFH//79Rds1gGPHjokPNkqlEldX11/9XNV1oUJdmKxGzT8HtSB+yeTk5JCcnIyrqyuWlpZMmjQJMzMz5s2bx549e0hPT2fQoEG/+/Pc3NyIjY0FECvDHz9+zNOnT8nLy8PQ0JCEhAQSExN5+PAhmpqaaGlpiXmb7dq1Q6lUYm5u/lKOV82/T2PFR6qipOdzMOvnTspkMtEm7OLFi8ybN4+Kigratm3Lpk2bkEqlREVFsXHjRgwMDPDy8mLEiBFii12VW0CrVq3ECG/79u05dOgQhYWFmJqa/q7937ZtG7t27eLkyZNYW1szbdo0MeIG8Pbbbze6XmPRtF8quvpvUUVx4eeHCtX2FQoFN2/eJC4ujvfeew+oK+i7evUqUqmUvXv3EhwczNGjR+nWrRsSiYS1a9fi4+PDgQMHGDBgAFOnTmXu3Lk8evSItLQ0hg8fzkcffcT27duZMGECYWFhhIeH8/333+Pl5UXfvn158803CQ4Oxt3dnZqaGnR0dNDQ0CAyMpI+ffrg4+PDw4cPqaqqwsXFhV69eqFUKtm7dy/W1tY0adIEfX19CgsLsbW1JTs7m1deeYXLly8zf/58tm3bhkwm4/79+3To0AGFQkFmZia2trYY2jhh23sCxTmP0TRrhrSJMdpaGvh26Y6mpiYACxcupLKyEltbW3EcCwsL8fb25uHDhw3SaiQSCTKZjMjISGJjYykvL+fTTz+lTZs2+Pn58dlnnxETE4Ompia+vr6sWbOGL7/8kjVr1lBTU8PWrVtJTk7mtddew8XFhSlTpnDo0CFKSkoYNGgQXbt2ZdasWb/bteHNN98U84VVIhsaOo1A3d+T6u/v18StOvKrRs0/H7Ug/oOQy+UkJCQQFRWFrq4u/fr1Y+PGjYSHh2Ntbc2rr77K22+/zdKlS/n4448ZPXo0+vr6hISE/K4vW9Uybdq04eDBg0CdZ2rz5s3Zt28fM2fOJDg4mMDAQNGcXmU0P3v2bAwMDABo2rQp/fv3f0mjoObfQRWlV+Wazpw5k2+//RZo/Ab89OlTdu3axdOnTzl06BAmJibs27ePpk2bsnTpUlauXIm3t7cYAbOyssLGxgZHR0d0dHREsdSrVy9MTEyIj4/H1dWV6upq4uLiCAwM5NatWzRp0kQURY1R3y9XJSxHjBjBiBEjfnGd56OvLwulUklaWpqYJlJZWcnEiRM5fPiw2DWvvhhWPVQ8evSIzz//XOyItnTpUgYMGMCwYcNE8VdSUsKOHTsoKCggOzsbpVJJ3759efLkCa1bt8bJyQmpVEpoaChJSUkkJyeTlZVF79692bBhA+PGjSMjIwM7OzsqKyuZPXs233//Pebm5mhpaWFvb4+trS0ZGRlMnz4dBwcHJk6cKDYz2b17t+gvfOrUKaysrLC3t2fx4sV8+OGHtG/fnq+//pqYmBiSk5Pp06cPLVu2xMvLC3t7e86ePSt+D9iZ6IK+KTraxuLY1SoUrFu7FjN9beRyeYOHZtX5Njc3F2ecXF1d2bp1KwqFgvHjx3Ps2DG2bdtGq1atxBz1Zs2akZycTF5eHu3atWPz5s3MmDGDlJQUmjdvzp07d9iyZQvnz5/nyZMnvPPOO7z++ussW7ZMfDjx8PDg+PHjZGdnNyqIVRFp+PnvRtURsbGHzfo+yKrrQY0aNWrUj71/EKGhoUycOJHk5GQsLS05ffo0JSUlREdHM3PmTCIiIti0aRP6+vrMmzeP3NxcTp06RVBQ0O8qwlB9abu7u3Pr1i0qKyuRSCT4+fnRu3dvAMaPH8+DBw84evQoI0eO5MMPPwQQb4Iq1EUffz6q6npVVK26upqFCxeKN3BHR0fCwsLE5e/du8d7771HQEAAy5cvp6KiAplMxvTp05FIJPz444+4ubmxceNGoK7V7FdffcW3337Lw4cPAbC0tKRZs2Y8efJE3MadO3cA8PLy4tq1a6LA2LBhA1u3buXw4cO0b98eAwMD0df2eVcAlaB83gVAtVxj11djrZr/aGpraxk0aBCOjo6iHZmuri5xcXHo6+uTk5MjRnf79OmDh4cHs2fP5uTJk+Tn55OamsqjR4946623OHnyJN7e3hgYGJCdnc3JkyfFZhbTpk0jMDCQN998k127duHt7U10dDRz585FX1+f1NRUwsLCRGcMTU1NNm3aRFBQECUlJcjlcoKCgqiqqiImJoaysjIxnaR58+ZIpVJ8fX2xt7dnxIgR2NvbY2Vlha6uLvr6+vj7+3P48GESEhIYPHgw5eXlhIWFsX37djw8PPj+++9xcXFhy5YtTJs2jZ49e6Ktrd3ge8C0iRafv+GJtoaAgbYGOpoSloe0wtK4iXhuVZw7d47jx48zevRozp49i5mZGSkpKSQnJ3PhwgV8fX2RSCRs2rSJDz74gGXLlvHuu+8CdddgZWUlZWVlREREcOnSJTZs2MDZs2dxdnYmISEBY2NjQkJC+PDDD5k1axaFhYVkZGSwYMEC+vTpw5w5c2jatCnu7u7U1ta+cI2pZhWevx5VLZqf52U2V1GjRs1fC0EQXhEEwfK3l1RHiP9rCsqqSckt5d7DVLp06SK2FD1+/Dhr167lypUr6Orq4ufnx4ABAwAwNjamsrISX19fpk2bxsqVK3/XtuRyOaampvz4449iQZynp6cYjVHdFOrbGTX25a+e/nu5yOVyPv30U4YNGyZW+9cfc6VSiba2Nvv378fExISSkhKWLVtG9+7d+eyzzwgMDGT16tW0aNGCBQsWMHLkSLS1tZkwYQJeXl44OjpiZGRE165duXDhAunp6ezdu5fo6GjS0tLo27cvkydPplOnTly5coW8vDwcHR1xd3fn+vXrQF0zgfDwcCZNmkRwcDAJCQkoFApmzJhBt27dgMaFQ1VVVV1BVnw8sbGxFBYW8sUXX2Bra/s/FxqamprY29sTEBDA+vXrmTVrFkqlki5durB//37OnTtHcXExcXFxfPjhh3h5edGqVSvCw8Px8/NDT08PY2NjvL29SU1NxcLCAj09PWQyGVeuXKG6upry8nJmzpxJZWUlubm5VFVV8fTpU0pLS2nZsiXl5eVkZmYikUhEb960tDSKioooLi6mpqaG7OxsRo8eTe/evbl27RqtWrXCwcGB0tJSBg8ejK6uLlOmTMHOzo4dO3aQm5uLXC6nX79+aGpqkpycjI2NDd7e3rz77ru0bt0aGxsbMSWkPr/kLy0IAm++ak8nV0syiioxktZirKfJwYMH2bdvH82bN+df//oXrq6uLFy4kOrqambPnk2PHj04dOgQP/30E1FRUfTr14/27duTmJiIj4+P+IBVWVmJrq4uNjY2yOVyqqqqSEtL4/79+6Knb2RkJC4uLpSVlTFs2DByc3PF7djZ2eHv70+HDh3w8fERo9XPz1wUFBSQmJhIfHw8t27d4tGjR+Tn53P+/Hl1WpgaNf9PEeqehDWUSmUtsBo4Dyz7rfXUgvi/4NjNTGYcTkBTIqEkVQ+tmENiBMjb25sOHToQERH7Tjl1AAAgAElEQVTxwnoxMTEYGBiwb98++vbty/Tp05k/f754Q2tsShp+Fij+/v4NPu/5hgOqqMj/WqD801GNe/3xV7kPREZG0rZtW9zd3SkoKODSpUtERkZiY2PDhAkTiI6ORldXl4iICPr3749UKkVPT4+HDx/i6+tLVlYWw4YNw87Ojg8++IDo6GiSkpLo2LGjaOVlY2ODRCIhOTmZ7t274+DgANRFRRMTE+nbty+FhYWkpaXRtm1b2rRpQ2ZmJlBn31dWVoZcLsfCwgKJRMK4ceMaHN+jR4+4ffs2cXFx3Llzh7S0NNLT03n99ddp164dI0eOpEWLFn94N676U+C/9xpWnQNTU1OCg4O5ePEid+7cobCwkNatWxMfH8+mTZvo27cvNjY2rF69mjt37lBWVka7du2YNGkSERERnD9/HolEQnh4OFVVVZw7d070WXZyciIrKwsHBwcxDSImJgYrKyugrvtdTEwMRkZG6OjoMHbsWKqqqvjyyy/R0tKioqKCPXv2iNdK06ZN6du3r/ja0NCQkSNHMnz4cPbu3cuWLVuwtbUVH26aNGmCjY0NxsbGLzxg1c/nrZ8m8LwQlslkSCQSsrOz2bt3L507d8bb25tp0+Yhk8mora1l1KhRREdHs3DhQnbu3ElwcDBnzpwRU6169OjB22+/Te/evcWucTo6OmhpaXH16lU6duwoFsCprtHbt28THBzMwYMH8fPzw9ramrfeegsDAwOaNGnChx9+SIsWLRr49wYHB79wjg8cOMC1a9d4+PAh2dnZGBoa4u/vT7t27QgODv7FBwM1atT883gmfAWlUqmo/56y7gux9tlbNwCr537XKGpB/B9SUFbNjMMJVNUqqEKBxNodjZBljBvuyvHDdQU0SUlJHDlyhObNmxMbG0tVVRXjxo1jzpw5LFmyBG1tbb7++mvu37/f4IbWWIFHSkoKsbGxSCQSgoKCMDb+OfdPHfH936Aad9X/BQUF6OrqoqenJzoDAJw5c4arV68SEBBAVFQU69evZ9q0aYSEhGBmZsbEiRMB8Pb2JikpiZycHFxcXERfW3t7e86dOwfUefxGRUUBP3dty8rKIjc3lyFDhohWWStXrsTKyooxY8aIlfNdu3YVLaRsbGzE43B2diYlJUUUVqrjWbRoEZ6engQGBjJmzBgsLCx+Nbf43+WX7Kv+08K6wsJCampquH37Ns2aNWPy5Mm0DXgNY0s7rG2bEXHhR9544w2mTZtGdHQ0pqamGBsbc+jQIa5cuUJJSQk5OTkMGzaM7OxsvL29efLkCT169GDXrl2EhISwfft2iouLiYmJQU9PD319fTZt2sSYMWNIS0vDysqK8vJyWrduLbokdO7cGblcTmJiIv369WvQaU3lX6x6CJBIJGhoaPxmTrZK2Krysn+P80FmZiarVq1i6NCh1NbWsnjxYjQ1NbG1tcXIyIiHDx9iampKv3798PPzY8OGDRw+fJiAgACxfTbUXYOOjo688cYbrFy5kvz8fN544w26devGjBkzMDIy4u7du+jp6bFo0SKaNm2KIAiiRVtOTg6enp4NbB/rW5v90nUhkUjQ19dn+PDhODk5ifn3atSo+WdSX8AKgiB5TviqXqt+b6ZUKguUSqVSEAQPYBtQCGgBv+uGohbE/yEZRZVoSiRUUXd+5FVlyEuKiYypIi8vj4CAAObNm8fWrVu5e/cutra2DB06FE1NTcLDwzE0NEShUNCiRYsGLT7z8vK4ffs2CQkJREZGkpycjI6ODo6Ojvj4+NCzZ88XcoLV/LnU1taSnp5OVFQUJiYmJCQkEBoaiomJCSNGjGDs2LF4eXmRlJREbW0tgwcPpk2bNsTGxnLjxg0SEhIYO3YsPj4+7N+/X/xcf39/MSqoo6PDwYMHCQwMBOo6Ebq7u5Oamkp0dDQA5ubmNGvWDCMjI4yNjZk6dSpubm4Nomyq9VU8H80WBIHAwEBxufpiaufOnX/YmFVXV3Pv3j1sbGxEi0HVtp6f4cjJyWHXrl2cP38eW1tbPvnkEzH1RLXfKhGpoaGBIAjU1NSwePFi8Xx8/vnnaFk7s/nLL7DqNobi5PuUp6fToUMHzM3Nsbe3R0tLi/j4eDQ0NNixYwcDBw6ksLCQVq1aoVQqiY2Nxd7enrS0NLGRzdChQ8XcXxcXF7EVur+/Py4uLmIU/e7du0RERGBra8vEiRMpLi6mqKgIhUJBbW0tCoVC3PfGxH9+fj4mJibIZDKkUmkDqzDghde/RUFZNdk12ljbO3D48GEmT54stjNOTEwkJiaGvn37ig18jIyMsLa2JjMzk169epGbmyt+VsuWLamsrGTEiBE0b96cL7/8kmvXrrF06VLWrl3Lnj17cHNzo1OnTgDMnTtXXNfW1raBa0Vj7bR/Tdz369fv3zpuNWrU/D1oLHpbTwyLUWBBEEwBI6VSmSIIQjNgHeAI3BcEYa9SqfwOCAHOKpXK+YIgDAa+fl5QN4ZaEP+H2JnoUlu/eEipIO/qdxxL18D/VV8GDBiAk5MTX3311Qvrqvx/JRKJKEquX7/OxIkTMTIywt/fn7Zt29K7d29sbW3VU4B/MT799FOOHz/OwIEDKS8vR0dHh9u3b3Pz5k0WLVokFj6dPXuWmpoaiouLmTVrFi4uLgwaNIjLly+TlJSEn58fy5b9nNaksrPS09PjnXfeYfr06fTs2ZP8/HymTJmCVCqlffv2YqtYQ0NDsZoeoE+fPuLPquvq1xoHvKwit/rRzvpR35MnTxIQEECnTp2oqKggJycHuVxOy5YtOXbsGKdPn2bVqlVERkZy48YNvvjiCwwMDLCysmLOnDliTraqy1j97akcOPz8/MjLy6O8Vs7WDWtAkCIzsKS2tAAQGD7qPa5ERpCYmIi9vT2CIODs7ExUVBRGRkbo6emxZs0asf051D2MtGrVig4dOnD8+HF8fX0pKirCwsKCO3fuUFBQwO3bt7l48SIff/wxPj4+XL16FU9PTwYMGEC3bt0aeOjWbzKRmZnJd999R3R0NDdv3iQ/Px9zc3MGDRrE3Llz/5DmOfVTu8oLmqA4c4TRo0fTsWNHrK2tSUhIIDU1FTc3N+bPn89nn32GgYEBZ8+e5V//+hcmJibk5+eTl5eHhYUFurq6uLq68uDBAzFVR+VBrPIobuya+KWorxo1av5/8Wvit94yGkBLwFOpVB4WBCEEWABUAKeA+cAAYK1SqbwgCIIvcEkQBBOgB/DBs889IAjCKqA5kPJr+6UWxP8hZvraLA9pxfRnN5paTWM27thGPx/bF5ZVecrWzwdWobox+Pn5ER0drbYA+otSUFZNRlEldiZ1hUIymYzPPvuMsLAwxo0bR2RkJIWFhTg4OGBjY4OtrS1Pnz6lsLCQ1NRUEhISRLu81atXk5GRwRtvvCF6U1dVVfH111+L+Z3u7u6sW7eOzMxM3NzcxAIhMzOzF6JkjYnf5///o1EJ3pqaGq5evYqxsTFeXl7iNlVRT1VTBFV76M2bN9O2bVv69+9PfHw8xsbGzJo1C3Nzc/Lz88nJyRFtxiorK7GwsEBfX79BTvaVK1fYvn07d+/eJTAwkLFjxzJw4ECqqqq4ffs2tbW1xCXcRVPPCLkgAUGKREcfJBJOnjzBK26uJCYm0rFjR3x8fEhKSuL69esEBASQlpbGxIkT6dWrFzExMfTu3RuZTMbevXvZsGEDaWlpODo6Ul1dja2tLVVVVcyZM4fw8HDs7e3p3LkzO3fuRF9f/4UI+8OHDzl79iyhoaE8evSI0tJSZDIZLVq0oFu3bixZskRsy/xH8XxqF/qWFEjNWLjkczp27Ejnzp0ZMmQIlpaWtGvXjmbNmjFixAhycnIwMjKiffv2ACxYsEBM9QA4f/488HMTmOevjec9tNXNLP47CgoKUCgUYpqUGjV/dQRBMAKClErlUUEQpEqlUvwCaUT8OgLOQKxSqcwXBKELsAi4B8gFQfgR+AR4S6lUJtVbdSRQ8Uw8K4GfADl1KRL1O49VAq+gFsQvj34+tnRoaS4KJZV/J9DgZvDv+Ayr+etRP8JWq1Aw0tFONP0vKiqiW7dubN269YXiMqlUSlZWFtbW1piamrJkyRIxApiRkYFEImH58uX88MMPODs7A5CUVPe3ruoWpiqUq88vFVH+mUKjfqHnzZs3KSwsxNHRkeLiYoqLi5k5cyZPnjzB3t6eBQsWYGtri4eHB2VlZYSFhYld21TewK6urlRWVlJaWsqbb77J3bt3OXjwIElJSdjb24s52Q8ePGDu3LlUVFTQrFkzLl++zKVLl/Dw8CAwMBCZTMapU6eoLC1Ay9KRivRE5E/z0DK3p4mtK0+TfsDMzAwzMzOaNGlCmzZt0NHRYefOnURHR3PgwAHCwsI4ceIEcXFxxMfH4+TkxMyZM7lx4waenp68+eabTJw4sUGUetSoUeLPqpzs+nm+AIsXL8bGxob33nuPtm3b4uTk9NLbpz+f2gVg6t2NvbsW0bF9W5o3b46+vr6Y57t161bOnDmDoaEh7dq1E+335s2b98Jnq1JWnkf9XfbfU795jFwu58cff0RfX1+02FSj5q/As6I2N8Ab8AXuAzufiV8pYANQXww/W88HcHgmlhcCPYEc6sTvOKAA8ALeVyqVdwRBaA+kAXnP1tdSKpU1gAzYp1QqNz73+T8AQwRBSKdO5xoAbYHjv3Y8akH8X2Kmr42Z/s83NbWzwz+LFyJswLaECnRqaqmoqKBXr16sXr2awsJC9PX1uX79Onl5efTr1w+lUklycrLYtezq1au0a9eOKVOm0KxZMwRBwNfXt9E2yY1NL6t4WYJDLpfzww8/kJ+fz7BhwxrN7wTIzc0lISGBkpISOnXqxPr168nPz+fKlStMmjQJd3d3ZsyYgZ+fH7du3WLIkCHcvn2bSZMmsWrVKqAubcDU1JTU1FTKysooKSnhyZMnHDlyRMzLNTExITg4mLCDh3itW29uJ91DT08Pc3NzRowYwVdffcXVq1fR0NCgY8eOuLm5ERoayoQJEygtLWXcEA9WLbyGjlRAqaVFS418EivK+eCDD7h27Ro3b94kKyuL8PBwbGxsmD59Om+//TZJSUkMGDCA5cuX4+/vL0a+33nnnRfGQjVG9T2a6+dk1+ePzMn+vbyQ2gVot/BhzLh/icWWBw8exMjISPx9SEhIg+VVxX/1Cy5BHen9b6nvpfz831n9+4hUKuXUqVM8fPiQzZs38/777xMcHKwefzX/UwRB0AT2AH5AFHVi2BuIEgQhSKlUFgqCEC8Igj4wDBCAb5RKZSXwEXBREAQ3IADor1QqswVBOAG8SV2k9wKgcg+wAx4C5kDBMzHMs2W8BEGwAbKAt4FkYCEwDfgRiAR2ADG/dUxqQaxGza/QWIRNp4kxSkFKfHw87du357PPPuPjjz8W838nTZoEwNatW7G0rPMDHzRo0C+26P4lr1h4uaKjsRbG9+/f5+rVqwwbNqzRbZ87d45p06bh6OiIs7Mzffr0YdasWRw5coTjx39++I6IiGD+/PmUlJRw9+5dioqK0NfXp6qqSmwfbGdnx7Fjx/jss884c+YMubm5RERE8OqrrzJ16lROnDjBFytWgbUHTwvMyL38IwVVcDMmhujoaBwdHXn//feJiori5s2bDB8+nJUrV3L9+nVMTEz46KNh7Fj+Ke5Vd/Bo48zpEzcoLy9n9OjRfPLJJzg7O3P69GmcnJyYNGkSxsbGjeb8w8/WZqpiOBWqsfurihMzfW2WDfBixpFb4gzH8pA29PN5E6g75/XFMNBA3Kv4rdbGLxvV2DeWdvZ34N+ZOaytrWXJkiX8+OOPPH36lNDQUJRKJbW1tbz++ut06dLlL3u9qfn/g1KprBUEoQCYq1Qqv4U65wfgNHX5uyuAb4Ap1AnX5cDdZz9bAY+BZkAcdU4QAGGAE6BLXXqDK3ViOwroDbwLzBEEoTXwFPgUeA84TF0U+BGwRqlUygVBWAOseybAfxdqQaxGza/QWIRNJkjo0K4tZWVlQJ3zQHBw8AspE/XdQ+BFAariZd3gCwoKiIyMFPN1y8rKGhQ8PT+boampiZubGz/99BPQuMjbtm0bn3/+OT179hT3u0OHDhw5coS0tDSaN2/OrVu3OH/+PJ988gk9e/bE2dmZmJgYXnvtNSQSCVlZWdja2uLt7Y2pqSmnT58mKysLV1dX7Ozs2LZtG3Z2dhSXlCAztMXAuzc1uubIqyuISK+kvZc3yXdv89NPP4m5yUlJSbz77rukp6eTn5+PlpYWs2bNwszMlFZuTtTUVPH5559TXl5Or169MDc3RxAEAgICXjhGlXipf65UgvDvJMays7N5+PAh/Tt0oG0LY3LKZGJql0pgNjaj9b8WW/Vt6VT8p1Z8fyb1GyI9f608v+8ymYyYmBhiYmI4d+4cEomEefPm8eqrr7Jnzx4yMjLYvHkzZmZmWFpaMnr0aH744Qe6deuGnp5eozNHatT8JzxLe5DAi6kNv7KOyrEhC3AWBMEMKH4mRA8AAYIgGFCXouCnVCpPCILwCOguCEI8kESdT3AtoANYAunU5f+2ApYC+YDLs/3KFAThS2CCIAgPgFTqUjOSBUHYDIQqlcqi+vuoVCqr6x0fgOS3jk8tiNWo+RVeKJ5UKFge0op+PnW5fKobk0oM/1q092Xf0J+f1i4vLxdttNLT04mIiMDFxUVsNLF48WJu3bpFdXU1S5cupWvXrlhaWlJdXU1ubi5NmzZt8NmCINCzZ0+WLVvGkSNHsLS0pH///tja2mJgYEBKSgrNmzfn6tWraGtrExgYSF5eHsXFxVy+fJkePXrQunVrQkJCaOXjxwczFzBp2kxMTb/mu+++4+zZs+zbt4+qqiq2bt1KepnAsG1XeVotQ6mQo6ipQlGaT+TNKCrKy2jSpAkymQwDAwN69OiBUqnEwsICOzs7fH19adq0aYOc7MYEhEKheCHq+1cXXvVRKBRUVlbSpEkTCgsLuXXrFoGBgSiVSs6dO8eePXs4c+YMVib6WNV7XvsrCcznz01j+xUbG8uxY8dIS0vj3XffbeBb/L9k27Zt6OrqEhISIrqHNLb/YWFhHDhwgKSkJBYsWEBwcDCLFi2isrKSr7/+mkOHDrF69WoWLlzIvXv3sLOzw8PDQ/w+MTY2pri4mNu3bzdaV6BGzW/xnKev+POz/3+XEG6ENOpyh/WUSmXBs/dSgC6ABZAA9H32/v5nP8+lLr84njohXgL8SxCEMqANcE2pVNYIgvCEuhQMnu3nLUEQpiqVyor6O6BUKmVA0bPjUgl7Rb3fqwr4fvMY1YJYjZrfoLHiSWjcQ/XPiiA2Fm2uP6399OlTbGxscHNzQyaT8dVXX3H58mVOnTrF7NmzadeuHYMGDWLJkiXk5OTw0UcfYW5uTvPmzdHV1eXBgwc0bdpUFCuqzx01ahQDBw6koKCA6dOns2nTJubOnYutrS0//fQTnp6etGzZktTUVDw9PQkKCqJbt25i8djkyZOx8e/FyqgCpodnUatQMKv7YMLDw9HQ0GiQk21hbEFJ2i2qnpai09wbRXUFCkFg74Fv+ebrr3j8+DEdOnTg3XffxcvL61fHvv65et6G7u8U9a1PZmYmzs7OLFq0iI8//hgdHR2WLl1KYGAgCoUCJycn9PX1WblyJT/8UFdMuGHDBkxNTf/U/WzMdQJ44doCKCkpYfv27WIXwQMHDoj/u7q6EhwczLx587CyshJb1r9MGrMQrM+QIUPEAluVm0xqairbtm1j0KBBzJgxg7S0NC5evMjYsWNxdXWlWbNmQF3nw+LiYpydnRk+fDi7du1i9+7dODg48PTpU6Du71wikWBlZYWWlhaVlXWzv+rosJpfQxAEbeqiq09UQvVXGlxYAiOArkAmsEKpVN79jU2oROYjoDNgSl0KBNRFdu2oE6l3gPHP3o8F9IBDwH1VRFcQhJXUieSNz5bZ/Gz5nY1Ys1WojuHZa8Vzv/9Vn+Hf4u95J1Cj5k/GTF8b72bGDQooX7aQUkUvG0MqlYrbl8lkANy7d4+NGzcyfPhwgoKCuHfvntgmesqUKfTr148jR44wdOhQnJyc0NDQ4P3332fYsGHcuHGD+Ph4TExMMDc3bxBZrU9lZSV5eXloa2vj5+eHsbExTk5O9OnTh2PHjjFp0iRMTU2ZOnUqBw8eZMOGDezfv5/Zs2ejVCqRSXVYGVVAVa2Cp9UyqmoVLDmfjiDVID4+nhYtWog52T07d0AnNhQNeRVGBvrYv7OIr9etok/3IA4ePMiVK1dYtWoV3t7eYmGbXC5HJpO9MG5SqfR/ngf771BUVERtbW0Dq7PnWbt2LT169KCqqoqamhqOHz9OdHQ0Xl5ejB8/HqVSSVFREQ8ePOCtt97i7t27rFu3jqqqqpeyz/UbptRHIpGI46/izp074uvIyEg++OADamtr2b17N48fPyY4OJjx4+vuo4cPHyY7O5vq6mrCw8OJjo7mwoUL4kzHH7nvz6OKpP/SdZOUlMRHH30kpieNGjUKAwMDVq9eTVZWFlu2bEEqlfLw4UOuXLlCUVERNTU1aGho4OvrK85MGBoaoqenh7a2Ng4ODoSGhgJ1aUwZGRk0bdoUf39/VqxYQY8ePYiIiPjDjl3N3xuhDqnQ8CJVAn0Az2fL6AmC4CAIQkulUqkQBKG/IAibBUFo8n/snXlYlPX6/18P+77vCCIpyCKgqAiKogLuS5KZxzxqmph7WplrejQzU8ulNLc0UxM10VwA911CUTYBlR3ZF9kRGJ7fH8M8B82286tTne+8rouLYRhmPjPzjN7P/Xnf7zfQC/lg3PvIpQqZv/SYrQrVTECdZ5urAYBZS8GbCrgJgqAvimKTKIoXkQ+5nWh1X09EUXxHFMV+oii+K4rik+ce40WP3/z/W/y+CGWHWImSvyjPF9z5+floaGigo6PDunXrOH36NBUVFcyYMYNJkybR2NjIzp07GTlyJPv27QPA29ub+/fv8/rrr3Py5Enu37+Ps7Mz2dnZHD16lP79+zNt2jRWrFjB1atXmTBhAvb29qSnp79wTeXl5SxYsICcnBzc3d2ZOHEiAAEBAdy7d++Z27buRMpkMlRVVV84pKipoYVzp84/qclu7QGtOCFRDBkpoo7hryUD+C0oupDw76Grjz/+mHfeeUfyn37+9lVVVTQ3N+Pu7k5tbS2VlZW0bdsWNzc3xo8fz/Tp06moqKChoYHExETy8vIQBIHIyEj69esnpcj9p+tVfP2Szlcmk3Hu3DmuX7+Ovb0948ePR1NTk86dO3Pr1i06d+5MU1MTJSUlNDQ0cOnSJdzd3bG3t5fcV4qLi8nIyMDKygp3d3diYmKeSS78PWi9dkXnurS0lOzsbI4cOYKamhozZ87E3Nz8GZmNjo4O+fn5FBQU0L17d0xNTRk0aBBWVlZUVFRw8OBBZs6cyTvvvMOtW7f45ptvOHXqFCdOnMDOzo6LFy8ik8kwMDAgKiqKt99+m+DgYL7//nsGDRpESUkJWlpanDx5ktdeew0dHR0sLS3x9vb+XZ+/kr82iq6uIAgayO3DnoiimADPSh5a2ZG1B8YC0wRBiAaOI5cfPAE+Qt7FNUWu3dVGPrymDRT9liE0IK/l+1BBEHoAXZE7Q7zasrYngiAsRe4wQct1I37qObbcrvnniuE/EmVBrETJX4zGxkYyMzP54YcfSE9PJzg4mMjISDZv3syYMWMYN24co0aNIjQ0FFVVVRYuXMju3buZNm0aHh4ez2h/XV1duXv3LqGhoejq6pKTI9/VUuhNFy5cCCBZkIE8/OPWrVvSfbSe8LeysiIsLOwn1664nfBcUIii2HjRkGJjczNffP65NOz1vCbbWEf9mc48yAsYDQ0N/i40NzcTHR3NiRMn6NChA2PHjpXS615USF69epX8/HxMTU0ZO3Ys3bp1k6QHqqqq7Nq1Czs7O3r06MGBAwcoLCykR48ekm4b5MWoj48PKioqfPLJJ4SFhfHBBx+QmJhI7969f3Ewq7KyUkrVbM2LOu21tbU8fPiQy5cvI4oikyZNwsDAgJMnT7Jr1y58fX35/vvvKSoqYtGiRfTr14+7d+/i5eUleUIfOXIEf39/4uLi2Lt3LwsWLGDs2LE4OTnh4eHBvHnzsLa2BiAvLw9ra+tf7Pi3fs1+CplMRnR0ND/88AOGhoZMmjSJzMxMQkND0dPTw9fXl7KyMkJCQrhy5cozMhtFBHh2djb9+/ensbERPT09RFHkpZdeorS0lIaGBoKCgggKCgLkw45xcXG4ubmho6PD1KlTefToEaampvj4+ADy8J74+HhsbW2xsrIC5J9DZXT1/01adUNlgBdg0jKkZtTytQa552+2IAgfIJc+3Af0RFEcIwiCFmCBXNoA8s6tDvLwiuPIO8lDAE9BEB6Lohj6S2tS6JAFQXiI3DotFbgJXBZFMbXVbT59/u94wYDbH9Hx/a0oJRNKlPzFWLZsGcOHDycnJ4e0tDRCQ0NxcXGRonMPHTrESy+9xJw5cwgKCuLixYvExMSgpqaGo6OjpD8EcHNzk7q9NjY2JCcnk52djbq6uvSfdFBQEN7e3tjb2wMwcuRINm3aBPy7Y6mQaCgKAcUW8/PShJ9KJ1OgGFLUUldBX1MNLXUV1oZ4YKqnKRXTz9/f31Xj25rq6mpOnDjB8ePHuXLlinTyAXLt6apVqwgKCmLRokVERkair6/P7du3cXZ2xtLSUurICoJAXV0dDQ0NDB8+nDZt2lBZWcnp06cpKCjAzc2NuLg4APT19XFycpI679XV1VRVVWFra/vCYvi7775j/Pjx9OnTB1dXVw4fPizJcVqTlpbGV199xbRp07h9+zYlJSWEhIQwY8YMKioqOH/+PGvXrqWhoYFDhw7Rv39/Fi5cyLx588jMzOTSpUvY2dlx4MABqbhOTk5m/fr1PHz4EEtLS2bOnMk//9RhadYAACAASURBVPlPwsPD8fLywsHBgdDQUKZPn07Pnj1ZsWKFtH5F0ftzco2f49atWyxYsEAaPF2yZAkODg6YmZlhYmLCO++8w+rVq6mvryc2Npb8/HzCw8NZu3Yturq6GBoakpubi4aGBsbGxpIcxMzMDBUVFbKzszl//jyTJ09m8ODBPH78GB8fHywsLOjVqxc+Pj6EhYVx5MgRDA0NEUURdXV1vL29pWIYkE4y/6TmmZLfGZlMRkREBN988w3AT8rjBEGwEAQhUJBHF5sAs4A5yLW4HkAN8DHgj7wwPtiiG94EPAUQRbEeKAMMBEHQFEWxBGhGrvWtFUVxoSiKi4HZQFdBEOx/at2CIKgIgqCKfDAOURRXiqI4SBTFuaIoblcUwy2/E1skHa07xOIvuT38WSg7xEqU/AV4PhpaRUWF999/n8ePHzN58mRMTU0B8PHxYcWKFezduxcnJycOHDhAdHQ0oaHyE3pLS8tn5A6Ojo4kJCQA8NprrxESEsLrr7/O4sWLmT17Nr1798bJyUm6f8V9KCgrKyM+Pp74+Hju3btHY2MjK1aswNHR8T+WJ/zUkOL/QuH7U2hoaPDBBx8wbNgwTpw4QWFhIY6OjgBERUWRnp7OqlWrMDU1xdHRkfr6enbv3k1oaKhUvNbW1lJaWkpxcTG7d+/m6NGjlJaWUlJSQmJiIoGBgbi4uLBmzRpAPqBmY2PDgQMHqKur49q1a7i4uCCKIitXrqShoYH58+dL3fjw8HAAPv/8c9zd3V/4PAoLC/nwww9RU1OjpKSEyMhIpk+fzv3797Gzs2Pp0qXcvXuXPXv28Nlnn2FjY4OOjg4gL+i+//57YmNjUVdXJyZG7pOfl5dHZmYms2bNwtvbm8mTJxMTE4OBgQGenp7Y29tL3teK4jshIYGoqCiCg4OfSU18nmPHjvHNN99QWFjI5MmTmTRp0jMSFVVVVVauXMnixYsZOHAgZWVleHh48P7772NtbU3Hjh2lTrmDgwOlpaVcuHCBuLg4KdjEysqKgoICQL67cv36dbp3746enh52dnY8efIEa2trAgICcHJywt3dHV1dXal73NTUJJ30KF6nn+LvooFX8mP+E993QRACgXXIh9ceAqeQSx5GiaI4rNXtegPLAUPARRAEY6Aa0BIEwVYUxcdALjACuefvU6Ad4ApEC4IwHPBFLrU4BhS03K/iQyUqOrg/1ckV5PHJzS23lc7a/iz5w3+CsiBWouRP5vlo6Ekv2Unb6bq6ulhbW0uDUO3bt6e2tpawsDAWLVqEIAicOXOGzMxM6urqMDQ0JCcnh6qqKvT19bGzs+ODDz6gpqYGc3PzHw3j+Pr6Spefd824d+8emzdvxszMjF69ejF48GDatGkj2Uv9//B8wuNfnec7c7+1eFe8ZhYWFlRVVVFQUIBMJqOyspInT55QWFiIhoYGRkZGqKio0LFjRx48eEBpaSna2trs3LmTZcuWoaKigru7O++99x6urq44OzuzdetWDA0NJc2tvb09zs7O9OvXj5kzZzJlyhRkMhn79++nqqoKDQ0N9u3bx4kTJ/D29ubll+UhHS4uLqipqUnFcFlZGSYmJtKgoqamJrdu3aKhoYHJkydz69Yt0tPT0dPTw8XFRdqZUFNT4+zZs1RVVdGmTRvJYSEyMhJDQ0O2bdtGRUUFwcHBhIaG8vDhQyorK9m8eTMBAQG4urrSuXNnvLy8OHLkiPR6v/LKK9J70a1bN0nOER8fT3V1Nfv27eP+/ft8+OGH9OrVi+LiYu7evct7772Hl5cX/fr1w87OjsDAwGeK58zMTOkk0MTEBHNzc+7fv4+TkxM3btxgyJAhGBgYUF5eTlZWFu+8884z762ZmRnJycmIokhoaChGRvJwLSMjI/bs2SPdztXV9Zm/MzAwYMKECdLzUBa7f2/+CN93YAqwEIhUFKKCIFwHRgmC0FYUxSxBEDohd4j4RBTFyBYJQzfgKvIC1Rq5hCIOeZf4kCAIGcgL5uaWrzrgB+BL4G6LldmLIpfbI9cbd0Eu3RCBtaIo/qD4m78zyoJYiZI/kRdFQ++Iq0HraQPV1dUYGRmhq6tLUVGR1ElqamrC39+fTz75hLlz5zJu3DiCgoJ48uQJAwYMwN/fH319fUBeiCmm9RW01vm25vkiz8vLi127dv2Bz/7P50XSAcUWfOtuzn/qUKHoRqqqqvL48WPWr19PTk4OxcXFqKqqYmxszNixY3n8+DFhYWFER0fj5uZGQkIC6enpTJw4ke+//x5VVVXefvttJkyYgLm5OVpaWtJ/sIrufkVFBfr6+uzbt48pU6bg6OiIm5sbHTt2RCaTMW/ePJ48eUJBQQEeHh7o6uoSGRmJj48PNjY2eHl5sWjRIk6dOkV+fj5BQUFs2bIFVVVV6bEUCYVr166lubmZxMREVq9ejZ2dHWfOnAHg+PHjWFhYsHr1ajQ0NBgyZAirVq1iz549eHh44OXlhZqaGra2tjQ3N+Pt7c1LL73Eli1bJHu+5uZmGhsbef311wFoaGggLS2N9u3bo6amRkREBFlZWbz77rvMmzcPAwMDQkJCJDnF7t27uX79OtevXycnJ4cnT56QlpZGVlYWycnJnDx5kvDwcL7++mt69uxJRESEdELh4OBAWVkZHTt2ZMeOHWzatInS0lLJ7xqQ5BlqampMnDhRWreiaH/RMfb8505dXZ2+ffv+5mNKyV8DxUnyH+H7rtDnApHAAuQFcCFyve9j5Clt7ZD7APsg7/heFgTBHLmmuKcoilGCINwGjrZ8nwesAAYi1/suFEWxsuUhD7R+bi2d4S5AT+Rd5HbI5RVPgDDkxfYuoFgUxd/P7uVPRlkQK1HyJ/Jz0dAJCQn4+vqioaFBRkYGtbW1GBgYMHHiRF555RXGjRuHkZER5ubmz9zn8z6zz2/F/i9LE34tdXV1CIKAlpYWCQkJHD9+nHHjxtGuXbsXvj6VlZUcOXJEcviwsLBgy5YtODo6Ul1djZ6eHvBvNw0FrQfmjIyMJL1pSUkJUVFRfPnll2RnZ9O2bVs2bdpE3759mTRpEjt27ODbb79FVVWV0aNHY21tTUZGBhYWFgQGBmJtbY2Ojg4qKirPnPCIooiZmRne3t7k5uZK12loaODp6cmjR49oaGjgxo0b7N69m40bN0rdZycnJ7S1tXn33Xfx9PQkJycHmUzG1atXmTNnDhkZGTg6OhISEsLRo0c5deoUEyZM4PTp0zg5ObF37162bt3Kzp07KSoqYsWKFZiZmTFixAgKCgowNjZmyJAh0utrbGyMt7c3U6dOZciQIaxZswZfX1+OHDmCsbExixcvxtnZmfnz55OYmMjDhw9ZtmwZEydOpLq6mtzcXBoaGvD19eXx48eMHTsWFRUVvv32W0lHrampSWBgIF26dKF9+/aoq6sTHx+Pvr4+c+bM4aWXXmLo0KEcO3aMNWvWSN3igQMHSicnbdq0oX379vj5+Uk6+9bvsaIYVvCiYwCUn7u/M/9N33f4t8xAFMWvBEE4jNwRYi3ySORVyIvivoIgJAGPAAcgCbgAnKNFOwxsBPaIopjd6unsfNFzFJ719tVC7hiRBZxE7mdc+6K/+19CWRArUfIn8nPR0JWV8pP3uXPnoq+vL22tvvvuuz+6n5/q+oJyK7a1S4aKigolJSWcOnWKAQMGYGVlhYuLiyQXALnN18qVK0lPT8fLy4tVq1YhiiLTpk1j8eLF7N69m/Pnz7N06VI2btyIp6cnaWlpaGpqPlMINTU1ce3aNe7cuUNNTQ3Lli3D1NQUPT09BEFAU1OTRYsWYWFhwdy5cxk4cCD6+vpYWlqyZ88eOnbsKHUXGxsbCQgIoK6ujtdee43AwEDef/99NDU1pSjfuLg43nzzTezs7NDS0pIkDAqbMG1tbQRBQE9PD21tbWxtbXn77bfp1q2bNEimqqrKunXrqKqqwtDQkP379/Po0SM0NDQICwtj4MCBvPTSSzQ2NqKtrY2GhgaGhobo6elha2vLzZs30dbWZsqUKdJgpoGBAd27d2fq1KncuXOHa9euSTsYSUlJAGzZsoV58+bx6aefoqGhwT/+8Q/09fVp164d6enpREZGcv36dXbs2IGXlxeurq7SQJ+9vT3V1dU8ffoUbW1t3NzciImJ4dVXX8XMzIx27drh4uJCTU0N9+7do1u3bnh4eEjv08svv4yDgwPbt2+nQ4cODBw4EJBLT2pqaujUqdNvsqn7O1r/Kfn1KaNNTU2oqanx4MEDzp49y61bt0hJSWHv3r3MmDGDTZs2MXfuXExNTVmyZImkNc/Pz2fq1KlkZGSQk5NDXFwcXl5eku+7n5/fjwYmBUHQRp74VgfEAlaiKKYJgnAK+Ax5+MZHwAbgOyBJbBVZLIpiBfIkuNb3qcJzOl/4UbpbDbD1t7+Kf2+Up6xKlPyJ/JTrwq7t2xgwYAAymQx7e3tp8Ame9a1V8FNJWv/XaG5u/lHAQmuXDJDLSMLCwvjss8+kjs3ChQslverGjRvR09Nj6dKlZGVlsXjxYgwNDfH09KRTp054eHgwfPhwSkpKqKqqQk9Pj6ysLARBYNu2bXzxxRc0NzcTHh7Oxx9/TGFhIQ4ODoDcx/ny5cusW7eO/v37s3HjRiZMmMDly5d5+vQpc+fOJSoqijFjxmBubs7Ro0dpaGjgo48+Yvbs2cybN49Zs2bx7bff0rt3b6ZMmUJKSgpNTU1s2LCBOXPmsG/fPmxtbcnNzaW5uRkNDQ1UVFTo0aMHRUVFLFmyhPj4eAIDAxkwYAAlJSV88cUXqKqqUlBQgI2NDbdv3+b8+fNYWVlRVVVFcHAwfn5+AHh4eHD8+HGys7Pp1q0bT58+pV27dqiqqvLdd99RUVHBw4cPuXLlCt99952kgQ8ODqZ79+6EhIQQHBxMXl4ely9fpqqqClVVVQwMDDhy5AhFRUV89tlnCIKAq6urpKe3sbHBysqKpKQk7OzsEEWRnJwcOnXqRE5ODrW18gZWly5duH79Om5ubgwYMICVK1cSEBBA9+7d2bFjh3SctP4Mde7cma1btzJ//nwpAc/a2hpXV1e0tLRe6GCh5H+L5x1t8vPzKS0tpa6ujpUrV+Lr64urqytffvkltbW1ku97+/btiYmJwdXVVfJ979mzp+Q4Ajzj+3779m2mT5/O1atXAX7W9x0wRu4gcQz5wNsRAFEUL4mi6CWK4lhRFONFUSwTRTG2VTGs+lPDbKI81EJ5ML8AZYdYiZI/mZ+Lhn5Rt+k/1bP+L/L89vTz3Z3a2lqio6OJiYmhsbGR9957j8zMTJKTkykvL6d///5YWFhQU1MjOQUonAk6d+6MlpYWK1asoKioCDs7O+rr6zl37hyFhYU8ePCAAwcOYGpqSlpaGgCXLl1izpw5qKiosHXrVubOnUv//v0lp4XGxkZsbW2ZO3cuurq6HD58mC+++AJ1dXXWrl2LTCZDS0sLIyMjTE1NMTc35/bt24SEhKCiokJNTQ2xsbGMHDmSLVu2EBYWxvTp04mIiODKlSusXbsWLS0tgoKCOHDgANevXycrK4tdu3aRkpLC8OHDqa6uRl1dnYCAACZPnkxmZiYrV67E398fNTU1njx5gkwmo66uDj09PQwMDMjKyqKurg4DAwOCg4O5evUqW7duZfny5aSmptK3b18sLS3R0NAgLy8PJycnli9fTmZmJoIg4OjoSGZmJm+88Qa+vr6Ympry0UcfcefOHaKiorCxsaGmpobevXvz9OlTqaPdo0cPyTVDkaKYmZkp6aizsrIICAggPT2dsrIyTE1NcXV1paysDJCHvLi6utLc3PxMcf2iLuCLIqZXrFjxex6uSv6C/NV830HS8IpAgSiKr/7U2lt3e1vpjn80DKfk1/GzBXGLd9xo5G/MEaAfctuOFGDbX8FIWYmS/wVe5Lqg1BzKi5R79+5x9+5dJk+e/KPfty6GKysrOX78ONHR0RgZGbF06VIuX75MeHg47u7ulJSUsGXLFmbPns2MGTPQ1tZm+vTpALRt21YavPLz8yMtLY127drxww8/cOfOHebOnYu9vT13794lOjqauro63N3dEQQBd3d3Ll68yM2bN/H19cXX15f4+Hjc3NzYtm0b48ePJy8vDx0dHcaNG0ddXR2enp7cvn2bhw8f4uzszMiRI4mOjiYiIoKamhqmTp2Kuro6KioqrF+/nsTERNTU1Bg8eDDTp08nLS1NGqQ0MzNj06ZNVFZWMnbsWLp27Up0dDQlJSWMGjUKQ0NDJkyYgJOTE//85z+ZNm0aRUVFFBYWYm1tTUVFBTo6Opw4cYKQkBDy8uThUwpdtI+PD9euXePw4cPMnDmTgoIC2rVrh0wmw9TUlNjYWIyMjHj77bc5e/Ysd+/elcJHCgsLOXjwIF27duXRo0e0a9eOMWPGUFRUhKqqKm3btiUmJoaZM2dKj9tak9u9e3ceP34MyB1XjI2NOXv2LBoaGqiqqpKfn4+FhQWjRo2S1tupUydiY2Ol40cxLAcvHqJU8PznTbHT8GfsvrQexlTyx7Js2TLCw8OZMGGC5Pu+ePFiiouLWbFiBYcOHWLNmjVMmjSJ1NRUqqqqePr0KTNnznyh73tERAQg39G4f//+j3zfLSws6NOnD/Hx8YDc933AgAHAv4/BF7g7CMh39MXnpA2tLyu7vv+f/FKH+HPk6SYayAthTeB7YDBy6405f+jqlChR8n+C1rZmrQsTFRUVMjIyuHjxIi+//DImJiZUVlaiq6uLqqoqkyZNIjQ0lB49erBr1y6io6Pp27cvLi4uqKioEBAQQJcuXUhISODChQvcunWLESNGYG9vz/Xr10lOTsbZ2RkDAwP279+Pu7s7pqamLF++nPPnz5Ofn4+dnR3m5uZER0fT1NRESEgIZ86cYdiwYZSXlxMcHMzo0aOxsrKisLCQkJAQdHR00NXVJS4uDj09PSoqKqitreXEiROSw8G4ceMwMTHB29ubuLg4unXrRkhICDExMZiYmODn58e0adPw8fGhpKSExsZGbt26RVVVFU1NTWzfvp1r166xevVq1qxZgyiKxMbGcvfuXd544w2ys7OxtbXljTfewMnJiX79+lFeXo6ZmRljxoxh9uzZxMfH89Zbb9G+fXv69OkDwJtvvklubi5VVVUkJyczevRo5s6dy+LFi/nyyy9xc3Nj+/btz7z+IHdYEEWRzMxMfH19WbBgAVOmTCE4OJiqqiqKi4txcnLC19eXYcOGERISQnh4OLt378be3h5HR0dWrlzJO++8Q1JSEqqqqvj4+FBYWCh5AXt6eqKvr48oiixbtkzS1S9ZsuSFx1XrIJmf2ll5kasI/PFa4MbGRtTV1blz5w55eXkMHjxYeszn16Lk9+Wv7PsO6AuCMBu5rZk68IEoium0xDMr+eP4pYLYXxTFToIgqCM3arYWRbFBEIQDwN0/fnlKlCj5v8CLipXi4mKSk5MpLi5GW1ub+vp6tm7dSnp6OnPnzsXW1pbMzEyuXbtGjx49uHTpEjNmzJCssUCu2V2xYgV1dXX07NmT5ORk7ty5g7OzM0ePHmXDhg1MmzYNLS0tKb43KCiI48ePc+LECWQyGbNmzWLChAmsXr0aURTx8/Pjm2++YerUqQAkJCTQvn172rVrR0NDA6GhoUycOJHi4mJKS0tpamrCxcUFT09P3n33XYqLi/H39+err74iICCA4OBg5syZw8svv4ylpSUPHjxg6NChdOzYkUGDBtHc3IyDgwNhYWE0NjYSGBjIw4cPmT9/Pm+88QYdOnSgubmZL774goULF0oRyRMnTiQjI4PExEQ8PT0xMjIiNDSU/v37A0ghFNevXwfk8pLk5GRGjhyJl5cXqqqq9OnTh+HDh+Ph4cGhQ4fQ1dV95j1SdGUVODo6UlZWhre3N3V1dSxatIjY2FhOnDhBWloagiBw/fp15s6dC8gt2lJTU3ny5AlbtmxhyZIl9O/fHz09PWl4NCkpSRrC69q1K127dgV4Jlb6l0ItFClvrQM5FLyo8CwvL+e7774jKioKQ0NDZs2aRadOnX4x7ro1z9+2tVNBREQER48eZeXKlRgYGDxz/Dc0NHDr1i3i4uIwNDRk/PjxP/vclPw2/uq+78jjlDOA00BuS8qckv8Cv1QQK8yZGwVBiBFFsaHl5yZBEJRnK0qUKPldSE1NJSoqisrKSv7xj3+gpaXFxIkT0dLSwsTEhNTUVEpLS2nfvj1JSUnSAFW/fv1ITk6moKAAa2tr2rRpA0B9fT1aWlrcvn2bK1eukJiYCEBQUJA8Ord3fwRtA27HxjJv3jxWr16NpqYmpaWlPH36FAsLC/z9/dHR0WHx4sVUVVXh7OxMY2MjnTp1oqioCJAXPU1NTRQUFEjFztmzZ0lNTWX06NG8+eabHD9+nM6dO7Ns2TLatGnD9evX2bJlCwkJCdjZ2dGlSxe6d+9OamoqXbt2pbKykvz8fBISEujevTt9+vTBxsaGtLQ0Ro4cSWhoKKtWreK7774jISEBc3NzzMzMcHBw4KOPPiI3N5f58+dTXFyMvr4+t27dwtvbm6FDh3L48GHi4+O5c+cOGRkZtG/fHisrK1auXEllZSXvvvsu5ubmHDlyhPz8fD766CM0NTURRVEqhn/O0cTBwYHGxkYqKipYs2YNZ86cQUtLC2NjY4qKiqioqODDDz8kNDSUmpoaJkyYIG076+jo8Omnn/7IxszFxeWZn58vJODHxaJix6H1Oltb4LXm2rVr7Nu3j+rqal599VVGjBjBtWvXOHHiBDNmzMDc3FyyW/u1RanCiWDfvn0cPHiQ06dPP/PYlpaWNDY2kpeXR6dOnThy5AiOjo4YGRmxdetWjh8/jp2dHba2tlIxr+T/n7+D7/vu3bsfi6L4/R/4Mij5CX6pIC4QBEFPFMVqURQHKq4UBMEKaPhjl6ZEiZL/Czx69IiNGzdKzgGnTp0iPT0dKysr9u7dS2JiIkuWLCEpKQkfHx8p3Q3A39+fsLAwrKysEASBc+fOSc4AAJ6enshkMr788kvS09PR0tLi+4s32VrihKjTnSIxB9XkuxgZGTFixAj8/PxISkqioKCApUuXsnz5ckDeCY2KimLq1KkYGxtTUlJCYWEhZmZmGBoa4urqSlBQEPr6+jx8+BBXV1fy8/NxdXWla9eunDlzhi5durBnzx4yMzO5fPkyUVFRbNiwAZlMhr+/Px9//DHbtm3j6dOnrFixggcPHrBmzRrmzp3LV199hYqKCnZ2drRp04b169dTUlLC9OnT0dbWZt26dTQ1NeHo6IiOjg55eXnExsbyww8/8ODBAyIjIwkJCWHLli2SFreoqIigoCBSUlL45z//ybfffkuHDh0wMTGhf//+NDc3M2vWLCmxTsFPbeU3NzdjaGiIhoYGMTExBAYG4uXlhZaWFra2tvj5+UlFp7GxsZSo19DQwLJly7C3t5c03T9ngaWiokJ1dTVNTU0YGRlJWl9FwfkieUR9fb10HFy6dAlzc3PWrl3L06dPCQ8PZ9SoUaioqBAeHo6GhgYymYzc3FysrKywsbHB0NDwZ4/h57vBampqiKJIu3btSE5OBuTR2A0NDbz66qu0a9eOpqYmSdayatUqSktLKSsrY/v27SQmJkq2daDsDv9eKH3f/1wUg38tNWQg8mCPyBZXjD+9yfqzBbEoioN+4ldVwNDffzlKlCj5v8bVq1cpLy9n5syZ7Nmzh6+//hp9fX0pUtjW1pa+ffvy8OFDXn75ZQRBkBwhQB69CzBmzBiWL19OYWEh6enpvPTSS6xatYoNGzawdetW/P39+deadYz5+j4NTSLoW2MYNJ2y42v4eN0GevfujZubG8uWLaOyspK9e/eiq6vL66+/TklJCaIoEh0djYeHBytWrEAURVRVVWnXrh3R0dFcvXqVPXv2YGRkRHJyMnv27MHNzU2yb1PYhJmamiIIAuXl5dy8eZOsrCw8PT2Jjo5GEASCgoLw8/OTdIdz584lNTWV1157TdLWGhgYkJKSgoWFBVpaWuTk5LBlyxYAzM3NqaioYOdOuf9+9+7dsba25t69e9jZ2bF+/XoCAgJYvHgxQUFBgHyoMC8vD2traywsLKioqMDQ0BBra2tiY2MJDAxEFEWysrIkC7nnUdhWjRgxQipO9fX1SUlJ4fPPP+fRo0cAzJw5k9u3b7N//362bNmCjo4OkZGRHDhw4Jn7ak1dXR1hYWF8/fXX1NXVIZPJePfdd3nllVee6bwqdgby8/PZs2cPqqqqREVFMXPmTJqbm/nhhx+YPn06Tk5OqKurc/PmTS5cuECHDh24evUqt27dwsnJiSlTpnD+/Hm++eYbHjx4gJ2dHRs3bnxmbc3NzVRUVKCnpyd5WCuuP3nyJB4eHnTv3p3i4mJmzpxJfn4+1dXV5OTkkJmZSUREBDdu3GDMmDE4OjqiqqrKjh076NOnDzU1NZw7d479+/f/hk/S74+i0I+Ojubw4cOsW7fuN8lG/moofd//uwiCoAvYIA/42CaK4hstEtyNyGW44SAfIhQEQQv5bFqaKIrVf8Z6f5XtWsuE4zjAURTFfyFPTbECiv7AtSlRouR/mNLqp+SU1ZL8MI179+7x8ccf4+Liwo4dO0hNTZW0rcbGxty+fRtjY2M0NTXp1q0b+/btIz09ncrKSmpqasjPzycgIIAPP/yQy5cvM3r0aMk3t3///sTFxeHj44OKgSXqqinUlBWA2IyakRVaprbs27Obrp09ycjI4OnTp/j6+jJlyhTi4+PR1tambdu2dO3aFX19fQRBYOnSpRQXFzN79mwpwGPatGlUV1ezd+9eZs+eTUBAAD169ODgwYPk5uZSX1/PoEGDmDFjBj179qRNmza8+uqr1NfX07FjRy5fvgzIiz9dXV0+++wzAJ4+fYpMJmPKlCnMnz+fvn37kpGRwdChQ3FxcSE2NhZ1dXXu37+PiTgVWQAAIABJREFUra0ttra2DB8+HEtLS8LDwxW6RIqKipDJZNTX10txsgoUw0DOzs4kJiZSU1ODgYEBbm5uXL16lcDAQCorK/Hy8iIrK0vqmCoG0gDOnTtHZGQkJiYmzJw5k0OHDuHu7s7atWtxcnLi/fffZ+LEiejp6bFgwQL69+/PjRs3CA4OxsbGhsrKSnJzc7l58yajR49+Zn11dXUcO3YMdXV1KcluxIgRtGnThjZt2jBt2jQKCwvp2LEjn3zyCTo6Ouzdu5d+/foRFRUFyPWb27Zte8Z1IjMzEz09PXJzcxkzZgyffPIJ1tbWiKLIxo0bUVFR4eHDh4wZM0ZyBFF4Xd+4cYMLFy6wYsUKzp49S2RkJKtWrUJLS4vPPvuMIUOGUFZWhkwm4/Dhw/Tt25dFixaxZMkSFi1aJO1qHDlyBAsLCzQ1NQkICCAlJYV79+5RX1+Purr67/qZexFNTU00Nzejrq7+o2JO8bODgwNZWVncvn1b0nD/HVH4vr/XSkO8NsSD4V7y3p/C9701z0c0g7Lr+1MIgtAL6CqK4mctV4UCTqIoThME4XNBENRaJLiDgCm01JCCIHwEBACVQIwgCNufS9f7r/BrfYi/AJqR2679C3mH+CjQ7Q9alxIlSv6HaT3YUhxfRbfOfuzdu0v6fZcuXdiwYQMHDx5ES0uLJ0+eSNra6dOnU1JSwoMHD+jUqRNHjx7FysoKURTp2bMnPXv2BOTDSSCXZBw8eJBt27bh5d2V8mZHqvPSUNHUxchvDFoOXrQriMXc3FzSDy9ZsgQzMzPWrl1Lp06dKCwsxNXVldWrV+Pj40NISAifffaZFODx+eefs23bNjQ1NWnbti29evViwYIFVFRUMGvWLCwsLCgpKcHb25vPP/8cIyMj2rdv/8xr4u/vD0BsbCx37twhPT2dO3fu0NjYiJ+fH4sWLaK2thYVFRWcnZ3Jz88nJyeHHj16cP78ebKysjh58iR79+5l9OjR2NjYUFtby7Vr1+jVqxfGxsaoqqqSl5eHv78/J0+elDrEVlZWNDc3Y25uTmZmJqWlpdjY2NC1a1dSUlIQRRFtbW3s7OxIT0+XikpFYVBaWsquXbtwcXGhe/furFmzhvj4eGxtbcnPz2fWrFl06NCBGTNmcPv2baqqqhg5ciQ3btyguLgYT09PTExMpNdr9OjRUrGtqqqKnp4e5eXlqKmpYWBgQEODXPN57do18vLy6N+/PxMmTGDXrl14e3tz6tQpnJ2d8fHxkTp52dnZ0kR/fX09y5cvZ+vWrdTU1JCVlYWtrS3Dhg0jIyMDNTU1oqOjpeG2wMBA7Ozs2L59Ozk5OcTExJCTk8Pjx48pKSkhMzMTExMT8vLycHR0xMPDg6ysLHbu3ImdnR1Lly7l4sWLXLhwASsrK3Jycjh27BjZ2dmoqakhCALx8fFSwa5IEFy+fDn+/v6MGzfud+vMtpajNDU1cfjwYby8vH6k1c7JySExMZEuXbpgaWnJuHHjpDS/X5KQ/JVR+r7/fgiCMBLwAT4SRbESeBMYIgjCUVEUc5CHicS23HwgUCcIQh9AFVgIzBUEYRyQC/RHXmfeBWqB1a29lf8b/NrTHB9RFGcA9QCiKJYjt2JTokSJkt9E68GWqqdNaDj5c/56DO8tWsKKFSsICgri9OnT7Nq1i9OnT3Ps2DHefvttNmzYgIWFBSoqKixfvpxNmzbR2NhIfHw8tbW15OXlkZSUxNChQ/H29mbMmDHEx8djaWmJi4sLnTp1IvzoETa9H4qWoRkayNBSV+GjKcNw6tCe6upq0tPTMTY25sSJE7z55ptcvXqVK1euUFdXh4WFBbW1tRQVFSEIAuHh4YwePRofHx/mzZvH/fv3pfCIqqoqzM3NMTU1xcjIiFWrVmFnZ4dMJqNr165SMSyKImlpaYSFhfHDDz/Q0NDAihUrSEhIkHS37dq1w8zMjLZt21JaWsqBAwc4c+YMMpmMY8eOAbB+/XreeustmpubcXJy4uLFi9jb26OtrS1tBVtYWGBgYCBFPNfX1/OPf/yDoKAgjI2NGTRoEA4ODgwYMAB9fX0uXbpEY2MjQ4cOpbq6Gg0NDWxsbKQBxeTkZI4dO8a//vUvKaxD0fENCQkhOTmZvLw83N3dpal9BwcH6uvrKSoqYuzYsWhpabFy5UrKy8sxNjamqakJExMTysvLpSG4uro6SktLMTU15e7duzg4OODg4CC5kJw6dYqAgABMTEyYNWsWbdu2xdjYGFtbW1JSUli1ahXDhw+ntraWefPmAXDlyhWOHz+Oq6srISEheHl5MWfOHNq3b8++ffvQ19dn9+7dHDx4kLy8PKmIrKurY8+ePTg4OLB27VoaGxu5fv063bp1Q1dXl6ysLADatWtHbW0tbm5uuLu7c+HCBaZMmUJhYaGkk+/RowcDBgwgICCA3NxcKZxhxowZZGdnc/HiRbS1tXF3d/9dZQqtE9nU1NQ4e/YsX331FevXr5eS1RS62c2bN0s+0EOHDpVO0hTH7t8VUz1NPO2MnvF+V3Z9/yPSga5Al5afy4FCwLvlZwNA4SvXFxgniuJW4GvgpCiKlwEzYCVwHjgHxAPX4b/vrfxrO8SNrZJTEATBHFCGcihRouQ38/xgi4qGNnYvv0fKw9OoNNby1ltv0bt3b8zMzKRur4KioiLi4+OpqKigZ8+ebN68mZKSEm7evMmQIUOora3l/fffl7yHx44dS1JSEnPmzGH9+vUABLuYM6iNjJu34hhQY81ovw/ZXF7OkSNHGDx4MD4+PlhaWrJz50769u3L4MGDJZ9be3t7ysrKpACPx48f4+Hhgbm5OUZGRkycOBFzc3MSExNRUVFBR0dH0uF269aNmJgYsrOzCQ4OxsHBgX/9619ERERgZWXFxIkT8fb2lryJQ0NDuXz5MkeOHKGwsJD27duTm5uLuro6oigSEBBAcnIySUlJ3Lt3j6NHj2JmZkZSUhIpKSno6upia2vLzp07KS0txd7eHkNDQ1JSUnj55Zf54IMPOHnyJGZmZpSVlTF16lR8fHyYPHky27Zt4+LFi/j5+REVFUVaWhqamprk5+ezePFiNm7ciK6uLsOGDaNPnz6oq6uTmprK559/Tl5eHgEBARw+fJj3338fQRD47rvv8PX1pa6ujoSEBCoqKsjIyCAmJobU1FSampq4efOm1FmNjY2lurqa06dPExkZiZeXFyUlJdTX12NkZISfnx81NTUkJibi4OBARkYGXl5eqKurU1NTw9ixYxk/fjw7duyQbLNOnDjB9u3bcXZ2prS0FFEUGTVqFNOmTSMpKYns7GyGDh1K165dmThxItbW1oSHh1NeXo6DgwNaWloMGjQIOzs7KioqCA4Opk+fPtL9HDx4kPT0dElWce/ePby9vdHU1GT37t107dqVO3fuYGBgQPv27aUCNy0tjYaGBsaMGUN1dTXHjh3DxsYGGxsbxowZQ6dOnX6xGE5JSeHs2bOMHj2aoUOHcurUqWf8bRVkZ2dz5coV4uLiGD9+PFZWVjx69IjLly/j5+fH66+/zieffIKBgQHR0dHS3ylcM+zt7bl8+TL9+vX7z/8BUPKXpCX17pmwj1+4vSCKYrwgCHnAEOAS8gL5FmArCEJH5CFuigPxNBDUcjkOeL3lci5ye7l/e9L9SfzaU6JNyLO0LQRB+BC4Bqz+w1alRImS/1naGGvT0NTIM//u6hji59MNPT09Ro0aJRnXi6KITCajubmZc+fOERwczOeffy6l0S1cuJCePXsSERGBjY0NCQkJxMfHM3z4cN566y0povnjjz8mPz+fx48fs2vXLrIz0tDT0mBQcKDkWtC9e3dsbW05e/YsH3/8MePHj6dXr14UFhby8OFDZDIZdnZ2FBcXo6KigqWlJSdPnkRVVZWioiKqq6uxs7PD3t6eiIgINm3axKFDh3B0dKS6uprJkyfz2Wef8eDBA9TU1Lh8+TIpKSkcOXKEo0ePMnToUFRUVCQ9r0wmk7Sljx49wsXFhcTERNasWcPUqVNRU1MjMzMTW1tbmpub2blzJ++//z5hYWF88803LFu2jMDAQAwMDMjJycHMzIwOHTrQ1NTE1atXsbGxYerUqSQnJxMREYGHhweenp7U19czZcoU1q1bR6dOnXj48CFnzpzB2dmZyZMn07FjR3744QdGjhzJrl27OHz4ML179yYnJ4fly5fz2muvUV1dzZ07dygoKGD48OEkJSURHBzM66+/TmFhIYsXL+bQoUPU1NQwe/ZsvLy8AHn0tbq6Ou+99x5nz56luLgYOzs7LCwsmDJlCk+fPqV79+5cuHCB+Ph47t69i7u7O+Hh4TQ2NnLkyBHp/fjmm2+oqKhATU2NK1euMG3aNHr37o2NjQ3dunXD3NxcsldTSG3KysrYunUrT58+Ze/evbi4uDB8+HBMTEykOGlDQ0Pq6+u5desWDg4OxMXFSScbn376KV27duXYsWPk5+dTWFjIxYsXUVFR4fvvv6e8vJx33nmHYcOGsW/fPsLDw6moqADksb85OTkIgoC/vz/r1q2jW7duCIJAbW0td+/epaGhgU2bNhERESF1rQEOHTpERkYGOjo6GBoakpqaKn1+FNTX17Njxw4SExNxcnJi7969JCQksGTJEsaMGcOOHTuwtLSUjm+A6upqSbYCcinTi+5byd8LQRBmCILQv/V1oig2/8b0YUX9eAJ5AdwDuftYFPIu8WSgpOULIBro2HL5JtC25fItoEwQhEmCIFgLghAiCMI7v/lJ/Q78qg6xKIr7BUG4g1zjIQAjRVFM/kNXpkSJkr8tpaWlXLt2jREjRhAXF0d1dbXU7TXV0+ST0Z2fG2zxQqtIk+jrV57xmW3tHbtz504++ugjBgwYIP2+Z8+efPvtt4SFhVFWVkZdXR0XL17ExcUFLS0tysvLiYmJoaysjCdPnpCfny8FeERGRrJp0ya+//57tLS0OH/+PI8ePcLV1RUdHR2GDh3KgAED2LJlC9ra2qiqquLk5ERkZCQymQw/Pz9Wr15Nx44dKS4uxtramvT0dMzMzFBVVSU5OZnKykocHBywsrKioKCAXbt2kZqaSkVFBenp6SQlJXH06FHu3LlDdnY2FRUVODs7U1RURHJyMvHx8Rw+fJgrV67wySefkJKSQlNTE1ZWVmzYsAF7e3tu377NokWLmDx5stTN7NixIwUFBXz99dfs2bOH5uZmPv30U6KionB3d2fnzp08fvwYT09PLly4wOHDh5+xj8rJyWHmzJkYGRlRV1eHmpoarq6uvPTSS+zevZumpiZ69eqFt7c3MTEx3Lx5Ey8vL8LCwigqKsLCwoKqqir8/f2ZMWMGAwcOpKqqCkNDQyIjI3FycuK7776jvr4eExMTcnJyUFdX59y5cyxZsoTDhw8zZMgQ9u/fT0VFBdeuXaOoqEgK1+jQoQPTp08nNDSU9PR0zM3N8fb2prCwkDZt2pCTk4O3tzcZGRmUlpby6aefcunSJcrKyrC3t0cURUkSsnDhQhYuXIijoyOWlpa88sormJiYkJSUxIABA3jzzTc5d+6cpDOuq6sjLS2N+fPnSy4fzc3N+Pj4cPjwYXR1dQkMDGTQoEF8+OGH0tDaxYsXGTlyJAMHDiQsLIzAwEA2bdpEZmYmY8aMkTyuY2JiSEpKwtjYWLJga2hokDrtMpmMb7/9FktLS0nLnZaWhru7OwYGBtja2nLv3j169+4tDU9qaGiwf/9+0tPTmT17NrGxsRw+fBgdHR3Gjx9Pbm4uiYmJdO3aFXd3d8ndQhG8IpPJUFVVxdraWrpOqav9a9Oyk+8FPBRFMbPlOoUm9zpylwdadv/bIZ8JcwMiRFG89kv63VY2adeBHsi7xNqAYqBOER95u+X7XeQSCkRRjBMEwbZlyO6xIAhTgaXAVKAYOPZnWLH9qg6xIAiBoiimiKL4uSiKW0RRTBYEYcIfvTglSpT8PWidAgZQU1NDaWkpIN+mDQ8Pp7i4mLy8PPLy8ojY/iHG51chHl/E6u4iwzxtsLKyoqGhgZKSkh/dN8CAAQP44IMP6NWrFwEBAYSHh1NTU0N8fDwbN24kOjqae/fuIYoiAwcOpKysjIqKCq5fv05QUBCampqMHDmShIQEjIyM+OCDDxg2bBivvfYaCxcupLKykoMHD7J//350dHTQ1tbG2dkZXV1dJk+ezODBg1m7di2RkZEEBgaycuVKgoKCeP311zl16hTnrt5C09qJ2/cS8PT0ZOvWraxYsYLi4mIaGhpo27YtCxYs4NVXX2Xw4MHs3LmT9PR07Ozs8Pb2lrrivXr1Ij4+noMHD/Lee+9RV1dHXV0d+/btw8DAACcnJ8rLy/Hz8+ONN97gzJkzABw7dgwPDw+Cg4OprKxk+PDhXLlyRdq+P3nyJIcOHWL9+vWMGjWKzZs3Y2ZmxsOHD6WBNplMhkwmIyYmhrq6OlxdXYmOjiY2Npb33nsPU1NTHj9+zMWLF7l06RLz589n37597Ny5k7t37+Ln58fTp085f/48oijSoUMHdu/ezZIlS7C0tOTYsWPU1NQQExNDz549MTAwoLS0lNjYWFJTU/Hw8ODUqVOoqKhw8OBBmpub6d69O/Hx8QwdOhRRFDl79qxkLff06VMpDltHRwcXFxe6detGc3MzGRkZzJkzBxMTE7KzszE0NMTb25v6+nqSk5N59dVXn4kM9/X15dKlSzx69EgaxquuriYrKwuZTEZERATGxsZoa2tTWlrKo0ePyM3NRV9fH1tbWwYNGkRcXBwymYxRo0YRERGBra0tFhYWHD58mF69ehEXF8fdu3dZuXIlN27c4J///CfTp0/Hzc2NjIwMNDU18fb2ZvHixfTq1YtTp07Rs2dP7t27R2xsLHZ2dsyZMwcdHR2++uorAEl3rThJdHNzIz4+HpAXwhoa8nEfS0tLDh48yNdff83jx4/ZunUrixcvRkdH5xm3kL59+5Kfn8+pU6e4ffs2O3fupKysTLINVAx/KgvivxaCIKgovlquao/cHaxNq5spflcDvNVyeQYQCbgij4peKghC51+r3xVFsQC4jLwo7gmUiaKYi1wK8TpyGQWiKNYCxoIgKKY3T9MipxBF8QEwSRRFX1EUh4ui+NWf4Uv8ayUTywRB2CoIgq4gCJaCIHwPDPsjF6ZEiZK/JgoJQ2sUKW0AVVVV2NjY0LFjR5qamti6dSvbt28nICCAixcvUldXx6uvvsrpUyc58u1+dnyxmbi4OOzs5BGqCr/a5w3u/f398fT0pFevXpSWlrJmzRo2b96MiYkJgYGBTJo0CWtra2QyGdOnT+fKlSt069YNTU1N/P39qa+v58aNGwwYMID79+/Tpk0b3nrrLfz9/fH19ZWCGxYsWICmpib37t1DV1eXSZMmIYoi7du3Z/ny5Tx48IDMzEx27drFhAkTWLJkCYVadvRZf4VxO26x+ex9tGycAHkR4ujoKGlnQ0JC6NixIzU1NeTl5dGxY0eioqJISUnBzs6ODRs2EBERwcsvv8zevXspKCjAz88PPz8/cnNzAblVmI2NDTU1NZw9e5ZTp05x7do1zM3NMTQ0pHPnzjx48ABvb29yc3NRUVGhTZs2JCcnY2RkRGNjIyNGjCA1NfX/sXfm4U3V6/b/7KRp0pHOpRMdKIUytGUu81BBUEQFRBRRURBUFBDkKChVpiOCOCCgKKggMlhAJhFBoZRSCmUshVJoKZ2bzmmbpJn2748025aD53ru75x77zlmPQ9PdsrOzncPSdZ+v+tdC19fX4xGI7Nnz2bHjh0kJyfz5JNP4uLigiAIfPvttyiVSiwWC/n5+WRnZ0uV8VWrVlFaWkpVVRX5+fk4OTlx7NgxaYrf29uburo6OnXqhEwmIyUlBZVKxaBBgwgODqZbt27ExcVRXl4uhYqcOXOGmJgYLBYLS5YsQaVS4e3tTVpaGidOnJCur7S0NH788UecnZ2lJDmtVovFYkGv1+Pq6opMJuPUqVPSjEPv3r1JT0/nhx9+4Pr160RGRjJu3DhmzJhBjx49SExMxMvLi6+++go/Pz9WrFjB3r17efvtt9m/fz8FBQX4+fnx888/U19fT0hICM8//zwKhYKnnnqKnTt3MmXKFJRKJZ988gn19fXU19dTVlbG4sWL0Wq1qFQqNm/ejKOjI8899xz+/v6o1WqamprIyMigsbGR7t27c+vWLaqrq3F1dSU2NhawyhccHByQyWSMGzeOW7ducf36dSorKyktLWXIkCEAdO3alby8PAC+/vprpk6dyrx584iLi6Ndu3asW7eOZcuW8eCDD1JbW0twcDDt2rXjyy+/ZOHChQB8++23bNy4kTfffJPz589LsdNHjhwhPj7+X/K9YscfgyAI8mbi2+qOxCZ5EEXRIgiCA3ALa7V1tCAIRwVBuMRvJNgBWNi8XAa4iaL4tiiKf8EqiX38HxmTKIoHAV8gCmuTHFg9ht2BlsS2F5Db/JoxoigWt9iGSbBC3ly1/h/HHyXEQ7DuxCWsB+s7URQn/MtGZYcddvyvwmKx/A3ptUEul0vk12QyAZCTk8O6deuYMmUKw4cPJycnh5dffpm0tDTmzJnD2LFj2bNnD5MnT6Z9+/Y4ODjwwgsv8NRTT3HhwgUuX74sOTRkZ2cDVkJc1dDE5cJaqhqsVceysjIefPBBKc758uXLxMfHs2/fPj7++GMGDBhAp06d2LlzJ3379mXWrFksXLhQqm61a9eOxx9/nD179rBo0SImTZrEokWLCAoK4tNPP+X06dOEhYXx6aefsm7dOsBacXvttdd46aWX6Ny5M+7u7ly4cIGuXbuydu1aCtU1za4ZZuoaGjCazOz8+TSV9XpKSkpYtWoVmzdv5ujRo6SkpODu7k7btm3ZuHEjqamp5OTksH37dn7++WcWL15MamoqYWFhhIZaJXalpaWsXLmS7t2706FDByZNmoSLiwuXLl3Cz8+PGTNmkJWVRZs2bXB1dcXFxYW6ujq8vLwwGo0UFBTg4+ODg4MD2dnZKBQKCgsLiYyMJDk5GblcTnJyMjt37mTatGn88MMPqNVqRo4cSWVlJR4eHgQGBpKdnc3MmTOZMmUKFy5cQKPR8NJLL0mNfiUlJej1elxcXFAqlcyZM4e8vDyqq6tpaGjg8OHDGAwGLBYLXbt25eDBg1RUVDBw4EDkcmtS2MCBA/Hx8UGhUDB79mzUajVlZWXMnz+fI0eO0L59e4YOHYooivj6+jJ16lRUKhU5OTk0NjYCSMQ4JyeHU6dOodfrMRgMLFiwAEEQGDx4MOHh4ezbtw9PT0/q6uqorKykuLiY++67Tzp2zzzzDCaTidmzZ3P69Gk6duyIt7c3Xbp0QSaT4eXlxZ49e1AqlUyaNIlff/2VvXv3cvv2bQoKCtBoNDQ1NTFp0iQWLFggpS/evn2b7t27U1BQgEwmw83NjcLCQgoLC2loaECr1fLtt99y/PhxevTowZw5cxg1ahTLly+XqsL9+vVjyJAhrFmzhjZt2nD27Fl69LA2+kdFRUmzMzqdjuHDh/P8888THBxMz549mTdvHsuWLePxxx9n5cqV6HQ6Zs+ejYeHh1RRjomJYd++fRw9epQNGzbQtm1bAKZPn46Hh8c//fvmz457FWObSa/8HsTX3Ex8xWbiSzORHCoIQkqzvPUTURQrsJLR/sBsrEXMZYIguDVLXusFQXACbgJXBEFwb36LNMBDEITWEXy/gxbkdR+wHbCZnG8RRdFFFMULzeMTRFG8IIqiocWYW3FQ0Qrz/1Zq3R8lxJ5YveZygSYg9O6TZIcddvznoKU1EyBVAnU6HUuXLqVfv3507tyZzz//HK1Wi9Fo5MsvvyQyMpJz587RuXNnevbsybVr1xgwYACenp6SpVNBQQG7d+8mISGBjIwMXnrpJVJSUgCri4OturXvUjEDVv7KU1+m0/+9Xzh86jzJyclMmDBBGseMGTMwmUySy0JJSQmNjY3Ex8cTHx/P1q1b+fDDDzl16lSrAI8VK1bg5ubG448/ziuvvAJYAzy++eYbXnzxRcLCwnBxcQHgypUrPPzww8yfP5+CggLMZjNnzpwhOjoaDw8P8svrMFfcofKH9yjfOh99/iV0ty/xlzcXMmLECBobG/Hx8aFr165cuHCBsrIygoKC0Gg0KJVKRo8ejVarxWAwIJfLqaysxNvbWyLfM2fOxNXVFX9/fwICAvD19WXHjh107tyZxMRE8vPzKS0tlQI9bt26haenJ1VVVYSGhkqV5aeffppPPvmE1atXM3XqVHr06EFKSgomk4moqCgqKytpaGggNDSUBQsWcOvWLbRaLbW1taxevRpvb28cHR25evUqer0eX19f8vLyCAgIQKFQcPPmTUwmE0ajEYPBQEVFBUqlErVajbe3Nz179sRoNJKVlcXJkye5ceMG1dXVnDhxAmdnZ7p06YIgCBw+fBhvb2/pxsmWFvj444/TqVMniTTrdDrWrl0rVVLVajUXL14kKioKV1dXIiIiUCqVJCUlAdaZja+//hofHx/at29PdXU1H374Idu2bSM7O5sHHngAFxcXXFxcCA4O5sMPP2Tw4MG89957rFmzBjc3N6qrq1EqlTg4OJCbm8udO3dQq9XMmzeP3NxcZs+eLUkUOnTogCAI5OXl8dNPP6FUKomJieHq1au4u7vz2muvUVZWRmFhIW3btuW9997D29ubmTNnEh4ezvbt29m8eTPHjh1j2rRpKBQKFi9ezK5du3B2dubVV1/l0KFDHDlyhPDwcMnarm3btlKgyIsvvsiUKVPo3LkzAElJSYSGhqLX6xk7diyvvfYaTk5O+Pv7s3LlSt55551W7hQWi0W66RVFkUceeeSe7hV2/PdQW1srpd7l5eUxceJE6f+aSa+5pXRBEAQ3QRBmCYLwZjPx/UkQBL/mdRYC87HKFl5tfkkZUALkNfsCX23+f7BapMUC+YCMBnqhAAAgAElEQVQSsCXWdMMqqWid3tMCNjLb0n1MFMVEURRniaJY2vxcIr7NRLcV62/+0/8pt7I/SojPAIdFURyFVXgdSLNPnB122PGfA6PRyM2bN9m2bRtLly4lPT2dJUuWEBMTQ2JiIpcuXWLcuHHs27ePlJQULl++zObNm+nYsSMxMTH4+flJ2+rcuTMXL16USEZhYSEA1dXVZGZmMm7cOAAuXbokedt6e3tz5coVqhqaeGPPFXQGMxpdE3qjmbRqFU889TQVFRWcPXuWWbNm8cQTT5Cens727dvZvXs3NTU13Llzh5KSEmbNmkXnzp25ffs2I0aMIDMzUwrw6N+/P2+88QaPPvqoVP0CpBSylkRAr9dLDg/79u1Dp9NJlmoGgwGVRYvg7otLtxHInNww1Vdh0mnQ1lRiNBoRBIGIiAhiY2MpLi6mtLSU3Nxc6XicOnWKwMBADh48yNGjR5HJZKSlpVFaWorFYiElJQWDwSA1n9ns1aqqqli4cCEVFRU4ODhQVlZGQkICPXv2JCQkhMcff5zw8HDJZ1gul5OQkMCVK1coLCyUmv5CQkLYu3cvV69exdPTk9mzZ6NSqdixYwdarRYPDw8WLlxIQUEBd+7cobq6GhcXF8rLyzly5AgRERFotVoaGxsZOXIknp6eGAwG9uzZg6OjI/7+/jQ1NUnR1E5OTvTu3Ruj0UhZWRmlpaU4OzvTs2dPxo8fL6WzNTU14e7uTnx8PLt27WLDhg2kpqaSnZ1NVVWVlKw2adIktFotTU1NaLVaoqKi8PPzIygoCC8vL4KCgggJCUGr1RIdHc0PP/yAg4MD9fX1dO3alczMTDw9PdHpdLz55pt4eHhQVVXF8ePHuXHjBkVFRezbt4/6+nrc3d2lxkStVsugQYMYOXIkV69eJS8vD7VajV6vJzU1laqqKrp06UJaWhqHDh1CLpdLFd/9+/fj7u4uNeF5eHjQoUMHydpMFEUqKipwdnamV69ejBs3jqVLl/Liiy9y/vx56urqcHJy4oUXXmDatGnExMRIRNzNzY2IiAhKSkoA641AS/nRq6++yrJly5g8eTIhISHStW9zdGkJmUwmxVK3lEXZ8Y/D9t1iOxdNTU0sWbJEOqYRERHs3LlTWl8QhChBEDYJgnBaEIQFgiA4Y5U6vM9vQWnZWDXAAC5YJRETgfbNfysHCrFyNrDqeTs3L2cCfZpzJQBmCYIwHRgPpImiWN9CniFvWa22kVlbtbrFmO9V0f63sSP5o1f3fVi7/vpgJcRJwOF/2ajssMOO/xUsXryYsWPHUlhYSG5uLjNmzCA6OpqKigp8fX3ZuXMn7du3Z/bs2YwYMYLjx49z7tw5HBwciIiIoL6+XtpWly5dpGpvYGAg169fp6CgAIVCwYgRI6R/PXv2lOJSH3nkET755BOKanQ4yq0JXoJMjiDI8I4ZzvmLl0hMTCQxMZH77ruvVYDHvn37eO2111izZo1UxXrnnXf4+OOP6dOnD9HR0a0CDjQajSQLsREBmUwmSUJsRMDPzw9vb2+8vb25fv06wcHBbNy4kZKSEr799ltK79xi9ZPx1J9NwlxTgmAx4u3pweCB/ejatasUL1xTU8PZs2dJTk4mIiKCpKQk6urqEAQBX19fHnvsMeLj46Vq3gMPPIBKpSIpKYmOHTuSlJRESEgIQ4cOZevWrUycOBE3NzeUSiX19fW89NJLfPzxx9TV1UlWZ2lpafj7+xMSEsIXX3zBo48+ipubG2VlZTg7OzN37lycnJwICwtj1KhRmM1mUlJSiIuLQ6fTAVBeXk5eXh7e3t5UVVWxY8cOYmJiMJvNlJaWUlJSIrkZXLp0SbLtKi4upqysjPPnzyOXy/H390cmk9GmTRu0Wi1KpZK4uDiee+45fHx82LZtG6mpqdK5ysrKIjAwkPj4eBYtWoSrqytxcXH4+vpSUVEhNQx+9dVXVFdXo1KpEEWR0tJSamtrSU9Pp6qqij179jBx4kRUKhVt27alf//+jBo1StKW225s6uvrpfWMRiNDhw5l/fr1AKxdu5bY2FhMJhNmsxmNRkN1dTUZGRlEREQgl8upqKjgs88+w2Qy0a1bN0lbfe7cOcrKylCr1eTk5DB37lzefvttJk2axMMPP4ynpycWi4Xa2lrASpTatWtHZWWlpEO2WQNmZmbSqVMnSbYwY8YM+vXrR0xMTKuY5927d0seyXK5/G8a4H6vD+BeSW12/OMwm80sWrSI69d/M+OyfbcIgoAoiiiVSrZv387SpUuZP38+ZrOZhIQEANfml7yGtXo7ERiJNQWuHiuRzRNFsQ5rmIWHIAjtsDaw/QwEAQcEQXgZa0XYCau+F+A6Vh0vQA7W9DiwNriZsHLClcAhaCXPMNuq1YIgqARBiBUE4WlBED4WBGGrIAhBLdb/tyHAd+OPBnOMxKpBCcaqI47HqjNZ+i8alx122PE/iKqGJopqdLTxtibBvfHGGxQXF/P8889L7gd9+/bl3Xff5ZtvviEqKorvvvuO9PR0ZsyYAVgbyGwEGJD8dAEmTZrE+PHjeeqpp1i0aBGvvvoqgwcPJioqStq+bRu28egb69CX5GJQ52NQ5yEXzez4aDkX01PR6XS8+OKLDBs2DC8vL8nSzdYt35IA2JqqWn5PV1ZWEhsbKwVO2IiA2WyWQiLOnz9PY2Mj8+bNw9XVFZ1Ox9ChQ9myZQtt2rRh9+7dDB06lLfffpszZ84gVObh5uRMt5hYTAY9RUVFjBkzhoMHD+Lk5ERWVhZKpZIRI0ZQVFREfX093bp147333kOpVJKens7u3bt5+OGHWbNmDSdOnMBkMhEQEIAgCJw+fZpRo0bxyiuvIAgCAwcOlKbGbTIFm+2cm5sbBoMBZ2dnbt++TXBwMJWVlVy/fh0vLy98fHzw9PTk+++/5+zZsxiNRnJzc3FxccHb21vS2Do7O+Pv7y8FXoiiiNFolOQuOp2OgoICHB0dMRqNlJaWSjHPjz32GMePHyc/P5+oqCgWL17MY489JrkzODo64u3tzTfffIObmxvt27eXUgpHjx5NZmYmgiDw0UcfERUVRVNTE6mpqZw+fRoHBwfKy8sBePPNN/nqq69wdXUlOjqaxsZGoqOj6dq1K506dWL16tUSYSwuLqZfv3506NBBckZ5+eWXUalUaDQafHx8MBqN6HQ6VCoVDQ0NuLm5MX/+fIn8jx49mpqaGgIDAyUv6rCwMN566y1mz55NU1MTs2fP5vLly+zYsYM7d+4QGxuLh4cHcrmcQ4cOSYEhSUlJvPrqqxQVFUkE9ciRI4SFhRESEkJhYSGrV68mNTUVlUrFwIEDGTVqlHQdBwQEcODAgXt+pu/+HLTE3yO+ZrMZmUxmd5H4A7B9t7S0irTdhJw6dYq+ffsSHR1NVVUVKSkp0myQrb/CycmJkydP8vDDDyOXy3F2dgZQNut5A4BvRVEsEgRhPdAPq4/vKSCieQglWKvFHUVRPArcBhAEQQd0BQ4AXlg9f9OBs1gJM1jt0VybZQ8VgEUUxc9b7p8gCBFYrdi6Y60shwIhwMHm7X0N5LeoMv9b448S4tlYK8NnRFEcJlgTSN791w3LDjvs+J/CvkvF/KXZE7jujhlH0fq14OLiQkBAgKRNjIyMlFK/Fi5cKOk98/Pz0el0tGnThsLCQurr63FzcyMkJITExEQaGxvx9fXl5MmTrd63X7/fgola/qAAFN66TtitPVxQm3Fr1xV5xz68//RQRvdtz9D+fRAEAZVKRWZmJuvXr+fJJ58kNDRUqnLZ7MPkcjmNjY0kJSXh7OzM6tWr8fPzY+3atbi6unLnzh06duzIZ599hsViYebMmRw8eJAvv/ySmJgYacpbq9Vy48YNqXHr8uXLTJ48WZqWvn37NkajkcmTH5XcKKqqqlixYgVqtZrvvvuOpqYmVCoVb7zxBp07d2bFihWMHDmSSZMmYTQaeeihh0hPTycnJ4cNGzawdetWLBYLWq2WhoYGBEEgPT0dV1dX6uvrOXfuHK6urlRXV+PgYK2mNzU1AdYqo6urq0SyBEHAbDYzZMgQpk2bRkNDAyqVisDAQBQKBQMGDCAlJYVOnTqxfft20tLSeP3119FqteTn5zNgwADUajUKhYKQkBCqqqrw8PDAbDbTt29fAgMD2bdvH/369aOmpga1Wk1aWhqDBw8mPz+fixcv8vzzzwPg7u7O5MmTpfFXVFSg0Whwc3Njx44dVFdX89NPP9HU1ERxcTHFxcVMmTIFtVrNwYMH6dmzJxcvXsTPzw+NRsP169dxcXGhpqaG5ORkzp07R319Pb/88ouk1bZ555pMJi5fvszAgQPx9PTkq6++Yt68eYwYMYI5c+aQkJDApUuXKCgo4JVXXkEURQIDA3n++edZvHgxHh4ezJ8/n6amJk6dOsXIkSOZNWsWJpOJN954A1EUJR/rrl27MmzYMEJCQpDL5QwePBiFQsEDDzyAo6MjGzdu5P7776dDhw4kJCQwc+ZMSY5iq4iHhYXx9ttv4+PjI+3DvWC71lvi7xHaltXhu2UQLbdTWlqKn5+fvXL8O7AdO9tjVVUVTk5OODs7S3ItsN7kpKen079/f06fPs3atWuZP38+48ePx9vbm1mzZgEQGxvLoUOHnLDakeUAtgNfgHWmHuAG1kY5sBJZgABBEPywNrUpm183H6uG+Mvm1yCK4i9Yq8qIolhi2w9BEG4C4c1yB6GFDOJtIAurrdqXQIUoir+rLf53xx8lxHpRFPWCICAIglIUxWxBEDr+S0dmhx12/MtR1dDU7JBgQY8F0bUtRVX13CmrIrStNy4uLqjVakwmE/7+/phMJgYNGsSqVauYM2cOkydPZsSIEdTW1nL//fczaNAg3NzcAFCpVMycObPV+9kaSO7+sb77RzkuLo6jP+ygsl5PQVUjIV7O+Lo7UVlZycGDBxkxYgQBAQF06tSJqKgolEolABUVFSxdupS8vDzi4uJYtmwZoigyc+ZMnnjiCZ555hm2bt3K9OnT8fb2ln6wjh49yowZM9i9ezcvvfQS/fr147nnnqNjx44MHjyYvLw8XFxc6NWrF506daK0tJS4uDhJS7t161aGDBlCcnIymZmZjBkzhrq6Omm/AgMDKSwsxGw2ExERwQ8//MCvv/4qpdCdPn2auro6ysvLJWmGbZq8vr4elUqFXC5Hp9Ph5uZGQ0MDBoNB8oe1EeGWx7O2thZBEGjTpo00jurqan755RcqKyvJzs7Gx8cHs9ks+dZmZGTg4ODAokWLJAcGgA8//JDMzExWr16NIAjk5ORQU1Mj2dOVlpai1+upqamRmvG8vb0lHbbFYiEwMJCKigrJB9hm7WYj8i4uLri6ukqVXIPBgCiKjBkzhtjYWJYuXUpsbCxDhw4lJycHQRB48MEHOXr0KDU1NchkMtq3b8/NmzcRRZGgoCCcnZ2RyWSsWLGCn3/+GbPZTGRkJFVVVfTu3ZutW7fy/vvvEx0dLTUJLl++nD59+rBr1y5CQ0N5+eWXqa6uJiQkBKVSSXR0NPv27ePw4cMYjUb69++PSqXigw8+4MMPP6Suro6HHnqI06dP4+7uLkkhevTowa5du1iwYAFDhw4lPj4eFxcXZDIZTU1NXL9+HT8/PwIDrXJPW6U9LCxMem67cbz78/P3CKvtNQ899BCbNm3Cz8/v72qBlyxZwrFjxxg4cCDbtm1j586ddqu1u2Bzbzl9+jSenp5cuXKFbdu24enpyTPPPMP06dPp1q0b2dnZGI1GJk2aRJ8+fTh//jwXLlzgypUrTJ8+nbi4OLZv3y5tt3fv3mCVOBQDeuAxrGQUrA1w14EwrNVisKbAFQJ1QC2wBsgWRTG3xXCTWywjCILMRnhbNLwlt1hPmkoTRXHq//fB+jfCHyXERYIgeGD1lTsqCEIN1lK9HXbY8W+MohodCpkMPdaCgMzJDUHuQPKZ8zz9yEgcHR25ffs2Wq0Wd3d3nn32WSZMmMDkyZPx8PDA19e31fZapp3B33oJ/70fYpvcoeWPu4+bCh83lfRcpVLx/fffk52djZubG88++ywfffQRffv2ZcKECbz//vs4ODjQv39/PvvsM44ePcqWLVuIjY3l3LlzXL9+nalTp7Jz5060Wi3fffcdwcHB1NfXs3fvXsrLyxkwYACurq4sWbKE9evX88ADD/D1118jiiIXL14kPj6edevWcfv2baKiokhPT+e7774jISGB4uJiBEEgNzeXqVOnSh6v7u7uNDQ0SH6xer0eURTZsWOHJDdobGxEJpNJjVn5+flSE45WqwUgODiYoqIiKVDCRnZsmmebpAFg+PDhXLt2jZqaGqkR0GKxUFhYSFBQEIWFhWRnZ+Ph4SGRZ3d3dywWC97e3vTq1Yvz58+j0WgYPHgwFotFCnHIy8tDJpOh0+lQKBQ4OTnh4uJCUVERTk5OgHWGIScnB4A2bdrg5eVFWFgYeXl5pKamSvtku0aGDx/OhQsX8PPzQ61W4+rqikajoa6ujrKyMsmR4fr1661kDbZrxmg0MnXqVD744APUajVDhgyhS5cunD17ls8++wydTkdTUxM//fQTiYmJlJSUEBISwooVK3jiiSd4/fXXuXHjBgcOHMDR0RGlUonZbObEiRP8+OOPmM1mfHx86NatG1u2bGHatGkkJiaye/duli5dSkBAAL179yYxMRGz2Yyvr6/kQwwwZswYSauuUChaaX5teuqWn5u7Se/f0/i2XP/u19o+c0lJSdKNY0pKCllZWSQnJ5Obm8t7773H8OHDOXDgALdu3eKzzz4jLy+PH3/8kdzcXOLj4/+uBOPPhsWLF3PgwAEee+wxGhsbUalUZGVlcenSJZYuXYqrqyu9e/fm559/xmAwUFtby5tvvklUVBQTJ06UmkN79OjBypUrpe02e04rRVHUCoLwHfC+IAhHsHr7fiSKolkQhDTgdQBRFDVYSbANh2wLNrJre7T9vWUT3L+z3vdfgT8a3fxo8+I7giAcB9oAP/3LRmWHHXb8jyDY0wlji+lTQe6AKjAKJwwAzJkzBzc3N9zdrRaVr7/++t9s4/eqvvD3p23vnua9myxrtVrS09M5d+4cRqORBQsWkJ+fz/Xr16muriYhIQGTyURqaiqCIPDQQw+xefNmhg8fjkajYd68eaxfv56FCxcSFBSExWLh4sWLdOzYEQcHB65du8aVK1cYNmwYwcHB1NbW4uzsTEhICA4ODhiNRg4cOEDfvn3ZsGED4eHhlJWVMXr0aL744gtSU1M5e/as5ErQq1cvjh07hqenJ3l5ebz//vvo9XqcnZ0pKSnBZDIhl8vp0qUL165dw2QySXIUQRBQKBTI5XKamprIycnhrbfeYunSpRiNRnx9fdFoNLRp04b6+no0Gg0eHh6YTCZMJhMymUySc9iOXU5ODhaLhcbGRgwGA05OTjg5OVFeXo6XlxdDhgxh4sSJZGRkIAgCw4YNIzY2lm+//ZYDBw5IBDIyMhJRFMnNzZV0yqGhoQQFBUn6YwcHBxwdHamtrZVIfEZGhkTAKisrpWOTkJDAsWPHEEURT09PyZrtl19+QaPR4O3tjcFgkI5NcnIyycm/FbmMRiPOzs7odDrS0tKIiYnhxIkTiKIokVFnZ2d27Nhh02SiVqv59NNPSUxM5M6dOyQkJDB27Fj2799PeHg4FosFhULB5cuXqa2tZeDAgSxbtoytW7cSGRnJyZMn2blzJ8uWLUOv1xMQEEBGRgY//vgjBw8eRK/Xc/PmTfr27UtQUBByuZyIiAjeffddSRcfHR1NdHQ0fwS/97n5PVLa8m8tl00mE3v37qVnz5589913WCwWFi9ezAcffEB5eTlbtmzh8OHDfP3118TFxZGVlYVcLqdz585ERkZy/vx50tLSmDx58p+eENv6LII9nQgMDMRkMpGYmMjOnTuZMWMGp06dorq6mvDwcAIDAwkKCqK+vp7q6mry8/OlGHaANWvWUFRUJNnYvfrqq+j1ejZu3AggCoLQVrQmAr+KVfObLYpiJYAoilXA/pZjuxf5vfvRjv8a/7CHiiiKyaIo7rd5zNlhhx3/vvB2VfL++BhUChluSgdUChnffPk5jz1irWa1a9cOT09PaX1bVbIlfq8Bx2KxcOHCBTZt2nTP925JhjUaDVu3bmXWrFm89dZbNDU1kZyczI4dO3BycqKuro5PP/2U6OhonnrqKZydnXn00UcpLS3l/PnzXL16lYyMDNq1a4darZbCEuLi4nB3d0eUyWkS5RhNZg4fPkxERAQqlQpPT0+6dOkipZ61b99eqpRduHCB2bNnM378eEpKSqiursbNzY0uXbogl8tp27YtOp1O8gBetmwZxcXFpKWl4ebmhq+vL5WVlZSVlUlVULPZTH19vXQDMWbMGJycnHjttdfo3r07ZrMZo9FIU1OTVDGUy+U899xzKBQKKdUNrHZw9fX1mM1mdDqdVCG2IT8/n/LychwdHRFFES8vL/z9/Rk3bhwqlYojR44wb948NBqN1Iy3fv169Ho9paWl1NfXYzQaqa2txcXFhfbt20tNZkqlkt69exMTE4PJZOLixYsoFApMJlOrfbVYLHh4eCAIAkqlkrq6Os6cOSOtI5PJJGlEbW0tMpmMysrKe4bC2Fw/XFxcaGxsxGw2k5ubiyAIPPnkkwCS9MKWkiiTyVAqlWRlZfH6669Ljhjnzp0jMjISuVxORkaGJKu4c+cO7777LpmZmfTt25fQ0FD27NnDqVOnOH/+PHfu3EGr1TJ9+nQUCgU7duxgxIgR7Nq1i7CwMNq1a8fRo0el8xYUFCSN23ZM/ihsNmgtz+m9PmeVlZVcuHCB2tpaGhoaWL58uWTfdfv2bQ4dOkR9fT1eXl6SvWHXrl3x9fWlQ4cOjB49Gh8fH9LS0ujSpQtqtVo6N4GBgeTn5//hMf+noqUn+oCVv9LoGiz5lNfU1HDfffexe/duLl26xN69exkyZAiBgYHI5XJKS0sJCAjAy8uL5cuXM3fuXHx8fKQUyffff5/g4GBGjx5te7ssURTLmsntbVEUT9nIsA3CPQItWj7a8d+D3VTQDjv+5BgbF0TqX4bz7bS+pP5lOGPjrNXUe03P3suL1EaS70WUb9++zfHjx6murgasxNdGCqZOncqZM2cA2LRpE4cOHaJbt26MHDkSmUzG0KFDWbJkCdHR0dy8eZO9e/dy6VoOLv6hGExmvvjiC8LDw3F3d6euro5bt25RV1eH2WzGz89PIj9GF1+O36gk+dwV1LX17Npr9YBVKBRS9VWhUJCZmcnGjRupqKhg+fLlnDx5EicnJ8aPH4/JZCIrK4sPPviAlStXShVBi8UiRQ1XVVVJx6yoqEhy2DAYDFLTm03bazQaEUWRY8eOYTAYaGxs5Pz581JFValU8te//hVBEDCZTJJspbCwUNKk6vV6SeYASJ7HNg03WBshlUolJpOJoqIiSkpKOHnyJEajERcXF+rr6/H19cXJyYmRI0fSr18/nnnmGXx8fCSbKI1G08o3WavVkp2dzbp167h06ZJE0iorK5HL5ZLcwNXVlYCAADQaDaIootfrMZvNrSrZVVVVklTGVoFUKpWtbsJssF1ftmNkq+IfP36ctLQ0yUlELpczbdo0XF1deeCBB3jkkUfQ6XTU1NQwZswYRFGkrKyM0NBQHnvsMT744AMyMjJoaGggNTWVo0ePMnDgQERR5JVXXkEmk7FmzRpiYmLYs2ePNGOyZcsWtmzZwpNPPtnK9uz3Eh7h72t974ZNImE7vkajkczMTOk8GI1GVq5cSf/+/Zk3bx4rVqxAq9Xi7+8v3YRWVVVRVlZGbGwsXbp0ITfXKi3t1auXZKvn4+ODs7MzxcXFxMbGcunSJSwWCw4ODly8eJHKSisX+7N6ELfss6hvMqE3WvjyipYmgxGtVsuoUaO4cuUK1dXVGI1G0tLS2L/fWsAVRZEbN24QGRnJ3Llzqa6uJj4+nqSkJMktpnv37ixYsIBHH3201fvayO3dvr7N//d/KtDiPwV/VENshx12/AfD21WJt6tSev6P/PjdSy5RUVHB9evXqaiowMnJCb1ez4YNG8jLy2POnDkEBQWRn5/PqVOniI+P58SJE7z88suMHDlS2kZNTQ3vvvsuOp2OAQMG8NOpDMa+sxVn3xDK1CZuFxxl/vz59O7dG41Gw7Vr1yRN7UcffcQ333zD2HET+HLfCZQd+uMY3pOqQx9RKbpTXKamffv2aDQakpKS8PLywtHRkaqqKiZPnoyvry9Go5GSkhK+/vpr3Nzc0Ov15ObmUlBQ0Mpcv7i4GLD++NlIpNlsxsPDQyITtqY32zpeXl5UV1fj6OiIXq/nm2++wcHBgW7dupGamkpTUxPnz5/Hzc0No9HIzp07JbIYGhpKcXExjY2NWCwWfP3bolA6UVpc2Oqc2GQOLQma2WxGqVRK/r6ZmZkYjUaKiorw8fGhbdu2PPHEE2zatEk6rwaDQarigpXgt9wn27lv6els8/bNy8v7m2vjbsKo0WgkfbOtcdBG1u71OhcXFxoaGqTnoiiiUCiIjY3l4sWLWCwWwsLCWLRoEYcPH0apVGI0GvH09OT8+fMoFApu374t6YzXrFnDihUryMzMJDo6mtjYWJ555hnJyeTbb7/93WvfbDZLx+mP6uRlMhlnz56lsbGRYcOG3XO9mpoa8vLy2LdvHzKZjPvvv58PP/yQ7OxsYmNj+eabb8jMzGTnzp3k5ORgMBiYO3cumzdv5pVXXuHnn3/m559/Jjw8nIoKqxFBTEwMlZWVGAwGOnbsKDVMenp60qZNGwoKCmjXrh0vv/wyQ4YMwWAwMHLkSJydnSUf8j8j7u6zAFC5eCAKci5fvky/fv1ITEyU0gptKYIAX3zxhSSZmThxYqskupawXcv3unbsVd//Ofw5b/nssMOOfxpu3LjB2rVrWb58Obdv36a0tJSnnnqKD7E2Z8AAACAASURBVD74gPT0dLKysqiqqiIyMhKdTic1Uw0fPpzr169TVlZGQEAAwcHBAJJ2NCMjg5MnT/LVV18xdeYrpF25ga62kiZnPwQXL8qrNIx/bCK9e/fGy8uLQ4cO0a5dO7788ktCQ0MpKSnh2LFfkDs6ofBvT1PFHRwDonD08Gfnd9/i4uLCY489RnFxMbdu3ZL0sGCtrNlIpclkkqQJgOReoFAoiIyMbFXBa2pqktZr6fxgq+KClezY/k+r1SIIAg4ODshkMjIyMqT1DAYDgYGBdOjQAbA2pnXo0IGBAwfi5OREnz59cHJxJTuvkJKiIkQRhGZnirCwMGQyGUOGDCEgIACA9u3b4+fnR/fu3SkvLyc/P5/Ro0dz7do1DAYDSUlJJCUlMX36dJqamqT9cXNzk2zboHXjpJeXV6t0QhtsyXEArq6uBAUF/c06NrScXbgXEb4bRUVFkjzDVi1Wq9X07dtXcmxITU3l5s2bnD59mjlz5khNjY2NjbRv3x6DwcCtW7cAePTRR9myZQs3b95k//79LF26tFV6Ifwm/7ibzNtCXO5F+u9VKbYRnqKiIlatWgXAzZs3pdcAlJWVMXfuXBYvXoynpye1tbVMmTKFFStWcOXKFUkXLIpiq+tqypQpnDlzBhcXF6ZOncq6detISUnhgQceoKmpCU9PTxQKBbm5uYSEhFBRUSE1PXp7e0szLQsXLmTLli2kp6dLEex/1uow/G2fBYBJkBEf35eGhgYAJk+ezFdffUVmZibp6elMnjwZgLCwMKnJFO4diAJIjbF2/O/CfgbssMOO/zZu3brFxx9/TENDA6IocujQIVatWkXbtm3Zt28f8+bNw8/Pj6ysLCIjI9FoNNKU/6BBgzh79ixt27ZFEASOHTsGWJ0kwNpxbTab+fzzz5k3/3XkDkoM6tvIHFW4dX8AVUAHrly6iI+PD7t375ZIddu2bXn55ZdxdHSkY4dIfEfOoPHKUQzF2Ti2bY9efZtRD46hqamJzz//XNLf2sgwgCh3BGdrGpggyPD395fGVVBQgFarxWg0cuvWLakKbIPNL7Zlap9Go5GWLRYLBoNBIpmiKEqhEjZPYBvp9vDwYPTo0VJ1uKCggC+++MLafObnj0HuhFOngTh1GoDg7I5F7oggCBQUFCCTyRg2bJj0o11WVoZCoeDcuXMUFxdjMpkIDw8HkCrVNTU1XLlyhaCgIJRKJaIo0tjYKMkxwErowSpZqK6uljSnv4f6+nqpiv7PgNlsJjY2FpVKhZOTk+Qw8cUXX+Dg4ICzszPff/89Bw8eRBRFXn31VSZMmEBwcDAdOnRg06ZNDBs2TCLsFotFOmd3x+vaYCO+vycXuht3ryuKIrdu3eLo0aMsWrSII0eO8NNPP9G/f39J72vbjo+PD/7+/ri7uzN37lxWrVpFQUGBZL/WpUsX8vPzEUURFxcXqqqqcHR0pKioCF9fX6qrqxk9ejSNjY28+eabxMXFSTcO/v7+3Lx5E1dXVxITEyV5zXPPPceCBQto06YNd+7cYcuWLcTHx7Nq1SoSEhJahef82XCvPov3x8ewaeNnjBgxQrpWbDKf37sZgt+uIzv+b8IumbDDDjv+IbTstk5JSaGmpoZZs2bx9ddfs2XLFtzc3CQ9XFBQEMOGDePmzZs8+uijCIIg2VABUsPO448/TmJiIlevXiU3N5d+/fqxbNky1q5dy9atW+kc2wMfhziMCjdEUcTBKwi/US8xOMqHGzduUFpayq5du8jOzubEiRPodDoEQeDI4UNY+BFdkwG50pXGyjuITY0cKcmWInNtWlxfX1/CItpzLv0MolGP2WxtXhNFC1qdDldXV7RaraSvtDU9mUwmHBwcpGa3hoYG6blNCnA3AgMDiY6Opk2bNvz444+S1rehoYEzZ85IutorV67Qv39/6f0CAwORyWTo9XrSz5xB6RWEsTQHQ3keWMyASMt3S01NlSruZrOZcePGkZeXx/bt22lqamLVqlVotVpMJhMKhQJnZ2f0ej1VVVXSNmwSCdsPv+3Rtr9/ZEbX2dlZmhn4R2A7frbjGRERgVqt5saNG+h0Ouk46XQ6PD09+eijj/jxxx9Rq9Xs378ftVrN+vXrUSgUrFu3jqioKIKCgvDy8pJugFoSlN8jKy01znc7OtxdHdZoNBw7doycnBwSEhLo3bs3mZmZDBkyhJdeeonAwEAmTJjArl27OH36tPQ6W/Odg4MD3t7ekh2eh4cHgYGBZGZm0r17dzw9PSkvLycqKgqNRsPOnTsZN24cP/zwAyNHjpSI2dy5c3n//fdbSR1OnDiBQqFAFEWeffbZVuO2yTm8vLx48MEHmTJlChEREdL+/5kdJsbGBTEg0kf63rPJy+4OFII/r9b6PwF2QmyHHXb8YbRMtTOYzfSozOTSpUusXLmS6OhovvjiC27cuEFqaipgrZpkZGRI9lq2MIS8vDw0Gg2NjY2UlpaybNkybt68SUlJiWShVl9fT0JCAgMGDODy5csIPhV8cc2EUiGjsaIIj8wd5FWXUqkuZ+bMmVy4cIGqqir8/f0JCwuTqrKurq4IZiPmxmrkcjkBwcGUlpZSW1uLn58fCoUCtVpNRUWFVP0EmgmmFTqtjsbmSqujoyMeHh6SNtMGJycnLBYLRqMRk8mEo6OjZC0XHh7Offfdx8GDB6mpqaGuro6UlBQMBgNGo5Hr169LxDksLAy5XE5OTg4ajYb09HTc3d1p374948aN4+OPP6aqqqqZEJaBIIMWPTZKlQqxuQp9+vTpVq4UaWlp0k1IcnKypHcGq+TD1rAFvzWv/TPwR6QQgET87xW3bRsjWJsFHRwcaGhowNvbG0EQmDZtGoMGDSI+Ph6j0UhUVBRRUVH0728N9bJtTxCEVlKXu3EvPee9iG9jYyNZWVmkpqYSExNDQkICACtXruTatWt069aNV199lbVr10rWdQ8//DB9+vQBrJ+NCxcu0KNHD27cuMG2bds4fPgw69evJyQkhMuXL1NTU4OHhwedOnXi7NmzdO/eHS8vLzIyMqisrJSCRT7//HNGjhzJfffdJ43zwQcf5MEHHwR+I7S2xj+bHMi23HJ/3dzc6NWrV6t9/TOTYRvu7rMAO/n9T4OdENthhx1/CHen2gEcLzLz8LAEPl//qbRejx49WLNmDdu3b0elUlFbW0tdXR1FRUXMmjWLyspKcnNzefLJJxk7dixt27bFaDSycOFCZs2axZ49e9i1axdDhw4lOTmZ5cuX4+Pjg1KppI3CkcLCIoxNOvRKJb169eLMmTOcPXtWIjxVVVWtnAwMBgMymQx3d3dqamqorKyUSGB5eXkrW6zfq3aaTL/JKWwJcS1lFr169cJsNlNRUYGjoyOVlZXU19dLHs15eXls3ryZOXPmsHnzZmpra3nkkUdwcnJi9+7dDB06FA8PDzZt2oReryc0NJSbN2/i6OgodbBfvHiRjIwM6T1tLhEypQui2YSgcMSiraNJr8fb2xuNRoOzs7PUPGXTnNocP8BaNbZVYXv37s25c+cksmSrDP8zoFAofnd7crlcIsE2CYTNz9hWWTaZTCxcuJA2bdqwZMkShgwZQkJCAtu2bcPPz48NGzYQGxv7N+EULc+nraERuCfZtuFeJOfy5cucP3+eW7du8c477/DTTz+xYcMG2rRpQ1BQkNT02LlzZ3799Vd27NhBaGgoRqORgwcP8sILL9C/f3/pXAB07NiR9PR0evToAUCnTp0YMmQIvXv3prq6mtraWkpKSggPDyciIoLU1FRmzJhBbGwsrq6uuLu74+Pjw/r163/3uN8r7MYGO8m1w47WsBNiO+yw4w/hXt3WXt2Gcf7Eat555x0EQSAlJYVp06axadMmPvvsMwRBYO7cuYSGhhIQEIAoikycOJErV66wb98+MjMzefDBB4mPj+fcuXOo1WquXr2K0WiksrKSK1eu4ODgQGRkJEePHsNkMhIQGERNlbWaa7UN82v2rhVxdFTQ1NQkVUUBSYpgkw7YPEBtsBE1R0dHHBwcMBiNmIxGQASZvFWl2N3dHY1Gg6+vL+Hh4dy4cYOqqiqysrIwGAy4ubnh7OwskU6ZTIaLi4tUPU5ISJCsuwoKCjCZTGi1WikVTRAE1Go1dXV1klWZbdxOTk7odDqJENseHTHh5OaCTIAqrbXKWldXh8lkoqqqStICGwwGjh492korDb9VRO+WQLQkjL8n/fijsN2UtKy+2pZt7hI2wjp+/Hg2bdqETCZj0KBBZGZmUllZyaFDh6irq8Pb25sXXniBxMREnnnmGUaMGEFcXNzfVDxtyzaCa3u/oqIizpw5Q0VFBffff78kCwBrM2V6ejpXr17l6aefpm3btvz666988MEHREVFSVHXfn5+3Lx5k40bNzJ8+HCWL19OSkoKeXl5jBgxQpqdGD58OEePHqW+vp7OnTtz+fJlRowYAVjjyc+cOcOECROQy+WSlzJAaGgoHTp0oE2bNgD89a9/lc5j586d6dy589+cQ9vxu1dKnR122PFfw06I7bDDjj+Eu7utG7NPYVQ4sGvLVn7YuY2mpiZeeuklhg4diqenJ/369cNisXD79m2ysrL46KOPiI+P54033iA8PJzx48fTt29fwsPDycvL4+TJk5SVlbFq1WpkcjklZeX4entRVlbGrydOYlK5Y6pVU1hcgkJu/aE/dfo0Dr7hgACCgKdvW9QlhVZyJwjQTARtOlOgVRPY3aTPwcHBWvlVKNBptYSFhlJTXUVDQwNms5nVq1fzyiuvoFarUalUBAQESIEIsmaHh86dO1NdXY1KpeLRRx/l2rVr3Lp1C51Ox1/+8heJnKvVaomEbtu2DZVK1Yoc3g2z2UxgYCB5eXnAb24cer0OEKXnXl5ekgb4biLasnJu003bjsfFixel49DSVQL+vrfu76GlHOPubdjiqm03AUqlUoqBPnbsmOTBm5GRwaBBg8jPz6dLly4sWbKECRMmoNPp2LJli6TfNpvN5OTkcPnyZS5evEhOTg4VFRUsWLCAsrIy+vTpQ1xcHKmpqSxevBgfHx9cXFzw9fUlODgYR0dHEhISUKlUEnGtqqpixYoV7N69mz59+jBv3jyp+c7FxYWEhATpmA8ePJjjx49LcpnMzEy6deuGXq/n2rVrREZGEhQU1EozPHXqVBYtWsSYMWN45ZVXiIyMlCQ2nTp1olOnTtK6NmJsw+/FM9thhx3/fdg/RXbYYcd/CVEU8XRWtOq2dvEL5u2nRtK1QzhvvfUWzz77LCaTiaSkJOrq6rBYLCQlJREfH8+1a9eQyWR88sknuLq68vLLLzN9+nT27dvH2LFj2bdvH/n5+fQfOJiGxkbqtToy1QZw97dWNx1ccfCNAEQEJzeUUQMAMBtNiDgAIsgVlJerfyOTgnWa+G6/XIPBIGkpvby8UCgUBAYGMmvWLLy9vTGbzQxv9oetq61Bp9NJxC4xMVEiciaTCbVazfLly+nbty+jR4+WJAhubm5YLBaOHj2KWq2mtraWxsZGrl69isFgoLa2Fp1OJ+l03d3dJcJoNBpbEVfbOo2NjRIZBmjXrp20rNfrJRcMtVrdiojeqxHMdk5byidssDkt/P/i7m3Ypv7Beg4cHR3x9/fH29tbSv0ym80sXrwYDw8PLl++THJyMg888ADV1dUkJycze/ZsyX0ErNXwkpIShgwZwoQJE1iwYAEZGRk88cQTxMfHs3PnTi5dusTq1asZP368NAthCzo5ePCgFKcbHByMxWJh1apVbNy4kdraWk6ePMmMGTPIzMxkxowZvPjii2zYsIHQ0FCcnJy4cOECYNWpp6SkMH78eCIjI/nqq6/YvHkz27Zt47777kMulxMXFyc5RQBERUXx/fffk56ezlNPPQW0Du6wNfLdC3a5gx12/PNhJ8R22GGHBK1Wy/z586Uf6JbT0DKZjLFxQRycHseW53pz8PUHuHR4G5s2bSIrK4vp06eTkpJCZWUlTz75JOvXryc7Oxuj0cjDDz/MqVOnyM7Opri4mHXr1jFq1Ci+++47FAoFo0aNQqVS4TJwCoJCiaBwwmd8IqeLmkAQMOs1iHorSVS2jcJj2LTmEYuYNOXWRVMTmH/z/kXugLxNW2n8zs7OdOjQgT59+kjkMzQ0FJPJRHl5OZ988olElNLT03F0dJR8ghUKBXK5nHfffZdnn30WZ2dnPD09kcvlLF68mOzsbG7cuIGjoyPe3t7IZDJqamooLS2loKBAqoSqVCrJ1cJisUhT6/X19ZJ04+5qn438mM1micgDf2P3ZqtW3o27q7stSVZLUn2v9/zvwvZ6mz7bdv1ERETg4OBAUFAQX375JcOGDUMQBFavXs2YMWOsDZCCQLdu3fjss8+YOXMmP//8M0OGDMHBwYGTJ0/i7e1NSUmJVLGfPn06vr6+BAUF0a5dOxISEvD09OT69eskJiaSmZnJ/v37pSAMpVJJx44d8fLy4tq1a2zduhVAasYDawW7Xbt2nDt3jpiYGJKSkti0aRN9+/Zl7dq1NDQ04OLiQlJSEgcOHOCTTz6hc+fO+Pn58fTTT/Pss8+SkZHBqFGjeP755wEYNmyY5D189/m5VwX+Xo18dthhx78OdsmEHXbYIUGj0XDo0CHJR9gWdVteXs6MGTMoLi7G1dWVvXv34ujpzcaNG2loaOChhx5i//79XLlyhQMHDvDTTz9x48YNQkNDUSqVzJ8/n5qaGsaOHUteXh7nz58nICAAlUolaYrBGlCBRcSi02CsLsanxyiqU7Zh0Tcid/UAmQP6vAxKt84DhQqMeixNWnBQgqkJB3c/zDoNosmAwjsUubMrcgcF7nIDlepybt26RUBAgFRhvHbtmjRl36NHDy5fviw1IclkMpRKJYIgUFtbS7du3bh06RK7d+9GFEVJh6xQKFi/fj2v/D/23js+qjr//n9OL5mUmSRDOgmQhEBIAEFKCCKg9KIgIBZQbCAgKsK6CAjoKogoy8oXAVFAFMRIB6UJiLAkQIAQAumFdJJJm2T6/P6IczdBVv3s77O2z5zHw8cDhklumXud8z73vM6ZNQuz2czBgwcFe4bZbBasGC6PpysXuCVuH/5qiZbDaC39v780xkyj0bTKRG6Jll5qAL1eT0VFxb9VJlui5dBaS1uGq27YZrPh7++Pw+GgurqaKVOmMG7cOAYOHEhRUREqlYorV64wbtw4YmJiaGhoQKFQUFJSgkQi4YMPPiA8PJzc3Fzq6+tpbGxELpdz4MABPvvsMy5dukRNTQ3l5eWkpKRgs9no2LEjly5dQqPRkJyczIwZMzAYDHTo0IH169cTFhbG119/zbRp00hLSyMtLY1evXpRWVlJnz59WLFiBdCcAOHv7y8UV5w8eRKbzcatW7eIj49Hr9cTERFBz549+f7774mJiREWkVKplEceeUQoZ2gJd0yXG278fuG+E91w4/8wHA6HYCkoKytj8+bN1NbW8vLLL/OPf/wDiUSCVCplz5493HvvvRw9epTVq1dz4MABhg4dikQioby8HJvNxsjRYxg3YSJnzyXj6ekptKnJZDLS09MZOXIk48aNIzQ0lPbt2/Ppp5/icDgoLS1lwIAB6Hx9qc04g0wfDk4nVd+spa7gKl6ens3ZqXYbSOUAOK1NIJYi8Q3DM/5+FKGdUccOwrPzAJwWEyDCXl+J6WYGdksTzh/Imre3txBrBs0lIC4CZzQahRxem82G2WzGaDQilUrx9PQkLS2NTZs2CeRPLBYTERGB2Wzm+eefp6qqCpvN1soK4TrHFosFh8Pxi0js7WT0Px1mc6nJTqezVZLGT/3uO5VsyOXyO/5sy/1UKBTI5XJUKhW+vr5C1m9paSkVFRVoNBoOHDjAfffdJyxGamtrUSgUbNq0iV69enH8+HFycnL47rvv6Ny5M3a7nYKCAuLj44Wmu4CAAObPn4/JZCIrK4vo6Gi6desm5ChHRUVRVVXVbHsZOJCvv/6aefPmCSTWYDCwe/duSktLWbBgAQ8++CCFhYXcvHmTmJgYQXVXqVR4eHiQl5cHNHu8P/jgAyorK5k/fz5SqRQ/Pz8cDgfLli1j3rx5BAUFtTo/drv9R7YRN/l1w43fL9wKsRtu/Ingivn6JRmrRqOR77//HrVaTb9+/WjTpg3dunUjMTGRIUOG8PrrrzNz5kxKSkq4du0aZrOZK1eucPHiRcrKyoiMjESpVHLq1CnW7znBuawy5Loorhi98PZtg1arpaSkBJ1OR319PWazGW9vb6FYwkU+QkJCuOuuu1CrlDjMFTi6jcGoUGEsTKPJWMLrr7/O9i93kUUg9sY6ZG3aI7KZMJdlY71ViLnUA2tFHk6HHZOnP4il4LTjMDWA045SKcPU1Dy8ZjQayc7OFiwMAQEBGI1GKioqhKEy1z4ZDAZBFXQRaJvNJvijXSTM6XRiMBgQi8XIZDLkcjkSWXNihWs4ramp6d+2mv23MHz4cJKTkyktLW31uovQu+qPW8KVotESLlKnUCgwm80oFAo6duzIlStXUCqVwvG5yN79999PdXW1kJ98zz33cPnyZc6dO9eqwe2zzz5Dp9NhNpuRSqW0bduWvLw8vvnmG6HcRCaTERgYyJNPPsljjz2GyWTCarUKi6zIyEicTidlZWWEhoYSGhrKlStXiIiI4ODBgyxbtgyr1crJkyeFgcjDhw+Tk5PD5s2b6dq1K19//TXXrl2jW7duhIWFkZubS7t27Rg0aBD9+vUDYP369T86v76+vgQGBlJQUECHDh1+pP7eKerMDTfc+P3CvVx1w40/KG5XElvGLhmNxlZtYy60JCQSiYTk5GQ2bdpEUlISFy5cYOPGjZhMJmQyGX379mXXrl2UlpYSGBgIND8mz8vLw2q1cubMGcaOHYvVamPtV98i1uhoKs/DVF1CcWkZDkSkpqZitVoFhbCoqIj+/fvT0NDA5s2bkUqlrFmzhgceeICGhga81Qr2LnuKTz9ax7PPTmf1qpVMnz6dXXv343/vFOR+IVjLs5B4+iPTaPH09EIMiDR+KMPikHr6gkyOTCYjvmtXPNQqNCqlMATlinNzna+srCxu3br1IxU0Ozv7R6kILrhet9vtQg31/fffT//+/TGbzdTXN1BTXY3RaKShoaFVKcUvJcQ/pSS29BH/FI4fP96KDMtkMmQyGffffz9eXl5IJBI8PT0JDg5GLBYjl8uFtIyWJQ4qlQqNRiPUN5vNZsFa0tLOodVqUalUbN++nRMnTlBfX09dXR2FhYV07twZaG6sa9OmDQBHjhyhtLRUaGZrbGwUtulacLRr144FCxYwePBggoODqa+v59y5c1itVtLT0wkLC0MsFlNQUAA0Wz4aGxupqKjgs88+Q6lUkpqailgsJi4uDm9vb7744gumTJmCwWBAJBKxadMmBg4cCEB6ejrt2rXD4XAQEBBA27ZtheNzKb6uzzAxMZE33niDDh06/Oxn9kfCT1UPu+HGnxluhdgNN36naPmldKcvW5cKnJ2djZ+fHz4+Puzbt481a9ZQXFxM//79mTVrlpBZmpOTQ2pqKoWFhUyfPh2RSMSGDRuEgacXX3yRW7ducebMGe7u1YdLly6iUCgwGo189NFH9OnTh1OnTqFQKNBoNOTn59O9e3c+//xzrBX5aGLv49bXq5H6BCD38sNTp+d88jmGDBnCE088wRtvvMHKlSupq6vD09MThULBM888Q3p6OkOGDGHUqFH4+/vj4eGB3W5nzICeguItlTq4N8qfLwKicJgbUXXoRYioihuFVxArfNDEJCCSKGnM/B7MTXj4eOPn40laYyONRiMmk7mV/9alkrosI7cPpLlSHlyVwS5SK5FIBGXVarUKrx8+fLjFT/+8//bnIJFI7khKxGLxj3KEW/7M7TFnruxiQCBz3333naDSu9RZp9OJ1WpttchybaehoQE/Pz+8vLxQKpUUFhYK6npxcXGr9A6j0Sh8Zq6fv3z5skCyWy4QXNedzWZj0KBBOJ1O9u7di9VqpbCwEIDMzEzOnz9PWFgY5eXlREREMGTIEA4dOsS5c+cICAhAKpVSWVmJw+Hg4Ycfpri4mNzcXCQSCa+++iqPPfYY27dvF0g5wMqVK4XostvvrcuXL2O324XCjJbn98+ElnnTv6S+2g03/uwQ/ZLhiT8qevTo4Tx//vxvvRtuuPG/gpqaGry9vYVhpr/+9a8cOHAAp9PJP/7xD7p3786HH35It27dkMvlvPLKK7Rv356NGzeSm5vLokWLCA4ORqvV0tjYyOLFizl37hy7d+9mzZo1NDU18dRTT3Hi+38iH/YXyve/j0iuwlacTmK/BC5evIhKpcJkMiGVSklNTUUul9Opc2fqpD4EPLaK2pQ9WIozUOoCiBaVcvbM9xw6dIiBAwdy7tw5Tp8+TceOHenTpw8BAQHCsbmKBVpaPS5evEhqair6nsOZ9+VlTFYHtd9/hjHjOxRBUSi8/KhLP4lH/BAas5Ox15bjaKwFZzMhkyuUmE3/UmclUhn2HxrnlEolYrFY8PTeXjxxe8vZz73+v42W7W2/FC5LA/xrsdSlSxfS0tIQi8VoNJpWTWnQrBp7eHgISrfrPLhsETk5OUKrW319PXK5HJvN1ioSTCaTCeR34MCBHD9+/Ef7JpfLsVgsgse4srISi8VCSEgIRUVFqNVqHnjgAXbu3InFYiEsLIzi4mLsdjt9+/ZFJBKRnZ3NxIkTOXHihECEd+7cKRSquDJ8k5OTAejWrRsymUxYJNxeWuG65lpaHSQSCX/5y1/Iyclh586dP7om/6hoeX/9FOEtLCzk0qVLpKenM2vWLCF32Y1fDyKR6ILT6ezx8+90438bboXYDTd+Z7BYLBQUFHDx4kWysrLIyckRiOSMGTMYNmwY27Zto6CggOTkZPLz88nIyODKlSusXLkSi8UiKIxNTU3cuHGDrl27smXLFgoKCti/fz+bv50d6wAAIABJREFUN29mwoQJBAUF0djYyOnTpwkNDeXCxVTq1cF4OsXIgjthKrmOJLAjz895mQ1r1zBhwgR0Oh2PPvooW7duJSoqCl+dDqehDqmphsDeIyk7WUuvYBUL57yDl5eXoFAnJibSr18/zGazUMzQkoi6PLcuFBQUcPjYcS7d8MYq9cBpaUKs0aGK6IbD3IRnZE8a81Kx11ViLcv61wn8gbSabXZQeIK5OWHB3qJ++d9FlLnw70jvT1UQt9gB/hOVuCWxdBGYXwIPDw+MRmMrMiyRSLDZbD+kdzSrw7W1tSiVSry8vGhqasJoNKJQKAgNDUUmkzFixAieeeYZRowYgdlsxmKx4OHhQXl5OXq9HqvVitlsFpRS1z629CF/9913QDP5lEgkwvEoFAqhtMJoNLZq25NKpTQ2NvLFF19gtVqRSCSsX7+ekSNHolQqadOmDf369ePcuXO8+OKLrF69muXLl/PPf/6TiooKQkNDhWQQp9NJz549W11HrnvBlRHdsr7Z9e8tce+99wqk+o9Ghl0E/3bieycSfP36dQwGA/v370cul9O3b19Wr16NVqslICCAhoYGNyF24/8U/nDPRkQi0VCRSHRDJBJli0Siv/zW++OGG/8pXF9etxOfxYsXM3bsWDIyMggKCuKll17im2++ISIigr/97W9UVVWxcuVKqqqqUCqVnD59mt27dwue0JCQEDIyMqiqqiIiIoKjR48CsGrVKqZPn47T6SQ6OpoTJ04QFhaGSqWirq6OoKAg4nr2Qebpi7UyH038EGQ+AVgq8pj1/HQqKyvZtm0beXl5zJo1i/Pnz7Nr1y7+/ve/88/vT3FmyQN8/lx/sr7ewsEdn9C7d28kEgl79+5l2bJlTJo0ib59+zJq1ChhAM1lQZDJZAL5qKys5NSpU1RWVmIXyZE4bNSnHqT2zHaUYV0wl+fSmH+JsmMfY64uw5hxCkVILCKxBERiAsIimk+kzSKQ4Z/DL1Vif54Mw39qmWhpd3B5euFfpMxFdFUqVav3RUREtN660ynExbng6emJRCJh2rRpfPrpp6SkpPDwww+j1Wq5efMmVVVVbN++nSlTptDQ0EBjYyOlpaUYDAagOX3CbDYLyrDr2pVKpYSGhgrbcRHdlpYJQBjis1qtgnfXRZhdCm1AQAAajYaEhASCg4OJj49HLBZjNpt5+umnMZlMbNiwgeTkZDIyMqitrSU7O1tICamurqakpAT48efkir67nRjm5uby3HPPMW7cOD788EMAYmNjKSoq+tHA4e8JTqfzjuUprvN6+3EeO3aM2bNn88ADDwgK/tq1a5k7dy5+fn4sXLiQPXv2cNddd/Hxxx/zzjvvtHqC44Yb/xfwh1KIRSKRBPgAuA+4CaSIRKK9Tqfz2m+7Z2648T9HyzSIqgYzNw1NeDibqKuro6qqiqlTpxIeHs748eP55ptvAAgKCiI5ORkvLy8qKyuB5sary5cvo1Kp6NChA0VFRUgkErKzs1EoFKSnp5Oenk5qaipJSUn4+fmRk5NDRkYGSqWSoKAgNm7cSFVVFY9OnsTxt7ZgvVWIOrI3PomPYfYL4Z5gJ8GBenr37t0ckabTtToWp9NJQ0MDJ77azNWrV8nJyaGurg4PDw9GjRrFPffcw1NPPYW/v3+robAbN25w+PBh6urqmDx5MkqlkqlTp6JUKtHpdNzMzcTs1QupTyDWWwWIEOE/eh5lW1/GXHIDdYfeNN1Mx2IoQyRXIVZoqLbcOSbs14RcocRi/mkV+nbIZDJ8fHwoLy9vRXY8PDxoaGjA6XQik8nQ6/UUFBQIBNOVJRwfH096ejoJCQmUlpYKGbrwL7J94MABzp49y/r160lNTeXmzZuIRCJhG+Xl5fj6+tLQ0IDVasVisaBQKIT6a2i2m7jUaJ1Oh06nE3zFrsfyru25lEqRSISXlxcGg4HQ0FBqa2uRy+VERkZy6dIlnE4n4eHh9OjRA5lMRkFBAffccw9Wq1WwtaxZs4ZVq1axYMEC7rvvPrp3786xY8cES1BVVRWTJk3izTff/NGQZEVFBWvWrCEnJ4fExESmT5+OzWbj7bffpm3btkycOJGlS5fi6enJ5MmTEYlEFBYWCs16vxVci487tQ3ermwbDAYyMjL49ttvKSkp4dlnnyUuLo6srCxOnjzJsGHDkEql7Nu3D7vdzogRI0hPT2fMmDGIxWImTJjA6tWrmTx5MmFhYYSHhzNz5sw/jW3EDTd+Dn8oQgzcDWQ7nc5cAJFItB0YA7gJsRt/OFy/fp3Dhw+TW+fkYH0oYksjxQc/IEhuErJjt2/fzsmTJzly5Ai9e/dm4sSJGAwG+vXrx+rVq7l8+TIKhYLS0lLy8vKYO3cu06ZNIyEhAQ8PD9RqNWKxmKCgIOx2O1988QVisZiKigquXr2KRCLh0UcfJSMjg7Nnz/L444/zwVsLWXQwG7lEglXmz9pVbzC6a3CrfXc9lm35eNZmsxEdHc3w4cMJDg5GrVb/5PFnZ2ezevVq4ZH3gQMHyM3NJSAggM2bm4n1a6+9Rv8ISCoKoindiP1WHn3CPDkgV2FvqMZnwFQat84FYxVOsQSsFuy1Zf+Vz+t2n/FP4afIsFqtFkiel5cXUqkUg8HwI4+vi1R269aN7777DpVKhc1mExIVXITIlTF8+fJlAE6fPt2KUGs0GoxGIyqVivr6eiorK1m4cCHXr1/H6XSi0WiYMWMG7777LgqFguDgYDIzM1Gr1TQ1NQnk17XfRqORDh06kJOTQ3l5OeXlzU2BrmvWpax6eHgIFoiWddkxMTEoFArhScNbb71FVlaW8KTAYrFQXl5OWVkZnp6ePP7443z44Ydcv36dvLw8amtrOXDgAKNGjWLo0KFERkbi6+vL0qVLKS0tZfPmzRw7doxevXrx/PPPA/Dee+9hMpl45JFHeO+995DL5YwaNYqzZ8/y5ptv4u/vT2VlJUePHmXChAmEhYVx9erVX5UQNzY2kpSUxN133010dDRw57Y6o9FISkoKycnJtGvXjvHjx1NbW8uCBQtISUnhueeeo7CwkHfeeYetW7dy6tQpDh8+LDwtOnPmDB06dCAxMREPDw+8vb0B6N+/P/3798dgMLBv3z4WL17MQw89JKSCuOHGnx1/NEIcDBS1+PtNoFfLN4hEomeAZ+Df15K64cZvjdTUVBYuXIh/QBBJ/8xC5KVHovbBqdBgHzQT/6PL0Wq1GAwGGhoa6NGjh5AA4aofjoyMZMGCBRQVFVFSUkLv3r155pln8PHxoX///iQkJLB9+3Yee+wxtFotCxYsYNGiRbRv356+ffvi7+/P5MmTyc/PF2p11Wo1E+OiGBzXlpuGJkK0KrRq2Y+Gcu7kv9RqtQwdOvRnj92lhp86chyDwcDMmTP55JNP2LJlC56enowZMwaHw0FwcDD33nsvdXVVLJ44kWd3LqWp8Cqnug5FJFOA00Ht1RNgaQSHrfm//yJ+jgyHhoZSVFTU6rWWqqlLYdVqtdhsNiwWC0FBQRQXFwPNLYEu9bV9+/Y4HA5yc3Pp0KEDKSkpmEzNCyXXdWG1WrHb7UKMnOtnXV5ZhUKBzWZDoVAIg5DR0dFYrdbmiDtvb+H6Wrt2rRAj53A4qK+vFxZTLrLYslSkZTqFVCrFbDYjEokICwujsLAQm82GWq0WfMpeXl4EBQVx9epVKioq6NOnD23btuWFF14gICCA6OhoevXqhc1m49SpU3zyyScEBQUxbtw4evToQXFxMWPGjCE4OBi5XI5YLGbXrl3s2bOHjIwMtmzZQk1NDTdu3ECr1TJy5EiWLVuGRqOhU6dOfPXVVwwaNIgRI0bQ2NjI999/j1wuZ/jw4RQVFeHv709ERAQikYja2lphGHH06NH/m5dQK7TMBIfmNI+vv/5aWFjabDYyMzOFxdCDDz6IRqPhiy++YN++fdx9991cvXqV9PR0Fi9ejKenJzqdjmnTpjF48GAWLlzIqVOn0Ol0FBUVYTQaeeihh1ixYgXBwcFUVFTQ1NSEwWDA19cXp9MpJGxA8xMHT0/P/9rxu+HG7w1/NEJ8p+c2rQx7TqdzPbAemlMmfo2dcsON/ymOHz+Or68vcxav4PsVuyj9bgcSpQZFYBRKDx9szuZM1MGDByOVSunWrRt6vZ4HH3yQnj17EhcXR3FxMevXr6eiokJQxzQaDXq9nuDgYM6ePUv//v0ZMmQIW7ZsYfXq1UgkEnQ6HSEhIUyYMIEuXbrg5+cnJAm4CK6vRoGvRvEzR/E/x55LxcxPuoIEJ2UnTqAuPs/y5cuJiYlhw4YN3Lhxg9OnT3PhwgU6dOhAcnIyEpUnGz89htVqwVl/i+ozOxB7aAEwntn2v76P0ExSXITx30EkEqFSqYRz5rIBuPJ6mwfb7CAS45SrwNyASCymrKwMjUaDzWYjPj6e3NxcdDodcXFxlJaWkpWVRU1NjVCQceDAAWQymaDUtm3bFpPJJMSXabVaGhoa8PHxoba2lqamJmGgEpoVRYlEglqtJisri/r6ekwmk0DEnE6nUBxitVqF/GqLxYJIJBJa9lxwJTfYbDZEIhEajQa73Y7VasVkMhEQEEBJSQlGo5HIyEgGDRrEiRMnMBqNzJ49G19fX44fP87LL7/Me++9x6FDh3jyyScpKiri0Ucf5bHHHkOv19OmTRscDgcpKSmcPXuWNWvWMGLECJ5++mn++c9/snPnTvr27cugQYNQKpX07NmT3bt387e//Y36+nqKi4t5/fXX6dChA35+fqxbt461a9fSsWNHTp8+LSRmHDt2jO7du1NUVERtbS2+vr6EhYVx8OBBFixY8B9bBlx2h3+X6tDy9draWrRaLZ06dRLa8VJSUnj//feJiopCrVYzd+5c1q1bx8SJExkxYgTnz59n8+bNAiHu1q2bEFfn4+ODp6cnpaWldOrUCX9/f2bOnClsLy0tjS5dulBXV0deXh4dOnRAJBKxbt06cnNzCQsL46WXXvrZpzxuuPFnwh+NEN8EQlv8PQQo+Y32xQ03/kdwKaPBPkpMJhO9e/cmRKsCtTdSbSCIJNjqq7CJxCT07Ut1dTV3330399xzD5GRkYwePZrLly8LatY777zD7NmziYmJ4S9/+QuRkZGIxWKB8M6fP1/Y9pgxYxg/fjxKpbLVl/Sv6Q2sajAzP+kKJusP5ErjR4NfJ1auWYe5rnlAMCYmhr/+9a/s2LEDLy8v1D6+3HJ6gvw6zppmK4RYrgL7bWqwWAKOHw8Z/adwOBxYrVaUSuW/TaRwDZZ99NFHfPzxx9TX11NTU4PBYKCsrAyxWIITEchV4HCASAxyDzxVUu7p319okVMoFNTV1ZGcnIzFYhFUX5cVoqKiApVKhb+/P3V1dQQHB2OxWLh27RoSiYThw4fjrfPjyy++aFUCAs0eX9cQW319fasYMtdQXGBgIBMnTuSrr74iNzcXLy8vRCIRQUFB5OTkYDAYiIqKoq6ujvr6eqFwRK/XYzKZqK+vZ/r06VgsFiEG8Mknn8Rut3Pjxg1KS0uJiIjA09MTLy8vnn/+eYKCgujcuTNOp5Nhw4bh6enJyJEjqays5OrVq0yZMkUg4du2bUOj0TBv3jwCAwOprKxk6dKlJCQkMHv2bF577TXB62owGMjPz+eBBx5AoVBw7733olKp2LVrFyqVinfffZetW7eSnZ3N4MGDGTBgAOvWrRM+i6eeegpobvnz8/MDftk94trXlhaHn2qMhGZSOnv2bMrLy+nTpw8fffQRwcHBQlLHjh07GD58OLGxsSQlJbF161YWLlyIWCzmqaeeIjAwkKFDh7J7927Bg+3Kefb29kaj0VBZWUmXLl246667mDZtGg0NDWRmZjJ69Gi6dOnCY4891qpyet26dT97rG648WfFH40QpwCRIpEoAigGJgGTf9tdcsONn4dLGZWJxVgdDgY6pZRdu4avRsHKh3vx8I4l+CdMoOzYJkaPHUB8x0TOnDlDz549SUpKYuHChaxatYqgoCAGDx4MwNSpU5k6deqPthUREUF1dbXg33Spnb8lbt26xUc79nDr6EGMpbkowuNxWkyYi9IZPuR+rl25iE6n46mnnuK9997jtddew0/fhusGJyLvQEy5KbgeBinb9cTRVIMpt/pfG/j/QYZb2hrEYjF2ux2FQkGbNm2oqKgAmn2vqampqFQq2rVrR3p6OtAc3/bwww8jkUgYM2YMo0aNYteuXT+orCJEcgXSoGgkchWW4uuIHFZMTSYOHjyI1WoVCLHVav1R4Yanpyc1NTWIRCL0ej1isZiqqiquXLkiDI3Z7XZ279uPQxeB6QfrhAtSqZT27duTlZUlkHpXWYe3tzfV1dWCpeDSpUtERERgNBp56623mDdvHllZWcI5qayspK6uDrVajUgkYu3ataxcuZJ58+axb98+RCIRt27dIjY2FpPJRPfu3XnuuedISUkhJSWF/v37ExMTg0Qi4cqVK9TW1pKZmUlCQgJLliyhoKCARYsW8eCDD1JSUoLBYMDDw4Pdu3dz/PhxGhsb0Wg0gkqakpKCTqejtLSU3bt3M2nSJMaOHcvDDz8sRBYaDAY+/vhjwfbhcDj48MMPCQgIYOzYsezevZs5c+awfPlyMjIyuOuuuwTPcHR0tODjvR2uBUVLu9DtKrDD4eDixYvCouWRRx5ppTSbTCaWLl3K7NmzGTFiBHK5HKfTSVhYmDAsm5yczIULFwgJCaFTp058/fXXBAcH884779CpUyfeeecdAJ5//nmuX79OaGgoTU1NZGVlERcXh0qloqKiAoPBwEcffcSuXbtwOBzExsYKx9ZSNW65778ks9gNN/5s+EMRYqfTaROJRDOBbwAJsMnpdKb/xrvlhhs/iZbKqIlmJemINZw2lw+yfPly7HY7iZ1CmT93AuKZ9/Pxhx9w6IqNAQMGIJPJUCgUrFix4o6/u2XuKDR/Mb/11lu/2rH9HFxfrO+//z6pl9NoKivAcqsQeUB7bA0GHBYT2K1ERUVhNpu5fv068+fP56233iIjKxerWI6t8CpYzYIK3HjtBPLgGJCpwNr08zvxM9BoNNTX17ciLFqtlrKyMpqamlAoFOTm5gLQ1NQkkGFoJp1yuRyNRoOvry9paWlCsYXT6USk9sdScAmrE8QqT+wWEyLswuCZRqMhICCAvLw8pFIpGo0Gg8EgeKhra2txOBxUVFQIj+Bd1ggXjA1GRM5inHYrSGRgtwpDjikpKYSFhVFTU4NWq6VXr16UlJQIlo7a2lq+/fZb7Ha7MGA1YMAAZsyYwYoVK/D09BR8xg6HA61WS2hoKCNHjiQiIoKlS5dSXl7OwYMH6dGjB3PnzuXNN9+ksbERm82GRqNBo9GwfPlyZs+eTXV1NUuXLiUyMpIjR45w+fJlZsyYQX5+PjKZjMcff5xly5Zx5coVJk6cKHiXHQ4Hb775Jtu3b+fll18mJCSEGzdu4OXlRVFREVKplJkzZ1JYWMi+fft4+umncTqdeHt7s3//fqZMmYLRaKRt27YsX74chULBhg0byMzMZNy4cXTu3Fn47B0OB/n5+Wi1WoxGI8uXL2fhwoXo9Xrgx7nFdrudb7/9FqlUytatWxk7dizXrl3jyJEjREdH061bN6C10my327l8+TIffvghcrlcKBXR6/VCM6Jer2fq1KmMHTu21fa0Wi3Z2dmsWbNGaFm8cOECkydPJiEhQVCrX3jhBTQaDTKZDKfTyQMPPHDH679lMQm4m+rc+L+LPxQhBnA6nQeBg7/1frjhxi/FTUMTMrFYIMMASo0PLy56iwvH92OxWPjbG0vp3i0SgHv6fHLH3+NSblo2bt0pfun3BJFIxNWrV5u/wFe/x9sfbmPzpo2E3j+NptpbiI6uJDqqA48//jjbt2/n0KFDbN68Gd/gCArEAWg7D6Dyy2WA8weBWARyJU5rEyKZAqdAiH9BGYZYiggHztuG41zWAReBc3lwXYUOVqsVnU6H0+lELpfj6emJ1WqlT58+xMXFUVtbS0lJCVlZWaSmpuJwONDr9ajVanLzC7E47CBVIJIrkVqMOJ1OIcEhIiKCSZMmsWDBAsGP7PpspVIpnTt3Ji0tTRiUczgcXL16FaVSKbSzOZ3O5sUB4uZzYrej1miwmpvrqn19famqqqKhoYHU1FTB8uDaBjSr0TKZjNLSUl555RXi4+MZNmwYTU1NQinGsWPH8PPzY8eOHXh7e9OnTx++/vpr0tLS2LJlC6NGjaJfv35kZWVx48YNvv/+e95//30kEgnz5s1DIpGwbt06unTpQtu2bdm/f7+g+MpkMoqLi5k/fz5VVVXMmzeP6upqQkJC6N+/P/n5+Vy6dElIghg5ciSrVq1iwoQJmM1mli9fTlxcHGq1GplMRmZmJlKplKioKLy8vLBarYK/u3v37pSVlaHT6YTEDheJdC0SZs+ezaxZs+jbty/nzp3j1q1b6PV6jEYjmzZtIjU1FbVazdtvv41Go2H8+PFMnjyZsWPHMmrUKGbPns2+ffuIjY1tda01NjZSWFiIWCwmPj6eoqIidDqdcA/7+Pig1WrJzMxk5syZrF+/nuvXryOVSjl69CgvvPACTz31FA0NDZw8eZLHHnuM5ORkYmJiEIvFLFmyRDgerVbb6j78d55mNwF2w41m/OEIsRtu/NEQolVhvY2EWR0OBvS+i3GD+/7o/f+TtqlfCy0LGX4pAXcprjWNFhxyD5avXIVe50OoVsknU+5Cp3CytPYYCQkJZGZmcu3aNWpqali26gOa2g3A2XSWpuwUcDoAERJPXxxNdci0wdhNdTgba1pu7V9/FImFn0EqB5sZ2Q8qbo3BgFgsxsPDg/r65tIOrVbL2LFj+eijjwgICMBut+Pt7U12djZKpRKbzUZZWZlAStVqNQ0NDWRkZJCdnU1hYSGNjY1Ci5tMJqOuro6BAweSmZlJQEAgQaHhyGVizp0tF3zcTqeTgoIC8ouaUyZc2b/h4eHk5OSQnp5OTEwM0Dzg5uXlJaQ7REZGUl9fj81mp0YbRf2Vo4i9/HAYawEHbfRtcDqavcipqakAQhFGWFgYtbW17Nu3j8jISFauXIlKpWLw4MGEhYXh7+9PeXk5GRkZnDhxgpEjRzJlyhQqKiqIi4sT0jJcxN3X1xeZTEZ2djaJiYn4+vqSnJzMxIkTAQgMDCQ9PZ2lS5dSWVmJw+GgV69eDBs2jBs3brB8+XIWLVokeJGLi4vp2bMnarWar776iurqaqGopLq6mnHjxhEdHc1HH31EaWkp3t7e1NfXc/78eUaPHk1xcTG5ubno9XquXr3K0qVLeemll1i9ejWFhYWCGu7j40NaWhrQutbZ09OToKAgqqur8fT0xN/fn+LiYjp16sSBAweor6/n2WefJTk5maVLl7J8+XL69+9PYGAgo0aNAmDixIm88sortGvXDqVSyYwZMzh58iRvv/02cXFxrFixAg8PDz7//HPi4+MpLy+nqalJyOk+evQoL7/8MhqNhm3btqFWq3nmmWfo1as5VGnOnDnMmTPnjvfd7YqvcFv8jKfZDTf+r8NNiN1w478MX42CFePimNfCQ7xiXBy+GsUdye9vqfq69gdaPxr+T75MRSJRs3d6XzkWUUfKDmwlNjyAyvIynps4nM8//xy5XM7GjRsZMWIEzz//PDOen4lB7IM94zssJdfR6IKRB3TAUpqJzDcEe2MdtqZaxLIf2tqkCrCZ+VcAjZPQdlEU5VwHnMglIiw2EItESH9QX13nWqPREBISgtlsRqvVotVqGTZsGLt37yY3N5eammbC7cpx9vLy4tq1a5SUlAgRZa7PyqUeu1TEqqoqbt68iVgspqyslOrqKkGNbWpqEv5cV1fHps92CufMZrcTGBhIbm4uSqWS7OxsQb1+6KGH2LlzJzqdDqlUSkNDQ3MiQhslZ5WeyDU67BI5Qf5avjtxhBkzZtCpUye2bdtGUVERixYt4pVXXqGuro5Lly5RWlqKTqdj0aJFOBwOsrOzmT9/PidPnkShUNCuXTtmzZpFZGQkmZmZTJw4kfT0dMHv6lIdc3Jy0Gq1bN++nTVr1nDjxg18fHwYPnw4MTEx5Obm8sknnzBy5Ejq6+tJT0+nsrKS2NhYampqmDFjhlALnZmZiV6vx8/PD4vFQlNTE6NGjcLhcLBnzx7atGlDx44dKSkpwcfHh8uXL9O1a1chum7atGkkJSVRW1vLPffcw8GDB3n11VeFnGdX9ranp6ew2HBdq3v37uWtt97C29uburo6wsPDgWZCn5OTw3333cfHH39Mx44dOXv2LDt27MBut2MwGAgJCWlVOPP2229jsVgoLS1lxowZvP3222zYsIEnn3xSeM8LL7zA1q1biYuLw2q18sQTTzBv3jxefvllQd3t3bs3vXv3vuP9Zbfbheu55b3pVnzdcOM/g5sQu+HGr4DRXYNJ6OAnZPu6Is1+C/LrsgEoFArKyspISkqiY8eODBo06I77YzabSU9Pp7CwkI0bNyKVSlmwYAE9e/b8yUiqVqkSgZ3QP/wWVcZK2pQXER0dzdq1a7FarVy/fp0jR440JxDMnoNUF4xP53up3LcSRUgnvBMmc/Mfj+LpqEfq50tFcSNOhxVN/FAas5Nx2MyItCE47RaoKyc2KgKnuQGDwdBccfsDETYajcIj4w4dOpCRkUFTUxO1tbV88MEH1NXVkZWVRVFRUatiC4fDwc2bN/Hy8hLqpl1qa1BQEFKplIKCAmw2G8XFxcICp6mpCQ8PD0wmk1BRfHvCh9PpxN5QDWIZOKw4JAqiOnYiPz8fpVJJfn6+QIgzMzMFe4fFYiEuLo6zZ8+SnZ3N3Xf3IqRdFDkZaTzy8CS8vLyYP38+qampKJVKfHx8+Pzzzzl27Bgmk4lOnTrRvXt3Ghoa+Pvf/86BAwcAKCoqwsfHh9jYWFJTU9FoNKjVajZu3MiiRYswGo08++yzzJynlafsAAAgAElEQVQ5U1CLH3zwQV599VUKCgrQaDR8+eWXDB06lKioKDIzM2lsbEQqlfLll1+i1+sFP/T48eNRqVRERUVx9uxZoHmxIBaL+e6773j22WfZu3cvX375JZ6enphMJhwOBwcOHGDPnj04HA6mTZvGlClTGDRoEFOnTkUkElFQUMDMmTMZPXo0mZmZDBgwAKfTyYcffigUd5w4cYLDhw8zbtw48vPzCQ8PZ/v27Tz99NM8+eSTTJo0SSg6iYyMpKioiPz8fPz9/UlPTyc+Pp4VK1bQtWtXgVyfO3cOaF5UGo1G0tLSUCqVREZGCv5j15MBaC5ciYyM5NVXX8Xf31+43rp06fKj+/VOQ26/Z6uUG278EeFeSrrhxq8EX42C+FCf/0q+70/B4XAIqq/RaOTo0aOkpKQA0KZNGx5//HEGDRoENBOS//f//h9PPPEE8+fPx263U1tby9y5c/n888958cUXGT9+vJBu8VOqscs7DeB0Nm9frQukW68EJBIJSqWSZ555hh49ejBv3jxmzJjRHB0nlSPTBePZdRgybSBihYrwiHa8+OwTXD7zLcETFuLVYyxWQwmKwEiU7Xsi1wWhCugAIhFeIc2+0fbt2+Pl5YXdbqdv375CsYXNZiM/Px+LxUJRURH19fXU1dVhs9k4fPiwQDqCg4PRarWCDcLf35/4+HhBzXQ6ndy8eRMPDw/BSuIaYHI4HJw8eRKLxQI0e3VdiR+enp74+PigUCoRKzyQaHTI/MN/8Dg7qaozYjQaKSkpoWfPnkLphclkIjIyEoPBQG5uLjdu3KBt27YApF44z4TRwxg9cgTnzp0TEkgWLVqEXC6nf//+LF68mH/84x/U19eTlJTE2rVruXz5Mh4eHmRmZmIymYiJiUEmk3H16lUGDBjA008/zZdffsnVq1e5++67qamp4ZNPPuHChQtIJBLkcjmdOnUiOztbKIRJTExEq9ViMploaGjAbrej1+uF92q1WoEUjho1ivLycnx8fNBoNHh4eHDfffdRUFBAWVkZ/v7+JCYm8vrrr/PYY48J19zRo0epqanBYrGQkJDAq6++yq5du9i2bRvp6enk5OTw2Wef4XQ6iYqK4uOPP+aRRx7By8uLNWvWkJiYSHFxMVVVVWzevJmKigrkcjlxcXEAPProo3h5eQnJGUVFRYjFYjp16kR8fDxTp04lMTERmUxGVVUVPXv25MyZM8L+lZeXM2fOHF5//XUhPcX1by2LbTQajUCGW2Y9u84PNCu+rmvHDTfc+O/BfYe54cafBC3tDi1xe7NccnIymzZt4quvvuLChQucPHmS119/HYBjx45x5MgRBg0ahEwm45FHHkGv1xMZGUm7du0YNGgQjz76KCUlJVRXV/9oWy3R0jttqSyk7vxeyr/fiVICubm5jBw5kj59+rBw4ULCwsIYNmwYB/buZuacl3A6nShDYrDVVeKTshGdV7Pn01sp4c2HEzBdP4l3r3F43zsNc0U+TrsVq7EGEHHoUh65ublcv36dqqoqRCIR3377batmMNfwmlqtxtvbW0h9UKvVghoXGRlJaGiooKhXV1dTUFAgRJ65zqlCofihhMOGh4dHq6E4V3qAn58fs2bNokuXLhiNRsxmMz4+WhBLESs9UYR0RKRQ43Q4+eep41gsFqxWKxkZGahUKrRaLQEBAezcuZPjx48zYMAAunTpwscff8xf//pXBgwYQFxcHDNnzqS4uBibzcawYcPYuXMnBoOBqqoqJk2axPbt2xk4cCD9+/envLycpKQk1Go1kZGRTJ48mcDAQAICAqisrOT69es0NDQwffp0evbsSXR0NL6+vsjlcrZs2ULPnj0JCAjg/PnzwqDZrl27qKysFJ4+eHh4EBsby/Dhw4Hmshl/f3/CwsKIiYkhISGBa9euCc14Lm+2Xq9HpVIhk8kICwujX79+6PV6hg4dSlJSEklJSXTq1AmTyURlZSWLFy9my5YtPProo5w+fZp7772XmJgYdu/ezapVqzhy5AjJycn06tVL2DbAgAEDOH/+PFKptFXtdFhYGNeuXaO6upqYmBjKy5u932PGjOHSpUs8++yzDB8+XPCJx8XFMXnyZOHJQvv27Tl37hx79uxh0aJFgkL8U2hJeN1eXzfc+PXhtky44cYfEHeyKtzJ55uTk0NqaiqFhYVMnz4dkUjEhg0bEIlESKVSXnjhBaqqqgQP5sqVK1mwYAH33Xcf0NyKVlJSQmBgIHq9ntraWry9vQkMDOTixYsMHjz4jvvicDjwUUl5a0wnXt1zDYnYRvnJTxj6wCQS+yYy98UXiI2Nxel0EhMTw+XLl/nqq6/Yvn077733HlP6tmPeq38lJ/csC//6F+Lj4+nbty9Dhgyhs7eNru0CqAyLofTIRpzGaixGAxJvPTgd1KV+g0Iqol37SErLSmioqxOIqUqlwul04uvry61bt2hoaBAsEDKZDKPRiM1mw+l0CoTapdbV/fB7XMfqIj95eXl4eHggl8uxWCy89tpr7Nixg5KSEsxmMyqVii5duqBQKJg1axYvvPACDQ0NdO7cGYstD4OhBJVvELq7hiPLP4tSKmLwoLHk5+cTFhYmFK24ClkA9u7dy4ULF9izZw+fffYZt27d4umnn6a2tpacnByCgoLo0KEDvXv3ZtiwYXTt2pVDhw6xbds2du7cSWxsLOfOnePll19m5MiRnDt3jsjISNLT0+nbty96vZ6ePXuyZMkSvL29SUpK4sEHH8Tf3x+LxcLZs2dJSkrixIkTfPbZZ/Tq1YszZ85QVlbGa6+9RlRUFBkZGYhEIgwGg5CUUF1djVqtJiQkhLS0NC5duoRcLhdygl3taWq1murqaiIjI6mpqcFoNDJjxgw8PT0pLy/H19eXa9eucfHiRXbs2EFycjLnz5/Hw8OD4uJiIUd4wYIFXLhwAbPZTLdu3Rg/fryw6IFmj+7bb7+NTqcjKCiIDRs20Lt3b6qqqsjIyCAjI4MRI0ZQWVlJSUkJXbt2Zdu2bSQlJTFx4kRiY2MFsvvGG2/86D51XSMth/bccMON3yfchNgNN37HaDkx3pJ43v7lajQauXjxIqmpqUyaNAm9Xk96ejqLFi0SHv0vWrSIxYsXs2nTJnbv3s2aNWsAhCExVzlEy9/drl070tLSiI6O5urVqxiNRry9vYmNjeX06dMMHjwYu92OVCq943T76G4hJEa3obimD+NPrWXOU49w6tQpDh06xBtvvEFMTAz5+fnY7XaeeOIJ8vLyWLZsGcuWLeOREQP4uCKPhIQEAgMDufvuu7l06RKNVifto2PJTPsW081rgAicDuy1zYUG2K146YPJLCjG0VQHP5Afl12hqqpK8OO6zrFarRYqil1kqaysDJVKhaenpzAIZzQahc9Cr9fT1NSE0WgUiLZrAE+j0eBwOLDZbEgkEk6dOkVKSgre3t5ERkYKiRLRHdpRVl7OGyuWMKhfL5ymerZu3Yq/vz/h4eEsXLgQkUjEkiVL2L9/P9OmTePixYuC9cNVuXzffffRt29fHn/8cZYsWSK0yn366ae0b9+e6upqjhw5gp+fH5WVlWRmZrJ3715KSkp49913qa+v59y5cxQXFxMQEEBYWBiHDx9GJBLhcDjIy8sjMTGRfv36IRaLkUqllJSUYLVaqays5MCBA0LhR1paGrd+KAmRy+X4+vpSUlJCUFAQ5eXl3HfffRw5coT6+nq++OIL2rZtS05ODh07duSZZ56hpqaGb775BplMxgcffIBGoxEUXGhu34Nmr+17773HoEGDGD9+PLNmzRIWIg6Hg3feeYd7772XRYsWsXfvXjIyMvDz8xNsDq7fkZeXh81mY86cOcyePZvY2Fg6d+7MK6+8QmhoKFKplIMHDxIQEACAXq9n+vTpP3mvuuD2+brhxh8HbkLshhu/A/ySjNCWRPX69etkZGTwwAMP8OSTT2KxWJBKpVitVr777jvefvttOnfuzJYtWygoKGD//v1s3ryZCRMmEBQURGNjI6dPn6Zfv36CT7aoqIjExET27dsntOEFBgYiEonw9/cnPz+f8+fPc+zYMbp3786NGzeAZiLQUjkFuHTpEvv27SM5OZmhQ4fy3HPPEd42jDVr1jBy5Eh0Oh2vvvoqr732Gr169UKpVLJ//34OHz5MeXk5TzzxBHq9nqioKHJycmjTpg0xMTF8fugEB08l05h/BWxWxAoPRFI5TqsJZAqwicBuobKkCBChjOyNtSIXe205VquVpqYmrFaroBK7FODGxkacTidSqRSdTkddXZ1wXK7PJjAwELFYTElJCY2NjXTs2JFr165hsVioq6tDKpXSpk0bVqxYQXl5OZ07d6Z79+7s2LEDvV5PaGgo4eHhrFu3jtLSUt555x0uX75MfV0dn65dSWSbJbRv354XXngBmUzG1KlTWbJkCQMHDuS9997j7NmzDBw4kMmTJzNgwABWrVrFhg0bKCoqIjs7m/T0dD7//HO0Wi0qlYqgoCBOnTrFXXfdRWpqKjdu3MBsNjN37lwuXrxIz549Wb9+Penp6Wi1Wr766iusVit1dXW89NJLfP7559hsNiGmTq1W4+PjI5DIJUuWYLPZUKlUdO/enYkTJ7J8+XK6deuGyWTi0KFDeHl5ERgYyIULF9BoNNTW1nLo0CFEIhEymQypVEpxcTFKpRK1Wo1Op6NXr16kpKSQmJiIn59fq4WgzWYTiHFUVBSxsbG89NJLwnV34MABKisrkUgkfPrpp3zyySeIRCIOHz7cypebk5NDU1MTKpWKkSNHUlJSQlhY8/WpVCpRqVSt7kMXGXbBNTjpTndww40/D9yE2A03fkW4yNXtX6Z3sjvk5uZy/vx52rVrR1xcHJMmTeLll18mISGB5ORkjh07xqBBgwgPD+fo0aN89dVX+Pn5MXbsWHbt2sXcuXNZtWoVR48eZfjw4URHR3PixAlmzJiBSqWirq4OaFa8XMre008/zYoVK5g8eTKVlZWkpaXx6quvolKpGDJkCB4eHqSnp/Piiy8SHh5Obm4uAQEByOVyZsyYQZ8+fejduzeLFy+mtrYWqVTKRx99xL59+4iKiqKsrIxnn30Wp9PJ5cuXOXDgAD169GDt2rX4+fkxY8YM1q1bx5IlS7BarZw5c4ZLly7x/vvvEx0bz+oX5yNWeyFRqLHbanA0/auxTSF2YHFYWyQSOzFlnQXxv/435yK+0GyBcJVdAISEhKDT6VCpVFy5cgWZTCYMhfXr14+uXbsKhNThcJCSkoLT6eTRRx9Fp9MRFxdHSUkJ/v7+dOvWjU6dOiGRSJgzZw7z58+nvr4emUzWnM1cU8OpU6cQi8X06NGDYcOGMWbMGB555BFmzpxJaGgohYWFXLx4kfj4eLZt20ZMTAwrVqxg/PjxJCQkYLfbKSkpwcPDg9GjR3P16lXS0tIYOnQo+/fvx2AwkJmZKdQcZ2VlodVqKS0tJT4+ntraWiIjI5k6dSrXrl1DLpcLw4AuZdpV+S0Wi1EqleTl5QmJHXK5HIVCQW1tLcnJyeTk5FBRUcGxY8eorq7GYrEQERGBTqfDZDJRU1ODWCxm2rRpJCYmMmnSJNq0acPzzz/PoUOHOH36NFeuXKGxsZF3331XUMBPnTrF1atX+eabbxg+fDhz5szB6XQSGhqK2WymvLycNm3aAM3qscv+M3PmTAYPHozNZiM+Ph6JREJ9fT2zZs3C19dXIL179+4Fmu0Nrrizf3efuuAmv2648eeDmxC74caviDt9wVZXV3PhwgXy8vK4//77CQ8PZ+nSpRw6dIjAwECeeOIJunXrhlwuJy0tjYSEBMLDw/Hy8qK8vJz27dtTVFQkPJ4dOHAg165dIz09ndTUVJKSkvDz8xOSCTw8PAgODmbjxo1UVVURFhYmZOyOGTOGxYsXs3fvXqKjo1m4cCHXr1/noYceokOHDtjtdj799FPKysrIzs7mk/+PvTePi7JQ+//fM8MOw76vsgmICAoobmAuueBax0zL0rKsNHPLMo+aeiRTk1LRcin3k4ppqam4EAq4iyACIruAIPsyMMNsvz/4zv2o2XnOeb7H5/v8nub9evlCZ+Fex/nc131dn8+uXTg7O9PU1MTp06c5duwYnp6eaLVavL29+fjjj+natStSqZSvv/6a2tpa4dayn58fO3fuZNy4cWRmZuLq6sqVK1coLi4mODiYNWvWsHbtWjIyMpj6xpuUV1WjanqEkYUNIiNTaGv5PwF1GpBIEIk6hwcFyzRdQIdGhdjCDk1r3ROV7EmTJlFfX8/58+dRKBSsW7eOgwcP0tDQwJgxY6itrSUtLY3m5mbKysrQarWsXr2axMREpkyZgo2NDebm5ty+fZvu3btz/vx5YmNjcXd3p7i4mEOHDvG3v/2N8+fPCy0BEomEl156CblcTkNDA5aWljQ2NjJo0CDBukwul5OTk0NzczMZGRl06dKFmzdvEhAQgJmZGZcuXeLAgQP4+voK/sdbt25Fq9Uil8tJSEhAqVRiamqKTCajublZEHe65DqJREJUVBT29vbk5+dz6tQpEhMTOXfuHHfu3MHGxoYXXniBgwcP0trairGxMQ8fPqSurg6JRIJarUYulzNz5kx27NjBo0ePqK6uxtXVlcGDB5Obm4utrS2HDh0iJCSE9vZ2XnrpJc6cOcOaNWtobGx84sIkMDCQEydOcPToUb755ht27NhBWloaP/zwA7t27aKqqopDhw4JjgwikQgbGxuMjIzIysoSet4dHBxoaGigpqaGL774gmvXruHm5oa/v7/weevVq9cTn79nBc7oQyz06PnzoRfEevT8N5KXl0dSUhI2NjZMmDCBxsZGZs+ejUKhEKbxU1JSyM3NJTExETc3N+G9ISEhQrKWo6MjxsbGFBcXExQUxL59+6ioqBDcCE6ePImbmxsajYZDhw4BnT2xd+/eBeC1117j3r17PHjwgEGDBhEeHo6FhQUArq6uvPPOO0gkEsLDw7lx4wYRERGkp6dz+fJlbt68SVVVFSEhIZibm2NnZ8fMmTPp3bs3Z86cITExkVOnTnH06FG2bdvGgwcPWLBgAQMGDGDVqlUUFRXh5+eHpaUl48ePx9vbW3ArqKurw8TEhDt37jBr1ixKSkooLy9HZGSGqVsAYjM5qroKJBa2GFjao2quRSQxRqvqQN4mw8DWDYOWajRqNRqJMWKJARqlHNobcXNzQyaTCX7EV69exdPTE41GQ48ePejTpw8///wzHR0dTJo0ibFjx3Lq1CmmTZtGQUEBGzdu5MCBA1y8eFEIa5g8eTKLFi0iJiYGhULBjRs3sLOz4969e3h6evLSSy+xevVqhg8fLlRL9+zZQ58+ffDz86OjowMTExNhuOzKlSs0NjYKzhC6NDSRSMT9+/dpb2/n/v373L59m/DwcJRKpeDra2FhgVgspqWlBW9vb5ycnCgtLcXKyorCwkKcnZ2pq6vjo48+IicnB4VCgYmJCeXl5URGRlJSUiJUUm1sbOjbty8nT56ktrYWiURCbGwsKSkpGBoaYm5ujkKh4OzZsyxZsoS//vWvqFQq/P39CQsL4+rVqzQ1NbF9+3ZqampwdHQkNzeX1tZWVCoV9vb2ODs709HRwYoVK+jbty8ikYhr167h7+9PXl4eMpkMkUhEQEAAVlZWT3j1QmeVduzYsUILBcCrr776hJAdNGiQ8PfHWy+e7sfXi189evToBbEePf9NZGRksHTpUjw8PGhubiYvLw8nJydsbW35/vvvhddduXKFhw8f4ubmRktLC6amphgYGBAcHMyFCxeAzp7Ge/fuERoaSlRUFI8ePWLnzp1ERUURFxfHhAkTsLa25rPPPmPZsmWEh4ezatUqIU3L09OTXbt2/eG66qpmL7zwAm+88QYZGRl4enoSEBBAdHQ0169fZ8SIEZiYmODj44OPjw/r1q3j7t27KBQKRo4cyciRI5HJZEKVb+fOndTX1zN9+nTq6+sxNTXFyMiIlMvXmLFgObOnvoyBgQHW1tbI5XIyMzOJHTueI6cugKEpZmGj0GQmIS+6DhIJ1i+8TdOlvWhVSrSqTr9fVcND0HYO+QX4+1BYVIjEyBC5vJ2qqiq8vLwE0fjgwQPa2tqwsrJCoVCwc+dOPv30U9atW0d9fT0tLS1YWVnx+uuvY29vT3JyMikpKRQXFxMTE8PIkSNRKBQ4OzuzcOFCjhw5wosvvkh1dTVyuZy8vDy++OILocJ8/fp15HI5KpWKnJwcevbsSXt7O3l5eRQUFODr68v9+/eJj49HoVBQU1NDW1ubUNG8fv06JiYmKJVKJBIJGo0GT09PiouLcXBwICgoCBMTEy5evEiXLl2YOXMmb7/9Nl5eXmi1WhoaGnBxcUEqlXLnzh2CgoJQq9VIpVKuXLnCjRs3OHnyJDKZjJKSEhobGxk4cCCVlZVER0cTHx/PunXr2LdvH+bm5jg4OAhpebGxsRw+fJjbt29z6dIlIeY6NTUViURCbW0t5ubm2NjYUFNTw40bN3jhhRcoKysjIiKCkJAQCgoKqKqqQiaT4e7uTmtrK62trUL/rq6iDv/h2rBkyRLhfH2WsP2jQVS9ANajR8/T6Buh9Oh5ztS1Ksh80MjxU0nY2dmxdetWVqxYQU1NDUqlkt69ewOd/a0AoaGhFBcXAyCVSoUKWL9+/cjKyiI7O5uTJ0+Sn59PSkoKlpaW2NnZ4eTkxJUrV3jxxReZPn06AOHh4WzevJnu3btz6NAhYbpe51n8eCLb4+h8ev38/OjSpQtJSUns2LGDBQsWEBsbS2FhoZCAdv/+fSQSCZmZmRQUFFBdXc3ly5eZPn06AwcOJD4+ntdee4309HSkUiltbW3ExMRw6NAhlAZmzEz4lYUniqhWmyIyMMbExIQZM2ZgaGhIs0yOgZklypoSGpO/RySWILawRSNrpDnt75iKtZgF9MfINQBDl0DE5tYgEmNqbsGe3buwtrSkvb2N8ePHCyLS19cXsViMUqnE2toaT09PevbsSW5uLr/++ivDhw8nISGB0NBQXn75Zb777ju+//57bGxs2LJlCzdu3GD58uVYW1tz5MgRsrOzGTFiBFZWVsjlcia+9ibT5yxm1JhxyGQylEold+/epXfv3mzfvh17e3skEgljxoyhpaWFmpoabt68iaWlJc3NzRw/fpxbt24J54NUKsXYuDPMxcPDA2NjY6ysrCgvL8fMzAyJRIJMJqOoqIihQ4diZGTEpUuXWLVqFVKplEePHmFnZ4dMJkOtVvPVV19RWVkphF/oBHNhYSERERE0NzdTU1PD2rVryczMxMnJiaysLE6fPs1vv/2GXC5HrVZTXV3NvXv3WLJkCT///LMQiaxrPdBoNNy/f59JkyYJ4TBZWVmYm5tz6dIl/P39MTMzo6amhjVr1lBfX49YLCY7Oxs3NzeMjY2FFDmZTEZDQ4Ngkadr/4DOQbs/Erh64atHj55/Fr0g1qPnOfLz7Qr6f3mB17ZfYdPZHMzcAoHOCq+fnx8SiYTy8nKgMxQCOqNiIyIiWL58OcnJyXz99dekpqZib2/Pl19+yYwZMzhw4ABubm5ER0cDncNEbm5uxMfH8+677woV54SEBEaMGEF2djYdHR2sWrWKjIwMITHrj2yhdEIiMDBQEG068WxlZSWES/Tp04ezZ88ya9YswXP30aNHpKenk5OTQ2RkJL179+bOnTsMGjSImTNnMnHiRLZs2YKVoxtFGnvaHpXR0lCHxN6LlnYFMpWIF198sbNyeSkZRX0loMVm2HtYvzAdQ6kdtnb2fBu/BnMTQ2R5F1E2PsSyz0uYeIZgYO+JuYUUmUzGmDFjsLOzIzU1FW9vb9rb26murmbUqFFMmjQJPz8/1q1bxxdffIFUKmXlypX89a9/FS5Irl69ilwup0ePHkgkEnr27Mm2bdsYO3YsBw8eRKVScebMGTw9PfH29kbiEsh7p+r46moTpwtaSb18hZiYGIKCgrhw4QLjxo1DLpfT1tZGXFwcpaWlKJUqzp0/j4uLC4CQDgidFyaBgYFC4IcuKKSxsZGHDx/i4uKCsbExIpGIyspKrKyssLa2pqOjg5ycHAwMDCgpKUGhUODr60tTUxMVFRXU19eTl5fHqVOnyMzMZMuWLZiZmdGjRw8mT56Mubk5paWl5OTkCO4cSUlJFBYWIhKJMDIyQqVSoVarKSkpEbyblUql0FttampKaWkpb7/9NtbW1rS1tTFlyhQh6lilUmFra4uzszNz5sxBLBbTtWtXcnJycHBwwMbGhpycHFxdXcnPz+fgwYOsXLmSSZMm0bdvX2JjYwGeaJnQo0ePnv8qekGsR89zoq5VwSdHspArNbR2qNEYS/nx7GXqWhVYWFhw+vRpgoKCOHnyJIcOHWL//v389a9/pb6+nv3799Pe3s6GDRvIy8vD1tYWsVjMW2+9RWpqKrt27SI8PJx79+4xbNgwkpOT+eWXX1AqlXR0dBAXFwd0Cu/m5mZWr17N2rVrGTBgAAcPHvyn1l9nQ2ZpaUlubi4lJSXs37+fzMxMcnJyCA4OJi4ujq5du+Lr68vIkSOZPHkyoaGhzJs3j/379zN48GDKy8v59ddfaWpqIjQ0lEuXLnXGHje0Y+balY6aUiRSOyTGFogMjamsa6K+VY69vT3z5n7EC0OHg1aLsbodTdU9HE3BzcWJYYMGsmzZ51h498TMuxcmrv7YvPA2nm99zeAXBnPp0iUcHR3ZsmULubm5TJ48WagGv/nmm+zatYuamhqSk5MpLS3FycmJF198kSNHjvDNN9/Qv39/pFIp0DmItWXLFpKTkzl37hyTJk1i+/bt+Pj4cOTIEerq6rCxdyJ+87fU3DxD9bUTtJbcoV2hIic3j7KyMmpraxGLxTg7OyOTyXhUW08bxmBogkINKWlXhUEzc3Nz4TikpaUhl8uRSCTcv38fS0tLRCIRTk5O5ObmIhaLaQX80o0AACAASURBVG9vR6PRUF5eTvfu3YWgEY1GQ3h4ON7e3jQ3N2NpaYlSqSQwMJAVK1YwZMgQlEoly5cvp6Ojg+zsbPbv309dXR3m5uY4OjoKEcc6H2VXV1d8fX3p378/xsbGWFpa0qdPH6ytramrq6OhoUEY9pNKpYSEhBAREYFEImHOnDlCmt53332Hs7Oz0FMcEhJCU1MTZ8+eZePGjWRnZ/P5558zbdo0ysrKUKlUxMTEEB8fz8WLF0lKSvo3f2L16NHzZ0Z/aa1Hz3OivKEdQ7GYdm2ns4FZQH8afr7EqtVfYG9ugLm5OWFhYezatYv4+HhUKhWDBw/GwMAAExMT4uLiMDAwQKvVkpKSwsyZM2lra6N3795s3rwZsVhMeno6CQkJgvCQy+UEBwcLYRL+/v706NFDEEN9+/YlMTGR+vp6IeDgj9AFbnh4eLB+/XqKioqYOHEizc3NTJgwgfXr13Pr1i1Wr16Ni4sLAwcOZPXq1XR0dNDY2MjixYvx9/dn4sSJpKenk5eXR3h4OGvXrkUkEuFuY4qBQxdUjQ8RG5pg0X0wHTVFdJTn8uH7M1m1YjlKpRJ/1wr83p9FWUUBFuaGvLf9W9zd3XFxceGDmW+Dox+ff/t3NOV3MA/ox6eDXPhlawOpqal069aNqKgosrOzycvL46effhK8lXVV8NOnT+Pr68uwYcPIyspi4cKFREdHc/bsWU6cOCH0PGu1WgICAigpKeHChQucPHmS3NxcVCoV+fn59B8xns3HLiIvvoVWKcc0cABU36e54g7B3YKwtbXlgznzMbZ1ZtqEEai0GgztXFA+KgStlsqqKiwtLYVKra7q2tjYiL+/P0VFRTx48AA3NzdUKhWPHj3C0dERjUaDkZERBgYGbN++nejoaMRiMQqFgpaWFt544w02btxIXV0d/fv3RywWCzHPuqq/zjnCyMgIhUIBgKmpKY6OjpSXl2NhYUF7ezshISFUVVXxyiuvkJ+fT3p6OgqFAisrKwwMDIQ47AEDBlBeXi5UqAcOHMiVK1e4d+8e3bp1w9HRkWHDhjF16lSSkpL4/PPPsbe3Z8eOHYjFYuRyuXAXRHfnRI8ePXqeJ3pBrEfPc0IqUtCh7uxvVDZW0fjbLhyHv4dIWUxjo4YVK1bg5OSEk5MTu3btoqWlhd27d5OQkEBiYiI2Njbs27cPBwcH4uLiWL9+PaGhoRgYGCCRSHBxccHV1RUfHx9MTEzo3r07aWlpjBgxAhsbGzIzMwkICEChUJCRkUFMTAx37tzB3NxcGK57FrqButoWOdWtKr7ff4iDe3aSkJDA8uXLOXjwIDNnzuTWrVvU19cLjgaurq60tLRQX19PSUkJWVlZHD58GID4+HjKy8sZP348Tk5OzJkzB7lczt/eWsK0H5ejbm3A0N4D22Hv05S8k2VLZjN16hTq6uqYMGGC4A/7+DqKRCJu3brFyR1rGenmwqP6EoK0EmT55djZ2QniCuDatWuUlpZy9+5dfvrpJ2JjY3F1daWpqYnc3Fy++uor9u7dS1lZGY6OjixYsIBt27YRHx+PsbExZ86cwdjYWHBDyM7Oxt3dnSVLltDR0UFSUhJTps3Aacx8Cre8i+3wWZh6hqAqy0DVUEBNTQ1aIzM+WrsdzwmLUBtL0bY1omqoBJEBEjNzjK2daH+Yj0qlIj09XYiVtrS0pK2tTeiVHTt2LFu3buWdd96hvLycmpoacnJyhAG8rKws1Go1PXv2ZNWqVdjY2ODu7k5hYSEXL17E1NSU2tpabGxsaG1txcnJSUiPa2pqwsPDQ4idNjQ0xM/Pj8LCQiZOnEheXh5NTU3ExcURFRVFly5daGhowNzcnKVLl7J161bu3bvHxYsX8fb2JjAwkLy8PKZMmSLcwdi3bx+TJk1i7ty5AERERGBmZsb8+fMZPHjwE8dZ5xH9rHhwPXr06Pl3om+Z0KPn38DjqWYACoWCzRu+ZN1fwjAxFGPr5I77XxbzzftjiV+/lnfffZeEhAT69evH2rVrhZ7cRYsWIRaLuXDhAoGBgWzdulUYmtq6dSuHDh2isLAQACcnJ0G8QGfMck5ODtBp0Xbt2jVBSG7evJnt27dz5MgR+vbti1QqRa1WC+v9+LqLRCKOZz1k0IZLvL7jKtHrU5BZuAu38RsaGhg6dChHjhzh9u3bHD16lMGDB+Pm5oZEIhF6W21tbVm9ejXz5s3D3t6e8vJyxGIxa9euxd3dnZEjR/JalBe7fk3F1NoOMyMxUgdXDhw8zPSpk9FoNNy6dYtTp04JvrVqtZqa5nYyHzRS16ogOTkZe3t7dn+/g03r19Da1IBcLqdLly4cPHiQ2bNnc/v2baysrMjMzGT//v2cOnWKjRs30tTUxGeffYZIJCIyMpLdu3fT3NxMYWEhu3fvxtramry8PDZs2ICzszNarZZBgwYRGRmJRCIhLCwMMzMzzp49S1JSEkpZEytG+GLq7IOZRIuJoZh177/M2DFjUKpUlNe1olIqKTn6FQZSW0TG5p0+yWIx6rZm2qtL0Go7457lcjnm5uZ06dKFiIgI4uPjmTNnDgYGBpiZmRE7Ziz5pZVk380RPKm1Wi1paWl0dHQQEhLC9OnTiYqKIioqSrCa0zmPfPbZZwQGBjJ48GDB3k2hUNDa2oqFhYUwvObm5kZZWRlWVlZs3ryZwMBAWltb8fX1FfyTW1tb6devH9HR0ezdu5cZM2YgkUiwsrLC1taWsLAw3N3dMTU1ZezYsRw5coSPPvpIELthYWHk5eXx2muvCcOeOnQXNHoxrEePnueNvkKsR8+/iFqtZtmyZbz++usEBQUBTyZXabVajI2NhRjdIU31vD3/r3z05stYDVuBVuvKV199hZeXFytWrGDatGkYGxsza9YsQkJC8PHxwcrKiiFDhvDbb79RVlbGvn37uHz5MqWlpYwZM4aPPvqI6Ohorly5Qk1NDT4+PgQFBXHjxg2gM9b29OnTzJkzh1GjRpGVlYVGo+GTTz4RYpmfNVAnl8u5mnGH99YcRFaRj0beinXMm+xoNcCkQ0lbWxsjRoxgw4YN1NfXY2FhwY0bN6ipqWHs2LFotVru3bvH1KlTmTdvHlevXiUqKoq5c+fi4eGBSCSiZ8+e9OzZU1jmlN6eDO/mREWjHHcbU2zNjYQY6+rqalJTUxk4cCDW1tacuFPFJ0eyMBSL6VCriWx8RP+oKKCzX9rHx4ekpCRu377NokWLaG5uJiEhgQ8++EBI2rt06ZJgnzZ79myMjIzYvXs3tra2WFpaolaruXz5MjY2NtjZ2VFaWoqDgwMqlYrS0lKam5tpa2vj/PnzwtDZV199RWRkJGFKJSmDe9LaUcGGRfOwl5rgqnmN88kXUVdXoGyuQWRkhpFDF0TNdSASYWLrTEdjFRpZA24eHhgaGlJSUoKBgQGOjo40NDTwzTffkJ2d3ZkUWPqI86nXUctlaFQKLGydCA8P5+rVq9TU1ODn54dKpQIQkubmzp3LW2+9hUKhIDExkaysLBQKBampqfj6+vLw4UMaGxuFQbn29nZkMhk///wzYrEYV1dX1Go1mzZt4t1336W6uprw8HB8fHxIT0/nww8/5NChQyQmJuLo6Mjf//53hg4dKrSm6AbxysvLCQ4O/t3593REuU4U6xPh9OjR89+FXhDr0fMH6BLVdD8BIdEqNTWVPn36EBQURF1dHZcuXSI1NRVXV1dmzZrF5cuXMTU15eLFi4wbN45eXeywklpQWFhIz549qaqqYurUqbi7u/PBBx9w+fJl8vLyGDBgAEVFRUBnQIZYLBYG57y9vYHO3s7s7GzGjBlDfX09paWl9OnTh969ewuxtXPnzhVihx0cHBCLxcycOfOJ7SsqKhLS7HJycigtLaWsrIy+g4YhwQ6LkKFIrJyQmFhgYgBaUae1Wt++fVm+fDkLFiygsLAQMzMz5syZA8D27duFGN1XXnmFV1555YllJicno9FoeOGFF9BoNELfqb3UBHupiXBrvLKykpycHIqKijAyMqKhoQEzG0dhSFFOp2A6V9SGqeoOda0KyhtUnDx1mpDgbqSmpmJiYoJGoyExMZGKigoiIiJYv349CoUCrVbLb7/9xqJFi4T9fPXqVb744gt+/PFHbt68iaGhIZ6enpSUlJCbm0tAQADm5ubExcVx6tQpUlJSCAsLo6qqisOHD2NnZ0fv3r155eXxrF27li8+X0JBQUFnn69aialvJGqtFkNLe0z9+9KeeZqejmLEEgm+XtHs2/MDjo6ObNq0iddee43q6mq8vLy4fPky+fn5WFpa4uzqyoWLqZh07YvY0JSWm7+QnZNNR6sbr7/+OvHx8fTu3ZuffvqJQ4cO8e233+Lm5sbq1atxcnKiubkZkUhEUlIS9vb2yOVySkpKcHZ2pqamhoEDB7Jjxw769etHnz59sLKyYtSoUcTHxzN8+HA2bdok9CiLRCK0Wi03btxAq9UyadIkJk2a9MTn5/EUuKNHj2JqaopcLqeurk4IjoHfX1A+/m+ZTIa5ubm+bUKPHj3PFb0g1qPnD9B9Ket+1tXVYWpqipmZGd26dROsuc6cOcPVq1fp168f6enpbNq0iYULF/Lyyy9jZ2fH7NmzgU5/4by8PKqrq+natasw0OTp6cm5c+cACAgIID09HUBI5nr48CGPHj1i8uTJKBQK1Go169evx9nZmRkzZhAQEADAkCFDGDJkCNAppnX4+/tTXFwsiBPd9qxatYrg4GBiYmKYMWMGDg4OGBoaUteqoP+XF5Ar/+PWtUokpn9UH1pbW4HOpLtRo0b9rre3S5cuAEL7hS4qWVcN1HnoisWdMcvNzc1cu3aN8vJyXnjhBby8vKisrGTatGk4OztjZ2fHiRMnmDx5sjCkqBPDADbB0fx29isCxsxE296CrLScDpExpqamLFmyBAMDAzo6Orh69SqXLl0iJyeH1NRUFi9eLAizgIAAfvvtN6ZPn85HH31EYmIiarWaiRMn0tHRwahRo/j666+RSqWMGzeODRs2MH/+fI4ePUpaWhpGRkZUVlZSU1NDTEwM5eXlKBQK9uzZw8iRI5k9ezaVlZW0iU0psArHyNSCuhsnGRcTjqwin6NHj/LmDz9wLukU9+/fZ/fu3bS2ttLW1sajR49QqVSYmZnh7e1Nv6GxFO4+jJG9F6Zd+yHL+Q1tewsNjU0oFApEIhGmpqZs27aNxYsX06VLF8aPH4+FhQWDBg3i/v37eHh4MHXqVOrq6ti3bx99+nQe14KCApYvX46fnx+xsbEsXboUX19fNBoNEydOFLyQoVPs6iq/fyRUnxa5Onu0I0eOUFFRIbQH6aivr0cul+Pq6kpWVhazZs1CJpMREREhBNro0aNHz/NCfz9Kj56nUCqVFBYWsnfvXk6cOEFcXBzBwcGMGzeO/fv3A509uoWFhSiVSl599VU+/PBDgM4hr5MnaWpqIiwsjNTUVOH3RkZGcufOHdzc3DAxMREGzgAyMzMJCgrC1dWVy5cvA2Bvb4+Hh4fgLTt//nx2797N5cuX6d+/P0ZGRsTExAhJXsAT/Zc6URoTE8Pq1asF72EdP/zwAwsXLiQmJgZXV1dh0M7Owpi1L/fAxFCM1NgAE0Mxa1/uwc5t3zJs2DDh99rY2Ah9vY8vF/4jDlc3AKhQKMjPzyc0NJRr164B0NTUxIIFC9izZw8lJSUsX76c1tZWLl68iKWlJXv37uXrr78WrL/cbUxRPrUcjbE5yt5v0pJ/lcbMJAzdunG3WoZC0YG9vT21tbUsXLgQS0tL2tvbmTVrFsuWLaO+vh6A8+fPs2jRIpRKJTdv3hSEWFVVFcnJydjZ2ZGeno6NjQ03btxgz5493Lp1i9mzZ2Nubi44Qjg6OlJQUEBTUxN9+/ald+/ejBgxgsmTJ+Pu7t4Zx/yggJsJH/Htu0MJsZQjVTcLPd/Xr1/HxsYGmUzG4cOH8fT0xMrKihs3bvD+++8TExODiYkJwV19MHELRN1ci8TIFKt+r6KWt+Lq4oyBgQGmpqacPHkSe3t7Ll68yC+//IKvry9VVVU8ePCAuro6oqKieOutt/jb3/6Go6MjRUVFzJgxgytXrtC/f39EIhG7d+/Gz89PuIAyNjYWLqjg9y0OOmGsqwo/ju6iSHd+vfbaa7z11lvC89u3byc4OJjY2Fh++eUXtFot8fHxvPfee1y6dAlvb28+/vhj9OjRo+d5Inr6P6//TURERGh1PZV69PyzLF68mOPHjzNx4kRkMhkmJiasXLmS27dvs2rVKv7yl7/g5+fH6tWr2b9/P42NjcydO5euXbvi7OxMWloa8+bNw9LSkkmTJpGVlQVAcXExw4cPJz8/n9zcXBYtWkRHRwe1tbXMnTtXqNqlpaUxduzYf7iOuqrc87yN3NmG0C709eqW+6y+zsfXo6GhgWvXrvHw4UM8PT05cuQIpaWlWFpa8vnnnzNw4ECqq6s5ePAgd+/e5c0336SgoIDx48fz448/cu3aNby8vJg8eTJSqZT58+fj6+vLjBkzOJNby6LHeoj/0suDnzMrqEw/RmvGKVxnbEHd1kzdD+9hZWHG+vXrWbZsmXAcKyoqGD16NMXFxWg0GoKCgti2bRtubm6o1Wo8PDzYtWsXQ4cOpb29ncrKSuLi4rhy5QpDhgwhNzcXY2NjNm/ezIIFC8jIyMDNzQ2xWMyyZctIS0tjxYoVQkW8paWFKVOmAJCUlISPjw+urq5C7+7UqVOZM2cOXbt25bPPPuONN97Azs6OjRs3cvPmTRISEjh06BA7duzA3Nyc/v37I5N6snThHJyHzqCjrZGWC9tYvWolH374If369cPb2xtjY2MUCgUPHjxAo9GwceNGrK2tycjIwNHRkdbWVrp37865c+cwNjZm3LhxWFhYPHE8/+hYq1QqTp06xfXr11m5cuUzz0HdY+Xl5bi7u6PValmwYAFTpkwhKCgIqVSKRqOhsLCQt956i7179+Lp6Sm8393dnZs3b+Lk5ERraysxMTEcPXr0idfo0fO/EZFIdFOr1Ub8v16PPyP6lgk9enhS/Lm6uqJSqZ6wGEtNTRUsxlxdXXFzc/tDi7ENGzY802Js27ZtiMViqqqqCAoKYuPGjVRUVBAYGIi9vT0AdnZ2vxPDzxK/T//8d6Kr9lqbGmBnYf3Ec48vr66ujjt37lBRUSGIvri4ODIyMrC2tiYqKorKykp++uknLl26hJ+fH21tbXh4ePDo0SPu3bvH4cOHSUtLw9vbm40bNzJy5EiKioooKyujvb0dqVRKdXU1zc3NKJVKxoa50d/Pnv1Xy0hILuDY7QpkHWqMHH0QGRii1WoQGRiisXCkre0RCxcuZOnSpfz444+0t7fz8OFD6urqqKuro7m5mYqKCm7evEloaCilpaVERETg4ODAq6++yp07d1AqlcycORO1Wk1kZCTdunXj9u3bHDlyhPT0dGprawkLC+PBgwcMGzaM9vZ2nJ2dmTZtGmvXrsXAwICGhgZGjhxJYWEhra2tTJ06lUuXLhEWFsb777/Prl27KCoqIjQ0FFtbW7y9vfHy8sLLy4vvvvuOd955BwcHB0aMGIFIJGL+lJG4GK1j9+49iDVKzIcMJiQkBI1GQ1paGmKxmIsXL3L16lUiIyN5+PAhCxcuRKPRoFAoCAoKEqKm33rrLaGC+/T5JRKJ6OjoYPv27Vy9epU9e/YA0NHRweLFiyktLeWzzz7DxMQEpVJJWloat27dwsrKirfffpvKykpiYmLYvHkzXbp04datWyxcuFAI/Hj48KGw73Xnv1qtFtwtiouLcXJyEsJMSktL9YJYjx49zw29INbzp+fn2xWCc4FSo2Gaz+8txrZv3/67ftlnWYzV1tb+zmLs7Nmz+Pv7A5CXlwd0ilxvb29hUO5xHh/ig+crfh8PZtDxdFVQq9WSnZ3NnTt3iI2NxcrKikuXLhEXF4e9vT0mJibU1dXx3nvv4eXlxcGDBzl16hSurq6kp6fTt29fOjo6ADAxMcHe3p779+9jb2/PxIkTWbly5RPLGz16NHFxcaxbt45+/fpRVVWFs7MzVVVV+Pn5AbDltwIUKg2K//MeQxtXtBo1WmUHYiNTbEKH0py6j6qqKlJTU3n48CFlZWXY2tpia2uLlZUVRUVFVFVVUVRUxIYNG9i4cSPvvPMOx48f5/Lly1RUVLBz507GjBmDo6Mjs2bN4p133qG6uppz587R3NyMoaEhv/76KyKRCLVajbW1tRB68fXXXws9vOHh4Rw7dgw7OztiY2PRaDTcu3cP6LTLe/DgAWVlZZiYmNDY2EhBQQGvvvoqkZGRWFtb06tXL15++WUCAzujv1+f9DLRfSOZOnUq9nY2wqBbbW0tH3/8MRkZGXTt2pWoqChGjBjB7NmzcXFxEYYYH+eP4rsBDA0NSUpKIjk5mWPHjjF+/HiMjY1xcXGhubmZyspKfHx8OHr0KKdOnaJnz55kZmayZ88eXn/9dQ4fPsy6deuoqqri/fffF3rb3d3duXv3LiqVCgcHB5qbmzEzMxPWJSgoiMOHDxMVFUVycjIeHh56MaxHj57nil4Q6/lT83i8sm5Ya0dW23OzGNOhEyXPut38vKym0tLSSE1N5ZNPPhEee1oMKZVKsrKyyMrK4tixYwQHB9OjRw9+/fVX7t27R0FBAbNmzSIiIoKffvqJ1tZWtm/fzoEDBxg6dCiurq4MHDiQhoYGXF1dMTU1xc3NjYqKCrp164ZYLCYwMJDr168L++3jjz+mX79+HD9+nMDAQBYtWsQnn3zCxo0bSU5OZuHChYSGhuLi4gLwzOE6sakUxBI6HhVh4t4NjcQIQ0MDrKysEIlEdO/eHW9vb2JiYnB3d2fz5s307dsXsVhMSkoK27dvp62tjYsXL6LVamloaEChULBz505EIhHe3t40NDSwevVq7O3tCQoKorGxkU8//ZSlS5eydu1a0tLSuHHjBqmpqWRkZODs7ExLSwu//fYbU6ZMwcXFheTkZObNm4e5uTlVVVVotVqmTZtGcXExBgYGDBkyhPLycsLCwjA0NOTFF18kLy9PCABRKpVIJBLBCu2XX35BKpUK54yVlRXffvut0PP7eCKfjqcvuP4RIpGIoKAgPD092bNnD5GRkZSXl/PSSy+xadMmcnNz8fHxITExkdGjR9OtWzeOHj3K/fv36d27N7169SI6OppZs2Y90TccFhZGeno6s2fP5oMPPuDw4cN8+OGH3LhxA3d3dz7//HMSEhLo1q0b5ubmzJ07Fy8vr3/thNejR4+efwG9INbzp+ZZ4srE3PrfYjGm4x95qj5PG6muXbuSnJyMm5sbANXV1dy9e5eqqiocHBwoLS0lLS2Nn3/+mZEjRzJ16lRqamqYPXs2fn5+LFmyhHXr1pGSksKFCxdob29n/vz5XLx4kQkTJrB06VLOnTtHr169sLe35+rVqwwaNAitVktNTQ3Q2QJiaWlJWVmZsF7e3t4cP36cuXPnsmrVKrZs2cLhw4fp1auX4JEcGBjIli1bnrld7jamdKhVaDVqRGIJWq0GQ0MDTN0C0XS0A2DmH4V3Wx5l9+7w4osvEh4ezqpVqzh16hRZWVn07NmTKVOmsHfvXk6ePIm1tTUWFhbEx8cD0KdPH1JSUgSHirCwMLy9vRGLxZibm/PZZ58xe/ZsDh06RI8ePUhJSeH69etYW1sjlUqZNWsWjY2NyGQyzp07R0JCAjNnzqS0tBQDAwO+//57/v73vzNlyhRqamro2bMnL774ouDrqzuvFi1aJPTzGhgYPHEOFRcXk5eX94RtnoWFBWfPngWedPr4R3cA/gidcLa2tsbT05PS0lIyMzPJzs7Gz8+PYcOGcfv2bUJDQ2lsbGTjxo1ERUUxceJEhgwZgo+Pj7D8AQMGcPPmTRQKBTNmzCAyMpLvvvuOZcuW8cEHH7B582a+/vprgoKCmDVrFiNHjmT58uUsWrRIcFvR267p0aPneaIXxHr+1DzLueBftRjToevFfFpw/HeHC6hUKgwMDDA0NBSGvgDc3NwwNTWltbWVM2fOsHfvXkJCQhg9ejRHjx6lvb2d2bNn4+DggL+/P71792bYsGFcvnxZEGRubm48ePCA7Oxsrl27JjhivP322xQVFQk+tDo/ZKlUioGBwROCePz48YSGhgLg5eXFl19++czt0LkW6PapThjaWRiz7i9hwnCdUqPho35OrC6Oor2hGlVLLWITKbfzilA+esTu3bv55ZdfuHLlCjKZjPb2dvLy8li9ejXl5eXIZDLBSi83N1cQjwMGDGDEiBGUlJSg0WhwcXHB0dERZ2dnfv31V0aOHMnPP/+MRCIRRLau57WyspLg4GCqq6vp3r079vb2KBQKBg8ejJGREUOGDCEoKIgTJ07g7+9PWFgYSqUSPz8/unTpIliU6QRga2sr33//PdnZ2RQVFdHY2IiFhQVjxowhPDycCRMm4Ovri5mZmbD/dOfd03cBTp8+jZ2dHZGRkf+UyPT29iYnJ4fY2FjKy8s5ffo006dPJzo6msTERIyMjOjRowdhYWG8/vrrwvva2tooKiri9OnT7Nu3j6KiIhYvXky3bt0YPnw4ycnJAERHRxMaGiqEiOiwsLAQBv3+laq2Hj169PxX0AtiPX9qdBZjj4urtS/3YGzYSOA/qlI6MfyPqr3/qBfz/4b/ampX7969uXz5MqNHjwY6bdKMjY0pKSkhLCyM3bt3M2rUKIYNG0ZTUxOnT59m9uzZ9OnTh5aWFqCzl/P48ePIZDJsbGzw8PDg/v372NnZUV9fz4ULFygvL+fBgweUlJRgZmYm9BXrlvnRRx9haWkprJduYOxxdL3MjwegPO5fDJ3iUKVSUVRUhCz3Oi80XKF774E0V5dxYF08rbUqWsty6KgqwDx4EGIjU8RiETNnzuTatWucPHkSAwMDoqOjyczM5NatW7i5udGnTx+Ki4vpRoK8+gAAIABJREFU2bMnGRkZtLe34+npiZGREaamprS1tdHW1ib0vU6bNo1jx45x9+5dmpqa8PPzw8HBgZCQEBoaGrCysqK6uppLly7x4MEDli1bxsOHDxk6dCgRERFYWFhw//598vLyqKqq4sKFC5SWliKVSklKSvrdcdZtd9euXRk5cqTQiqLbNydOnCAvL4+QkBDhPXV1deTk5FBSUsLly5eJjIxk+vTpABw8eJDAwMD/VBDrHvfz8+PMmTNMmDCBkpIS7ty5Q7du3ZBIJBQVFeHo6Eh0dDSrVq1CLpeTnZ1NRUUFy5Yto7S0FFdXVzw9PfH09OTvf/87Hh4eSCQSfvzxR2FZOjH8R+e6Xgzr0aPneaMXxHr+9OicC3QuE3YWnQEEz6pKPe8v5oSEBAIDA4WAjf/KMnVCpnfv3hw7dkx43MbGBmtra4qLiwkODsbNzU0QIn379uWbb74BOgXrmTNngM7WhdbWVmpra7Gzs8PJyYn9+/fj4uLC0qVLWbx4MRERESxfvlyoTq5YseKJ9bG1tf3dOj69b5++mHhapNXX13Pz5k02bNjA/fv3effdd7mcmsJPh38kODiYd999n88vy2n7cTnthdfoqC5AYmKBSCRi48aN+Pr64ujoSHh4OIsXL+bKlSvs2rWLvLw8NBoNS5YsYcaMGWRkZHD27FlOnDiBVCpl37592Nvb4+zsjLu7O+fPn+fMmTOEhYVx7do15s2bx/z588nNzWXZsmWEh4czf/58DAwM0Gg0uLu7s2nTJr7//ntWrlxJUVERTU1NmJubM2bMGAYOHMjbb7+No6Oj4NP7dKCF7oJs5MiRzzze+fn5HDhwgB9++IHx48djbm7O1q1b6datG6NHj8bX15fffvuNmJgYjI2NMTY2JjY29nfLehrdMejSpQtqtZrGxkZiY2PZtm0b/v7+fP/999y4cYPo6GhWrFhBfHw8e/bsISAggPHjxxMYGCjcgdAd88fvqjzdyvGfrY8ePXr0PE/0gliPHjorxTohrON5fTnX1NRw+/Zt/P39n0h2E4lE9OvXTxgeU6vVFBcXc/36de7evcuIESMYMGDAf3qbW7fevXv3FtoR1Go15ubm2NnZ0dTUhL29PSKRiNraWqAzRU8XVqGzvOro6BD6N+vq6oTfuWbNGjQaDWPHjv1Dv+R/dh2fRV5eHklJSdjY2DBhwgQaGxt5970PaJa1IdZ2iqg+ffpw7do1wsPD6d+/P+3t7XD+G8QSAzRaDaiVrPlyHd8s7rRMs7W1xcLCAq1Wy4MHD3BycsLU1BSVSkVubi7Nzc3s2LEDuVyOmZkZjY2NzJ8/n59//pni4mJqamrYsGEDN2/exMXFhfz8fKZMmcKHH36IsbExERERnD59+pkXUR0dHfj5+TFq1Cjc3NyeaGvQtYU8a388/XhdXR0pKSm0tLSwbds2RowYwaeffoqhoSHNzc2MHj2aV155heLiYuRyOcOHD2fs2LGoVCp27tzJhg0b+Pzzz7l69SrffvvtP92Ta2dnh0wmo6ioiJiYGCZMmIBGo+HRo0fExcXRp08fpk+fLkSP/9F2PL2Nz+uOyv909L3QevT8z0R/Oa5Hz3NGo9EIfwAKCgrYv38/5eXlT7wGOvsmt27dCnRWi0eMGEFOTg5KpZJVq1aRkZHxn36Z6p7v0aMHbW1ttLS0IJFIMDMz4/z58/j4+GBoaIihoSFlZWUoFAqMjY1RKpUUFxfTrVs3pkyZglwuBzoDJfr16weAi4uL4M4ACEl1j6eYPb4O/yoZGRksXLiQ3NxcTp8+zRdffMGKjd+TVi6nKfpjSrrEopaYUFNTQ3V1NYGBgZy4eINZcxdiOn4ltv1ewRA1oT4uvPFihOAYkZ+fT21tLfn5+SQlJXHgwAEWLFjAgAEDGDJkCIcOHeLIkSO89NJLJCUlsWnTJhITE/Hz8yMhIYFXXnmFxMRESktLBVs5kUj0RI+zLqXt6X2hs1rz9fUV3B8e308SieSJ/dXQ0EBxcTFisZjc3FzeeecdGhoayM7O5i9/+QtisZiPP/6YwsJCdu/eLSTZjR49Gmtra7p06YKFhQXdu3dHo9FgYGDA1KlTSU1N5fz588JF2LPcJ55G18ry6aefMmbMGOE9YrGYDz/8kE8++YSYmBgcHR0pKytDo9H8Lrnwz1r11V3sPI1eDOvR8z8TfYVYj55/E7qhuqetrh4XBCqVSug5PXXqFCtWrKCmpoYZM2Ywe/ZsVCoVcXFxrFixAmdnZ5qbm1m1ahUAq1at4uDBg8+0cXsarVaLoaEhY8eOJS4ujl69elFcXIyRkREREZ0hSGFhYbi6ugoCrbKyUmih+OCDD574PU//7se9kf9vK32Ph6JcuHABOzs7tm7dSkFBAStXf8HpcjEGTv60KFSoTawpr2vBwc2rc1DPwJjUcgUalZLqrBQ0He3I22SUFBVx/PhxrKysKCgooEuXLrS1tREUFERpaSlarZb+/fsTGxvL0qVLyc3Nxc3NjYiICIKCgggMDOTNN99EpVIhFotJS0sDoH///gQEBDB37lwMDQ2fOLb/mfB71vOZmZmcOnUKhULBnDlzMDMzY/PmzdTW1vLNN99ga2tLSUkJFRUVghXb2LFjsbKyQiaTkZKSwowZM1Cr1dy7d4/u3btjY2MjpPIFBAQAYGZmxsKFC/nggw9Yvny5INaePnaP93I/fmx158zjuLi4oNVqWbRoEVFRUfj4+Pxpxe+FCxewt7enR48ewmOP/z+gq5LX19dz+/ZtpFIpkZGR/69WV48ePc9AL4j16PkHPOv2pq4SqBMNOh4XFzqnB61WS0pKCkuXLqWtrY0+ffqwZcsWJBIJ6enpJCQkIJVKCQkJ4c033xRibdvb2/H396dHjx40NzdjaWlJ3759SUxMpL6+/pl9uY+jW6+tW7eyadMmIfb2s88+w8PDA4APP/zwie18fMpfV/l8VjXr31nhejwUpUOtJrLxEf2jogBwdnbG1sUTSeVDFC2dLRsGUgdEEgPKHjUSERHBiV9PoahsxaRLGK13ziExt8YmIpbWuxf4+uuvCQ4Oxtramr179wq2cp6engwePBhTU1OMjY1Zs2aNsA90bha65DbdMR4wYADR0dFMmzbtifV/VrDJs+jo6ODgwYPcuHGD5uZmfvjhBx4+fMiiRYsIDQ1FKpUyatQoUlNT8fLyora2Fo1Gg5OTE1KplNLSUrp3746ZmZkQcuLi4iK4ZuiCMnTDjPb29mRkZAgCWSwW8/rrr/Pdd99hbW0tbN/jbRlJSUlPuE90dHSQk5NDZWUl3bt3x9PT83efh+LiYurr65k6dSoSieR/fTvA09un238NDQ1C2h50nhdZWVncu3cPLy8v+vbty/Hjx9mwYQOOjo54eHhw7do1Zs2apXfQ0KPnfwh6QaxHzzNobGzE0tISsVhMUVERn376KYcOHQKeXelraWlh9+7dtLS0kJiYiI2NDQcOHMDR0ZG4uDjWr19PaGioYKfl7OyMq6srPj4+mJiY0L17d9LS0hgxYgQ2NjZkZmYSEBCAQqEgIyODmJgY7ty5g7m5+e8qto/z+C17kUiEoaEh8+fP/8PX676M/7vCQR7nWaEo54raMFXdATrbR26mJWPgNpT222cxcuiCVqNCC2ha6zlw4ACz5szjRtFVxJaOWPV9BSN7T0wMxezY/Dm/Hkuko6ODefPmYWtrS8+ePXFzc+O9994Twi102/r4re1/pfr9z1bHjx49yokTJ4iJicHX1xeNRsPBgwcJCAhg7dq1QKcd2sWLF7G1tUWpVPLgwQO8vLyws7OjsLAQ6PSWTk9PZ9y4cdjY2CCRSCgoKGDMmDHEx8fzzTff8NVXXxEaGkphYSHJycm88sorQr94YGAgTU1N7N279wn3iZKSEtavXy8IfI1GQ0dHB0FBQQwfPly4WHo6UKaiooLy8nK6dev2xPP/W3ja9eLp7ReLxTQ1NTF8+HBSUlLo0aMHLS0trFixgrS0NIKDg5kyZQpVVVWcPn2a7777DhsbG9avX8/f/vY3Zs2a9b9un+nR8/9X9IJYz5+epyu+CoWClStXsmHDBqAzWvfgwYPC6/Pz8/nyyy/Jzc1l/PjxQqvDokWLWL58ORcuXGDJkiUkJCSwYsUKZDIZW7duZfDgwfTp04eAgACcnJzw8PAQom99fHzIyclhxIgRhISEcO3aNaL+T6V08+bN5Ofnc+TIEebOnYtUKhXaM3TtDrp1/6Oqrk7oPO2T/P+yMvWsUBSb4Ghup23kyy+/RK1WY2NlyTszxrDMwoama8dQq9W8++5MJowZiaGhITu+28LY2xUsOpKFgUiEUq1izYTu9Atzo2946BM9r2vWrPnDvk6xWIxKpUIkEtHW1kZCQgIDBw4UjsGzaG9vZ8eOHVy/fh0jIyPWrl37u8q9TjitWLGC7777joEDBwrPFRUV0atXL2QyGebm5oSHh1NYWEh4eDgymYxHjx7h5eVFS0sLV69eBTrPxdOnTzN27FhhSPLBgweMGjWKefPm0djYyMCBA4mNjWXDhg2sW7eO3bt3Ex0dza5du6ivr0csFhMbG4uTkxOrV69m7dq1+Pr6IpPJeOeddxg6dCguLi7/8MJLt1979erFnDlzhKjz/z+j+yw93eago76+ntraWlpaWggPD0elUvHDDz+Qm5vLrFmzeOONN/j/2DvvsCjOrg/fLL1XqUoRUGkioGhAg4pBJSoqotHYgzEmxsSKDcSYaDTGlmiMvffegrFiV+ygSEcBFSkCitTd/f7g2wnNxPdNedXMfV25gltmnnlmdvc35znnd/Ly8rh27RqnTp3i2rVrwnuLiorYtm0bV69eRUtLi6ZNm7Jo0SIxOiwi8hohfhJF/lVIpVKmTZtGfHy88JhEIhEKm+RyOerq6mzdupVZs2YxYcIEpFIp/v7+REdHA7BgwQJsbW3ZsWMHv/76KytXrhTSHho3boy+vj7+/v4UFBTw4MEDNm3aREBAAFlZWXTv3p2lS5fi6upKSUmJ0NHNycmJq1evAlVRwKioKAACAwMFC6+wsDDBLksR4VRWVhbGXlpayq1bt9iwYQNffPEFgwYNEhpkKF73Ov341tcURa6hw8JFiyksLCQ/P5/IyEgGd3Tn2oJQTh/cSdrFX1gSOR4dHR3hWLo1t+DMBD82hbbmwpT36OnZSHA1qF7ABjWL2BTCWC6Xs2/fPu7duwdU5dsOHjyY1q1bI5PJyMjIoLKyEoCMjAz69OlDdnY2J0+e5NmzZ3zxxRe0atWKb7/9VmhAUl1cvXjxAnd3d8rKygCEhi8ODg7cvHmTwsJCoCqtIjk5WWjwERERQXh4ONnZ2UIx3tChQ2nZsiVKSko4ODiwcOFCWrduzZ49e0hISGDWrFksWLCA8vJylJWVKSoqwtvbmxEjRrB69Wqsra0JCAigR48eTJ06lbFjx9KxY0fWrVtHaWkpw4cPp1GjRr8rhqujra3NsWPHSEhI+M9O/v+Q3yt2U9wQ5+bmCg1WAgIC+OabbwgODmbfvn18/PHHQFWb8xs3btCtWzesra0xNjYWCiK7dOlCZWUlFRUVSKVS9PT0UFVVZefOnZw6dYrly5fTr18/MTosIvIaIUaIRd5KFJGX6hEYuVyOsrIy586do3Xr1jg5OZGXl8fZs2c5d+4clpaWfPbZZ1y8eBFNTU3OnDlDUFCQ4NCQkpKCh4cHjx49YuDAgTRs2JBPP/2UixcvCpZTqampAFhaWiKRSEhISOC9997Dzs4OAE1NTeLi4ujevTv5+fncv3+f1q1b4+3tLYjXL7/8kufPnyOVSmnQoAESiYSRI0fWOL7U1FTu3LlTo23vgwcP6NatG23atGHo0KHY2trW6a73OvGypihtW1jR1tuzzmuNtNUEt47aUW5TfS1M9bVqvEchfhXOB7WbfFRPjYiOjub69evcuHGDtm3bcvnyZcrLy2natCkRERFMnToVPz8/zp07h729Pbq6uqxZswYjIyOio6PZtWsXMpmMkJAQrK2tawgddXV1GjZsyNGjR+nUqZPQfe39999n+fLlTJs2DWNjY3JycoS87nHjxrFp0yZMTU0ZMmQINjY2FBQU0KRJEzp37kx8fDwLFixg3rx5xMbG0qdPH9avX8+4ceM4ePAgGzZs4LPPPiMuLo5u3bphbGyMs7NzDfcJVVVVhg0bho+PDydOnBCapbyKSFOk5UgkEsaNG0fDhg3/k1P/t/N7LhfVz73Cgk9NTU1Y2amoqMDDw4OvvvoKCwsLjh8/zgcffCB01tu9ezenT5+mffv2nDx5knHjxgmuLRkZGairq1NSUkJeXp7Qghvggw8+YPbs2fTs2ZNnz55x5swZRo4ciaur6z8wI78hRqVFROpHFMQibyXV80OhysNVU1NTaNGblpYGwNGjR7l8+TI+Pj5cuHCBH374gQkTJhAcHIyxsTGjR48Gqnx67927R3Z2Nk2aNBFSEKytrTl+/DgATZs25cKFCwCCf++jR4948uQJ/fv3p6ysDKlUyvz58zE3Nyc0NFRwAfD39xeacVhaWgrH4ejoSFpaWg0BAlWOEy4uLvj5+REaGkqDBg1eOar3OvGypii12zbDf+9oUfvHPycnh+vXrws3EAYGBty+fZv4+HhcXFzw9fXl4cOHZGRkMHjwYDw9PYX83+TkZKRSKVpaWkKxm5+fH/Pnz8fT01MoalOguAnr1q0b8+bNY8KECaSlpWFsbMyKFSsICwtj9erVKCkp0a9fP1xcXADIzs6msrKStLQ0unfvjkwmE9wnvv/++xruEx4eHjXcJ0pLS3/XfSIzM7Ne94nIyMh650+RUqSYy9qpOdbW1v/xOfmrqB7trX5t/J7gKywsZNCgQWRmZqKsrMymTZuwtbVl7969bN26FVtbW0aOHMns2bP54YcfsLS0xMnJSXj/F198wa5du9DU1KRNmzY8ffoU+C3iP2DAADZu3MiqVavw8fHh4sWLvP/++yxatIhVq1axZMkS9PT08PPzqyGY/+p5garPzOPHj+nevTsXLlyo44wi8ueonWYj8mYjfjJE3ioqKipISUlh48aNHDp0iNmzZ+Pi4kJQUBCbN28GwM3NjZSUFCoqKvjggw+EqNz169c5fPgwhYWFtGjRgnPnzgnbbdWqFbGxsVhZWaGhocHOnTuF527duoWTkxOWlpZcvHgRqKryb9SoEfr6+hgYGDBu3DjWr1/PxYsX8fX1RU1NDT8/P8zNzYXtVI9qKb5o/fz8+Oabb+rk/q5du5YJEybg5+eHpaXlGymGFRjrqOPeyKBGYxSF+P0zP94VFRUkJyezdetWxo0bR1xcHCkpKYwfP57Nmzdz48YN1q5dS2FhIePHj6d///7s2bOHxo0b4+LiQnFxsbAaUFFRwe7du7GxsRHG5Orqir29PQMHDsTHxwdlZWWSkpKAqtQcRZ43VJ3HZcuWYWRkxKBBg5g+fToAenp6WFpakpWVxbJlywAE9wlFMxRF2owigiuRSGq4T+jr6/9H7hMJCQnC9SWVShk4cCDOzs5C4VxlZWWdCKsi5ebmzZt8+umnnD17liNHjghe2tW391fz9OlT8vLykMvlQuqKAsV1Ul0MS6VSDh8+zIYNGwgMDCQ2tqpIU3FMu3fvxtfXl+joaGJiYmjatClJSUmcPn2a4OBgWrduze3btwWh7+joWCPFqn///igpKREWFibUAwDY2dlx9OhRVFRUWLJkCYWFhULeuiLHOjQ0lCNHjrBt2zZGjRol3Dj/1VS/YdHT00MulwvX5qZNmzh8+PDfst+3mT179giBlOpCWBTDbw+iIBZ5q4iIiCAoKIjU1FTOnDlDaWkpd+7c4ccffyQqKoqtW7fSqlUrHjx4QHl5OY8ePWLKlCncvn2bvn37YmZmxr179/D09BTyQQGhal9LS4sBAwZw//59OnfuzMiRIwXXgnfeeYfvvvsOqPoRGjduHEFBQaipqQmNGeC3L9Pa+a3VxZ/4JfvnmTFjBt27dycjI0Pw9VVYns2bNw8HBwcOHjzI5cuXadasGdnZ2cTFxQFV7atLSkrIyMjAxcWFzp0789VXX3H//n2h0C44OJi0tDRCQ0Pp2rUrvr6+wjVTvTBLgY2NDVOnTqVnz56C2Nq7dy8HDx7E0dGRfv361XCf+O6775gxYwYSiaSO+wRQr/sEILhPpKSk0KNHD6Kjo2nWrBmHDx/G3d1dyJ9WRK9zc3Np0aKFkPaguBGRyWSkp6dz+PBhpk6dSocOHRg5ciSbNm1iyZIlZGdnC6JdJpOxZcsWpk2b9qfP25MnT4QmHwCfffYZhw4dQklJSXBpUfDw4UPmzp1LYGAgU6dOFcYzevRozpw5w7Rp02jWrBnw2+fLyMiIY8eOMXr0aHbt2kV6ejp5eXl4e3szefJkLl++zMWLF5k4cSIAPj4+XLp0CYDS0lKUlJTo1asXV65c4cqVK8K5HDZsGAMHDgSqRPS8efM4evQo06ZNw8HBQRizopnNX33zoPg+KSsrIyYmhpMnT1JcXIyWlhYNGzYkNjaWp0+fsmvXLnR1df/Sfb9NvOz8rFq1SriRUFJS4unTp0RFRbF//34KCgqE94q8uYgpEyJvBYrmDvrGplRWVjJjxgy2b9/OyJEjOXfuHPn5+djZ2WFpaYmVlRXPnj0jPz+f9PR0bt++LUR8FyxYQGZmJj179sTMzIwxY8ZQWlrKihUrkEgkPH78GCcnJ5YsWUJWVhbNmjUT/EeNjY3rtDKu7mlbPWe1+v9F/h4sLCyQSCRMmjSJoqIiwsPDuXHjBvfu3WPp0qU4Ozvj5ubG5cuX6dq1KzKZjIqKCqDKzUFFRYUnT55QWVlJ165dmT59OjNmzODIkSNAVURwy5Yt7Nu3j8aNG+Pq6oqJiUm97hOamppClFZxLfwd7hNBQUGC+8SDBw8IDAzkyy+/rOE+oUAxzvXr1+Pg4MD169fp2LEjubm5TJo0ievXr9OkSRPc3Nzw8PDgk08+wcLCgi5duhAWFkZiYiKTJk1i//79aGhosHXrVkFEvgq//vorUVFRxMbG0r59ez7//HP09PS4du0a2dnZgueztbU1ubm5rF69mqioKLp27UpISAi6urocOXIEZWVlVqxYwU8//cTSpUsJCwvD1dWVRo0a4evrC1SJxGvXriGXywkICMDR0ZGMjAxWr17Nxo0bGTNmDFZWVkRHRxMSEkJiYiI3b96kZ8+euLu7M3XqVABBkPv6+nLlypUa6U3u7u64u7vXOMbajU7gj1N/qn9X/FG+b2JiIsXFxTg5OaGhocHt27eZNWsWpaWlwmrAqFGjcHV15dKlS6SnpxMYGMi77777yufpbaa6F/cfnZ+2bdsKxaN37txh5syZaGhoYGpqysWLF/n222/F7/Q3HDFCLPLGs/9mFr5zTzJw1WWWxUqplKgBVUutnTp1Yvfu3dy8eZO9e/cKKQbKyso8evQICwsLjIyM+Oabbxg7diwmJiZkZmYikUiYN28eDRs2pGvXrgDcu3cPc3Nz5HI5dnZ2tG3btoYZP9RtfyuK33+WvOdl3MooIO95GZ6enmhqagJVgqRhw4akpaUxefJkTp06xYoVKzA0NCQ7Oxs1NTVsbGzYt28f3333Hfn5+UilUn755RdhyX3FihWsWbMGf39/wX1CT0+P4cOHY29vzyeffEJ2djY7duwgOjoaqVRKTEwMjo6OfPPNN0IrbMWP73/jPmFubs6MGTOIiIio4z7h7e0tvH/hwoUEBgYC0KZNG7p06SIs2yuuUTU1NU6cOMHnn3/Otm3b+OGHHzh69Ci//vorS5cuZeDAgWRmZrJv3z4OHDhAWVkZqqqqGBgYkJKSwoABA5DJZELUrKys7JVTXK5fv87atWsxNDQkPDycpKQkJkyYwJMnT7h16xZz5szBy8uLdevWYWZmxqVLl7h79y7vv/8+Bw4cYNOmTVRWVnLixAnu3r3L2rVr2blzJzdu3CA7O5s2bdqQm5sLVEWc58yZIxTMymQyXFxc6NKlCzNnzsTMzAxTU1OGDRuGRCLB2dmZDz/8kJMnT1JSUkKPHj2EOgGFIFZXV8fV1bWOzV7tqGJ1F5hXRfFaRZdEBfn5+URHR1NRUUFCQgI9evQgNDSUxYsXs27dOgAuXLiAr68vBw8epFmzZqxYsYIrV67g7e3N4sWLOXnyJMOHD69xHfxbqM9dpL7W6enp6UybNo0ePXoIHt1QFfVPTk4G4Pjx4/j6+rJkyRJsbW1ZtWqV4BIk8uYiCmKRN5rqzR2elVUi1zUnM+85GU+e0qVLF27fvk1+fj4VFRVcvHiRAwcOAFVfjgkJCTg4ODB27Fjy8/Np06YNu3bt4vPPP0dJSQkPDw8mTZpEr169auyzujl/bcSClf8d1W+MfOeeJLlEi4qKCoqLi9HR0UFbWxs9PT1KS0vZvXs327Zt486dO6SlpfH48WPGjx9PeXk58fHxQvGjqqoqe/fuZePGjRgZGQmR0JiYGEJDQzl//jxyuZyzZ89iZ2cnuE/k5ORgbm6Ouro6Dg4OBAUFoamp+VL3CaCG+4SqqirTp09n0qRJ5OTkMGjQIADBJs3BwYGVK1fy888/o6SkROfOnRk2bFgdVxUF9bkuKCsrY29vT2VlJbt27aKyspLJkydz+vRppFIpQUFBREVFcf36dYqLi1m/fj0A9vb2Qj7q2LFjuXr1KkuWLMHHxwc9Pb3fPUcKwTh37lycnZ0JDw/n3XffZcWKFYL/c6NGjTAwMGDo0KEMHToUd3d38vLy6Ny5M0OHDqV9+/YcP36c8vJyCgoKUFNTo0mTJuzdu1foyOjk5CQ4vhgbGxMZGcmNGzeYMGECGhoazJw5E3d3dwYNGoS+vj5ubm7Y2dnx7bffcu3aNWJiYli+fDn6+vpoaGhga2v7StfgqxR9/tGyem5uLmfPnkVFRYWDBw/SokV1Ou/oAAAgAElEQVQL7t+/z71795gzZw7FxcWcPHmSkJAQzpw5wzvvvMPChQu5cuUKV69eZeHChbRr146bN2/y+eef4+DggLW1NTY2Njg5OTFy5EgyMjLequ8qqVRKWloaRUVFwr9rX//V6zBycnJIT08nJyeHAQMGEBQUxPXr14GqpkxWVlZ8/fXXDB48mAEDBgBVRdPZ2dkAnD9/npUrVxIcHExsbCw//vgjjo6O/+Qhi/wNiCkTIm80tZs7SDR1UVJW4dSFGAb3DGDGjBmMHz9eyP8dM2YMACtXrhSKYfr27Uvfvn3r3X7tTlXVEaO+rw/1db2bfTITTWUVYmNjadOmDRoaGiQnJ/P9999z8ODBGpZhDRo0ID8/n+7du/PgwQMkEgm6urrExsbWcJ/IzMwkKyurjvtESkoKcrkcLS0t7OzsePjwIR4eHgQHB/9p94mQkBDBfcLc3JwJEyYIP/DVha6iXbiC6tdn7etXIZzNzMzIzMxkyJAhHDlyhFatWjFq1CgAXrx4waRJk7h06RIVFRVoaWlRUFCAm5sb0dHRvHjxgs6dO5Odnc0XX3zBkCFDaN68+e8u8ysrK5Oeni50DoSq1A1NTU06dOjAnj17mDhxInFxcTRp0gRAaGJjYGAAVOX0Llu2DC0tLaGYtV+/fkCVO4dEIsHe3p5bt24J+1Qcs1wuR0VFhcGDBzNq1ChMTU1rjE9LS0s4PzKZ7L9yNXkZ1VNloKrttVQqxcHBoUaR1r1795g4cSKnTp1CS0uLp0+fsm3bNgYNGkRubi4GBgYcOXKExMREfvjhB8zMzBg1ahQNGzZEQ0OD8PBwQkNDhf1WVFRgaWmJtra2YNUXGhrKsGHDCAkJ+UuP8Z/k8ePHREREEBcXx7Nnz2jWrBlfffUVenp6wjGVlpZSWFiImZkZ+fn5BAcH4+fnx4EDB9DQ0KBnz54EBQVRVlbGJ598wpUrV2jRogXPnz9n5cqVxMXFcfnyZQoKCrC3t6eiooLnz59jYGDAxIkTGTJkiDCev6OgVOSfRRTEIm80tZs7KCmroGHZBG1JVS7ohx9+SGBgYB0/3toRH4UjQO0f8rcpivI2U1/XOzVVNZq6eQhRo6CgIHr16oWOjg5t2rQhJiaGQ4cOMXz4cNLT05k5c6bgCPDkyRM++ugjxo8fz4kTJ4iMjBSaryQmJgruEytXrhTcJxQFea6urmhqagoFVhUVFSQlJdWIIFV3n7C1tWXz5s20bdsWT88q/2UTExPCwsIoLCykvLyciooKwUlEIYJr5zqqqKgQFRWFkZER3t7eNXJRX4a9vT3Hjh1DLpfTokULzp8/LwjiqKgowaIuPj6e8ePHk5ubi4uLCzt37uTZs2doaWnRqVMn2rdvT3FxcY1jexkKX2jFZ0tdvcpdpFWrVsyePRstLS3KysqEin6Fu4YiBcLd3Z0nT54AMHz4cCZOnMitW7fIzMzk2bNnbNy4EQcHB8LCwigrKxO2X/2zrPAFV4ynPq/iV432/pFwfvLkCdnZ2bi5uZGTk8O8efOorKwkKSmJvn374uDgUGPOWrZsSdeuXVm/fj1GRkZMmDCBLVu2EBQUhJWVFVCV7jJ79myCg4Nr7KtXr16Eh4fTqFEjZDIZUVFR9OzZk3bt2mFiYsLVq1eZPHkybm5u2Nvbv7FiWMHFixf5/vvvCQgIqPH4mTNnmDJlCuXl5bi4uDBjxgzs7OyIjo5m8ODBXL9+nXHjxnHixAlhhWbatGncu3cPS0tLfv75Z7y8vFiwYAGOjo5cuXKFgIAATE1NiY+P56OPPmLWrFmUlJRgbGzMgQMHCAkJqVNDIvJmIQpikTea+po7LFn1Mz1aWAmCQCGGfy/a+6b/MPzbqa/rXYVMxrKlSzHWUUcmk2FsbAzA1KlT2bNnD0OHDiUnJ4dFixbx2WefsXbtWnJyctiyZQs7d+7E1dUVNzc3tmzZQlxcHO+8804N9wlvb286d+7M5MmT6dOnTw33iVGjRhEaGkpWVhZ5eXnMmTMHR0dHIUpZ/ebLxsaGKVOmAL9VuCsrKyOXyzl9+jRlZWU1VjCePn3K3bt3SU9P5+LFi7Rq1Yphw4YBsH37dpo1a/aHgljxuJ2dHcXFxaSkpNCyZUvWr1/P0qVLadasGZWVlTx79gxlZWWuX7/OrVu3iI+Pp2XLlqSmprJnzx4OHz6MiooK6urqvP/++68kws3MzNDQ0BBSGhSCVFtbGw0NDSQSCcbGxkJOtY6ODsrKyjx48IDS0lI0NDSorKwkMTERV1dXfvjhB65du4aDgwPOzs5C3rjCTvGP+KOb3j+aR8V3h6LzpMJ1Iisri0GDBlFeXo6NjQ1dunRh0KBBpKenU1ZWxqFDh+rdpoaGBp07d2bZsmXI5XKmT5/OzZs3Wb58OW5ubsjlcnr27Mn69etp0KABWlpa7Nq1ix49euDv709FRQUrV66kvLwcNzc3rK2tUVFR4fTp00DVDVr14srXhf/U09fc3BwLCwvh5iY5ORlTU1N0dHTYvXs3a9asoWnTpowePZo5c+awYsUKmjRpItxUuLq6oq2tTVpaGnZ2djRq1IiEhARSUlJQUVHhyy+/BKquz6tXrxIQEIC+vj6HDh1i5syZTJ48mbVr11JaWoqXlxdubm5/w6yI/JOIgljkjae+5g71RX3EaO/by8u63imuhacvKoTrw8LCAmVlZSZPnvyn3CcAunbtSkREBJGRkUJ+4cvcJ6DmNSiXywWBp/h3beu91NRUNm/ezPr16wUHiWXLluHi4kK3bt2wt7fn9OnT+Pn5oaGhIQjT2vuqTvUIc4MGDXj8+DHHjx9n0KBBQhFYUlIS/fv3Z/fu3VhaWqKpqSmIK2VlZYyMjDh9+jRffvkl+/fvZ+XKlSxcuPCVxIy2tjb+/v4sWLCArl27CnaEX3/9NR999BEAAQEBTJ8+nWXLlrFo0SLc3NxqdMPLyspCX18fmUyGg4NDDVuz6sf5n37mFako1Y/j946psrKSPn364OnpyYEDB1BXV2fWrFl07NiR7777ju+//54WLVpw/PhxQkJCCAoKwtHREQMDAyFVpD7atGnDzz//zP79+5k0aRKjR48mMDCQkJAQlJSUGDRoEJqamnz77beUlZXh4uIi+Eh36dKFLl261LtduVwurDS8ys3L30H1/dbnvvMqKM5to0aN6N27N+rq6hQXF7Nlyxb09fU5d+4cp06dQlNTE4lEQlBQEABOTk7cvHmTgIAAzM3NiYuLIzc3Fzs7O7y8vDh37hxTpkzhwIED+Pv74+LigrW1NY8ePQKqOkgqzlnbtm1p27btXzk1Iv9jREEs8lZgrKNeo7GDKH7/fbys693B248IqyaUh9k3qtd9YsOGDSQnJ6OqqkpYWFgN94n9+/dz5coVBg4ciFQq5fHjx0Iaw/Lly8nIyBByXKHK67Z2kVtmZibHjx/n9u3bJCUlkZSUxIgRI/j000958eIF0dHRPHv2jBUrVtClSxcmT56MiooKRUVFdOvWjb59+5KWlkZZWRmdO3emR48eVFZWsnr1ahYsWEBkZCSXL19m+fLlNbyuf+/GsEGDBjx8+JBt27YJubhbt24F4JNPPmHIkCFoaGjQu3dvoahr27ZtODk5YWhoSKdOnbhw4QLKysqv3BxGLpcTFBTEsWPHmDVrFlKplKSkJKytrfnwww+BqvSJ+fPno66uLuQSV3+/QvzVLiD8vbzp+qjd0rv2e548eUJsbCyNGzeukWah2KciTaVJkyZcvXqVI0eOMHv2bJo3by4425ibm2NkZMSQIUPQ1dXFyMiIkpKSlwpixZi8vb05ePAgiYmJBAcHExwcLHQYBOjTpw99+vT53WNTHFN9ovPvFsO1u2vWt9/qfz98+JCzZ8/SqVMnYTXn97YNValvGhoazJ07VyhKvXDhAh4eHvj7+9O/f/8a7/Px8eHKlStA1UpFYWEh9+/fp1WrVrRs2ZINGzZgZGTEF198waVLl/Dx8cHe3h5VVVXkcnkdAVzduaL6PIu8mYiCWERE5K2h9o1RfcV2K28Vo1FWXsN9AhDcJyQSCXfv3qW4uFhwn4iMjOTu3buC+4SJiYnwQ+/l5YWHh4cgAGqLMkWOaWpqKsXFxfj7+xMREUFWVhaLFi2itLSUuLg4+vTpw/r165k4cSL79u1j/fr1jBo1itu3bwstpm1tbdHR0cHV1RWZTIaKigqDBg3Cx8eHEydOCLnxL4u6paSkcOPGDR48eMDHH3+MiooKeXl5FBUVERUVxRdffIGJiYnQpfGnn35i2rRpdOrUCblcjq2tLQ8fPsTCwgJTU1MKCwuJiIhg27ZtxMbGYmZm9oeRR8VzP/74I8ePH+fBgwd8/vnntGjRAjU1NeH9tZega/vF1rfN2rxMlCmoXnD38OFDrl27RnR0NBEREYwbN47Y2FgMDQ2ZNGmSEB2vPh5lZWWaN28uRLkDAwNZs2YNly9fxtnZGX9/f8LDw2vss3Hjxpw5c4aioqI6tm3Vj6VXr154enri7OwszJfimKofryINp/bc/K/TwOrr4vb48WMSEhJo1qwZZmZmfP7555iYmBAeHs6GDRvIyMggJCTklbYNVYI4IyOjRjGps7MzFhYW/Prrr/Tv35+EhASuX79Ot27dcHd3Z/78+UCVv3XHjh2FttyDBg0SiuScnZ2FeYeXe0P/t+3kRV5PREEsIiLy1lJfsZ2GtgFyJeXfdZ8YO3as4D6hrKwsiJHfo/YP4+3bt/nll18oKytjzJgxtG7dmujoaBITE3n//fcpKysjPT2drKwsWrRogaqqKj169EBfX5/i4mKio6MJDQ1FKpWSkJCAq6urYAOWlZUlRE61tLSYMGECn376KZGRkQAUFxdz/fp1bty4wQcffICJiQlxcXFERkZiZWWFkZERM2fOZMaMGWzevJl9+/bxww8/VM1ZZiYVFRXCfwpho6SkhL29PbGxsTRt2pS4uDiKi4vR19fH1dWVc+fO0alTJ6RSaZ2OcgrRBr9F0uRyOZ06daozjy8Tty8Ttc+fP0dHR6dG973q26q9vRcvXghuEp9++imjR4+muLiYKVOmYGVlxXvvvcepU6cwMTFh69at9aZjwG9RSjc3N+7evSs8bm5uTn5+Pu3atWPjxo3cuXMHFRUVjh07RsuWLXFwcGD79u08e/asxtwo8soVx2lubl6jtTvUdRL5vXn5X1JZWUlsbCznz59HS0uLHj16sHTpUqKiorCwsMDLy4t+/foxZ84cxo8fz/Dhw9HW1iY4OPiVjkdxTl1dXdm5cycFBQXCXBkYGDBy5EiWLFmCi4sL2trauLu7895779GxY0chQtygQQNhRQLqd2Kpfu2/7HUibw+iIBYREXlrqa/YrlJJgm+b1nXcJwwNDQVnCKhpo1S92K22wCovL2f79u1cvXpVaA396NEjJk2ahLu7O7q6ugQGBnLu3DlsbGzIzc1FJpNhZmaGrq4u9+/fx9XVFS0tLcrLy4EqMfT8+XNKSkqwsLCgqKhIyDU2MTHh3r17dOjQQRhny5YtMTMzQ19fn+HDh1NaWoqqqiqVlZWcPXuWb7/9lubNm7Nx40bu37/Pvn37WLlyJVZWVri5ufHixQvOnj1Lu3btMDY2RlVVlYyMDNq1a8fBgwcF4WphYSHkHitaHltaWuLl5cW9e/eA31wkqhcO1hYRinST6vnM/81yc0lJCa1bt+bw4cN1nGMKCwu5cuUKGRkZdOrUCWtrayECPnnyZFRVVUlOTubixYv07duX4uJi/Pz8GDhwII8ePWLfvn0MHTqUbt26YWtrS2BgYA2fZcV43333XcLCwpg4caJQROnl5UXjxo1RVlZmxIgRKCsr4+TkhJ+fHy4uLqxevVpY4q89N3l5eTx+/BgXF5c60eDaYvh1ZcuWLYJTQ+fOnfnll18oLCzk4sWLXLlyhfDwcPLy8liwYAHh4eF8/PHHQg7/q+R+K+akcePGpKenk5ubW+PmoWHDhsyaNYtZs2YJLiMKFK4l8PuFfKLw/ffxZny6RERERP4LXlZs16NFVffB6u4T8FtOoELMVU89eJkY2bt3r+BHbG9vj0wmY/v27TRt2pR58+YBVRZmZ86cwcjIiIqKCjIyMrCxscHIyIjk5GTkcjlNmjThwoULBAUFYWRkhIqKCikpKfTo0YOFCxcyf/58QkJCMDY2RiqV0rt3b8aPH0/btm05ceIEMpkMExMTbG1tOX78OHv27MHExISAgABmz56NmZkZW7du5enTp+jr66OkpERMTAx9+/ZFU1NTiFiampqir69PbGwsI0aMYN68eQwYMICcnBwcHR0JCAggOTmZzp07Y2FhAcCkSZOEuVJTU6sxP0lJSdy7d48bN25w9+5d7t+/j46ODseOHfvTokNTUxNHR0eOHTuGubk5p06dYsCAAbRs2ZJp06aRkJCAsbExV69eZerUqbRq1YoLFy5QXl6Oqqoqvr6+3Lp1i48++oh33nlH2K65uTlLly7l6dOn7N27l9WrV1NQUMAnn3xSxyXEx8eHgoICVq1axaFDh+jRo4ew3P4yj3OFGAZISEhg9erVQoGXrq4uvXv3xtHRsc5cvs7kPS8j82kJZjoqZGZm0qFDB77++msADh48yOLFi7l06RKampp4enrSu3dvAKHA0MPDgwkTJggpDX+EVCpFX1+fzZs306xZszrPK4Rwfe2ZFYg5vyLVEQWxiIjIW02PFla0tjXg8bMKjNTlbFu/ikul7fD29n6p/2xJSQmrVq0iJiYGNTU15s2bVyffUyGMZs6cyc8//0y7du2E51JTU/H09KS4uBhtbW28vLxISUnBy8uL4uJinjx5go2NDc+fP+fKlSsoKSnRuHFjoqKihC5jDx8+JCYmhmHDhqGrq4uamhp3795lxIgRBAYGcv78eeLi4rC2tmblypXI5XIcHR15+vQpiYmJjBkzhjt37iCRSHj27Bm+vr40bdqUtWvXYmFhwciRI5FKpVhaWmJlZcWqVavIy8vD2toaPT097t69S1BQEDNmzODQoUM4OjrSsmVLgDrODooUiOfPn7NmzRri4uJITU2loKAAHR0dunfvjp+fH6GhoTRo0OCVC/BehebNm7NixQp69+4t2OYdOXKErKwsjh07BsD06dNZunQpQ4cOZfv27ZSUlKCtrY2npycLFy4EqiLvCjcBqVRKRUUFFhYW+Pv7k5ycTKNGjYRjrX4NODo6oq2tzaRJk4SUldq8LM8XqkT94MGDsbKyQl9f/42MTO6/mVWjcHVoYyd++fFrCgsLkUqluLu74+vry5kzZ+q8NyYmBl1dXbZs2UL37t2FeazeJKV6fn71TovAH9qdiXm+Iq+KKIhFRETeKqoXUsnlcvbv34+DgwPurq4ADB48GFNTU+RyORkZGVhYWKCiokJGRgZjx45l6dKlXL16lWfPnvHFF19w9epVvv32W0aPHo21tXWNjmMvXrzA3d2dsrIy4Ld8VgcHB8HeSVtbm/LycpKTkwkNDcXc3JwZM2bQsmVL0tLSUFJSYsOGDfTr14+UlBQh5cHDw4P33nuP6Ohonj9/zvHjxwUPVZlMhpubmxDFXb16NVu3biUtLQ0nJyc2btzIN998g5eXFzt27GD16tX07t2bAwcOsHfvXiQSCdnZ2UIzkQ8//JCEhAQyMjJo3749Xl5eQhTT0tKSjz/+uM48117aVlJSorKykqZNmxIYGIiVlZUgav5qFNHIhoaaNGjQgGfPnjFlyhQKCgr4/vvvycrKorCwEKjKZ+3evTtTpkwhMjKSFy9ekJOTg4mJCfn5+eTk5AAIkWSoSk04cuQI3333HYaGhnh4eAiFhYpjrS5sX7x4wb179/D09KzRREXB74lchW/xm0p9havrUjU4H32B0sJcNmzYQFRUFPfu3WPPnj3Y2Nhw7do1SktLGTlyJNOmTeObb75BXV2dFStWkJSUVKPtcn3pNGlpaVy7dg2JRIK/v7/gOiIi8mcQBbGIiMgbyx8VUikpKREdHS0UmLVt25bLly9TXl5O06ZNiYiIYOrUqfj5+XHu3Dns7e3R1dVlzZo1GBkZER0dza5du5DJZISEhGBtbV3jx1ldXZ2GDRty9OhROnXqJIjI999/n+XLlzN9+nRMTEzIyckRGkWMHTuWTZs2UVJSgpaWFo6Ojhw9ehRbW1vMzMwwMjJizZo1QJW4v3TpEo8ePcLCwoJnz56hqamJiooKLi4unDx5EmVlZezt7UlISMDd3Z02bdqQk5PDpk2bSE5OZtu2bYwcORIDAwOmTp1KREQEXl5efPXVV4Jws7a2Zt26db87z69SXGRoaPhSD9y/itrRyGH2jYR5V1FRQU9Pj6dPn/LgwQPhsaysLMzMzFBXV8fDw4MffvgBFxcXMjIySEpKoqCggCZNmlBWViYU3fXu3btG0VV1SktLSUhI4Pz583h4eHDt2jWhyPGvjH6/CdRXuCopK+b0pWvoyYvJycnBx8eH8PBwVq5cSXx8PFZWVnz44YeoqqoSFRWFnp4eMpkMW1vbGrngOTk53Llzh9u3b3Pu3DkSEhLQ0NCgcePGtGjRgs6dO9dIPxER+TOIglhEROSNpbYoU7QafvDggWBVdvv2beLj43FxccHX15eHDx+SkZHB4MGD8fT0FPJ/k5OTkUqlaGlpCcVufn5+zJ8/H09PT6GoTYFCiHfr1o158+YxYcIE0tLSMDY2ZsWKFYSFhbF69WqUlJQICQnBxcUFqMpPnTBhAt9//z3W1tasWLGC5ORk5s2bh76+Pt7e3sBvbgju7u6kpaUhkUjQ1dUV9u/j48OIESOIi4sjPT2d7Oxsbt68yaBBgzA2Nsbc3JxLly7Rvn17oVmHt7c3UVFR9c5lfTcXL5vn/xWvaqNnZWWFoaEhCxYswNTUlC1btjB27FgAZs6cSUREBPfu3WPIkCEMHToUAwMDOnToIBQqAoJHsKJIUFVVlc2bNzN79mwMDAzw8PCgefPmWFhY1Cno+zdRb5dIqZT9m1dTmJ+Lu7s7vXv3xt7enp9++qnO+xWFiooVHSUlJa5evcro0aPR19enVatWtG7dmq5du/6tqw4iIqIgFhEReeOoqKjg/v37xMTEEBMTw/Dhw9HU1GTmzJlAVdFSTk4Ow4cPZ/z48Zw4cYLIyEh0dXVxcXHh3r17PHr0iIEDB7Jy5Up2796NjY2NkELg6uqKpqam4DpRUVFBUlISjo6OwhgU0VI/Pz9sbW3ZvHkzbdu2xdPTE6jKSQ0LC6sxbsVSv4WeGi9evBDaPZubm+Pg4ICamhqZmZkAwg+/Ind3xowZtG/fnlu3buHt7Y2Pjw/fffcdoaGhODk5MW3aNMEP18jIiIYNG9bZP9TMZ61+HK+L6P09XsVGT1NTkzt37rBixQoOHz5MVFQUISEh+Pr6AlWd8r7//vt6t/+yDpeKOQoODqZv377/uijw71Fv4eoHbenRol+9r6+vfbkCxTx7enpy8eJFsehN5B9FFMQiIiJvHDNmzGDv3r0MGzaM3NxcFi9ezKeffsratWuFwqqdO3fi4uKCm5sbW7ZsIS4ujnfeeQcbGxtKSkrIyMjA29ubzp07M3nyZPr06SMI1ODgYEaNGkVoaKhgpTVnzhwcHR3r/UG3sbFh6tSpdcZZvcL9wK2HNZb6O8rVePL//rU6OjpERUURFhbG5MmTad68ORUVFSQkJDBu3Di2bNlCeHg4CxYswMrKioCAAACGDh3K0KFD6+zXzs6O/Px8KioqUFZWriE83gTh+zJexUavR48eglOHh4dHvdt5mfPAy+ZG8ZraqwQiVbysS2R93fJe5fp7k69RkTcXURCLiIi8cVhYWCCRSJg0aRJFRUWEh4dz48YNwcvU2dkZNzc3Ll++TNeuXZHJZFRUVABV3qUqKio8efIEgK5duxIREUFkZCTZ2dlAlaDcsmUL+/bto3Hjxri6umJiYgLU/bEuKSkRhFLtrmiKCvf6lvqPVdhidusIc+fORSqVoqOjg4eHB+vWrWPhwoVUVlbSsWNHJBIJ6urqgoVbbapbxSnGN2fOnL9qql8r/lMbPfhNlNXOMxedB/5aaneJhP99tzwRkf8EURCLiIi8EVR3FvD09BRyPCUSCQ0bNiQtLY0NGzaQnJyMqqoqYWFhZGdno6amho2NDfv37+fKlSsMHDgQqVTK48ePBUeA5cuXk5GRgYGBgbA/IyMjhg8fXmMMmZmZHD9+nNu3b5OcnExiYiIjRozg008/RVNT86VLvPUu9esYMDZiDtdOHqK8vJzIyEhMTU0xNTV9aYFbffZd/zZx97Jo5MsaOtSemz9qLS0iIvLvRBTEIiIirz21nQWm+JlTUVFRo5AKqqr/d+/ejUQi4e7duxQXF/P48WPGjx9PZGQkd+/eRSqVMn/+fExMTAQB5eXlhZeXV539KuyfZDIZysrKpKamAlXWbba2tujp6b3S8m69hUcyGe3beBHcyafe/VZvEKJAXEquor5o5KvMjUI0nzlzhnXr1rFmzRpRIIuIiACgVN3v722jZcuWcoWvpIiIyJtJ3vMyfOeepLTiN0GpLpGhGRXJ8mVLadOmjdAMwtPTk19++QWJRMKwYcNo2LAh9vb2rxRBfZWWsX+GAzez6lnqt3qp+BX571F4UUP9QjkzM5N3331XuMEREXldUFJSuiaXy1v+r8fxb0SMEIuIiLzW1JduoKaqRlM3D6GQKigoiF69emFoaCg4Q9RGLpcjlUpRVlauNyL4d4vRly31/9tSHv5qFDcTtZ0z6jvHN27c4Pz58ygrK6OsrMyTJ08wNTX9p4csIiLyGiIKYhERkdeal6UbLFu6FGMd9TqFVNUjrrWbdKio/G+/8upb6hd5daRSaZ3zWts+TiaTERcXR0xMDFlZWYwZMwYDAwOKioqYPn06dnZ2uLm58eDBA+7evSsKYhEREUAUxCIiIq85L9aE2zwAACAASURBVHMWUIjh+rxMxYjrm0lRUREymaxGcWN16juvMTExFBUVsWfPHkxMTGjXrh07duzAzMwMiUTCokWLGDNmDDt27MDR0ZFFixYBsH37dq5evUr79u3/zkMSERF5QxAFsYiIyGvPy9INxJzbNxO5XE5ZWRkaGhqkpqYyefJkUlNTKS4uZsqUKQwYMKBONL+wsJCtW7dy69YttLS0kEgkzJ49m/Xr13Pjxg1GjBhBv379kEqleHt7k5SUxObNmzl27Bjdu3enpKQEdfXfovP+/v7cuHFDGI9YWCci8u9G/DURERF5IzDWUce9kYGYcvCGUVZWxt27dyktLRUe69u3L1u2bAHgxx9/xMPDgxMnThAfH0/Pnj2RVUuRURTH7dq1iyNHjtCrVy/y8/O5cOECz549w8fHBwMDA7p06YKmpiaqqqosWbKEiIgIzMzMaNWqFWfOnKF169bcuXOHp0+fAlWpFbdv3/4HZ0JEROR1RhTEIiIiIiJ/GxcuXCAyMpLY2FjhMTs7O7Kzs6msrCQxMRFHR0f09fWpqKhAT08PNTU1pFKpkDNcUVHBjRs36NixIwEBAXz88cc4ODiQlJRE48aN0dDQQE1NDYDY2FiOHDnC4cOHCQsLQyKRkJSUhLe3N05OTowZM4ZZs2aRnp5OYWEh5eXlYnRYREREFMQiIiIiIn89isiuubk51tbWVFZWCs+5uLiQkpJCZWUlgYGBTJ48mU6dOjFr1iwOHjxIUVGR4AQBkJ2djYGBARYWFgDY2tqira3NgwcPcHBwoKioiIKCAqBKbCsrK7N06VLmzp1LUVER165dQ0VFhdmzZ9O0aVN0dXWZNGkSt27dEoS0iIjIvxsxh1hERERE5KVU9/SFV8/bVkRdDQ0NUVZWZt68eTRq1IjExETu3r1LgwYNKC8vZ9iwYVhbW5OTk0NcXBzh4eF06NCBiIgIISd40KBBmJub8+uvv9KvXz8sLCw4efIkjo6OmJiYkJeXR0ZGBo0bN8bY2JjFixczd+5cnJ2dmTlzplCkp6KiwvTp0//6SRIREXnjEQWxiIiIyL+Q+grJFK2hqzcJeZmn76tiaGiIoaEh9+/fp1+/fowYMQJjY2MGDx7Mw4cPadasGd26dRMcQxITE+nRowfh4eFMnDgRJycnGjZsyKNHj9i7dy9Dhw6lvLwcd3d3Idd49OjRNGrUSNinp6cn27dvrzMWhV+xYl9iqoSIiIgCURCLiIiI/IsoKSlBSUkJDQ0NYmNj2b9/Px9++CF2dnb1Rn+LiorYtWsXWlpazJ8/H1NTU3788UcaN278SvtTV1fH0tKS9957jw8++EB4XFlZmUePHmFra0tJSQmGhoYAnD59Gn9/f9TU1HjvvfeAKvFuYWHB8uXLiY2NxdfXl7CwMCGlYvjw4XX2qxD3tYWvaMsnIiJSH2IOsYiIiMhbiqI7nyKSmpuby44dO4R8WycnJyZPnoydnR0AOTk5jBkzhm7dugmpBXK5nE8++YSEhATWrVtHQEAA4eHh/9E4GjRoQEFBAZmZmTUeS0hIoLS0lCVLltCqVSs8PT3ZtGkTQ4cORUdHRxh39SYcGRkZTJkyhezsbDp06AD8Jn6rI5FIXtqVUERERKQ2YoRYRERE5C1AIQqrRz9rR0M1NDTYsWMH8fHx6OrqMnToUBYtWkTr1q3p06cPixcvRkdHh/DwcJYuXUp4eDizZs3C3d0dNzc3XF1d0dTU5JdffiEtLU0Q0n+EoaEhxcXFpKWl0bBhQwCaN2+OXC5HT0+Pnj170r17d5ycnNDU1BTep4hYK9I4ysrKqKiooHv37rRp00YoshP9qEVERP4soiAWEREReQORSqU1xG5tUfjixQsuX75MTEwMFRUVTJo0ifT0dOLj43n69Cn+/v6Ympry4sULnjx5AsDevXvZtGkTHh4eaGhoMHPmTJ48eUKjRo0EH2FDQ0MMDAxISEjAzs6u3m6BChRC1tLSki5dumBmZiY8N2nSJOFvd3f3Gu8B6qQ5ADg7O+Ps7PxfzZeIiIjI7yHeVouIiIi8hshkMq5fv87q1avrfb66GC4qKmLjxo2MHj2a6dOnU1ZWRnR0NNu2bUNTU5PCwkJ+/PFHnJyc+Oyzzxg4cCCzZs1CVVUVa2tr8vPzSUlJwcfHh0ePHgFVdmkGBgZkZWXh6ekpdHXT1NTEwsKC69evA9RJVZDJZMhkMqRSqfCctbU1AwcOpEmTJnVeq6C6EBbTHERERP5pREEsIiIi8j9E4XpQXRxCVcQ3LS2NU6dOkZ+fD1QJX6lUCsCwYcO4dOkSAKtXr+bw4cO4ubkREBCARCKhffv2fPXVVzg5OZGUlMTevXu5f/8+1tbWJCYmkpSUBICNjQ25ublIJBLMzMw4cOAAAA8fPuT58+c0atQIa2troqOjAVBVVcXZ2VkQ5LXHLpFIhPxdReQ4NzdXeG3tY1QgimAREZH/JWLKhIiIyGvBv9UOq76IaE5ODvHx8eTk5KCpqUlpaSk//fQTqampfPnll1hZWZGens65c+do06YNp0+f5rPPPiMgIEDYxtOnT5k5cyYlJSX4+voSHx/PtWvXaNq0Kb/88ouQq+vg4MAvv/yCVCrlgw8+YObMmfTo0YOcnBy6deuGiYkJ7du3F7aroqLCxx9/LPxbVVVV+DsvL48rV66QlJREbGwsqamp5Ofn06tXL6ZPny7m+oqIiLy2iIJYRETkH0fRkrd2hFARdaydH/s2k5CQwK+//kpRUREDBgxAQ0ODoUOHoqGhgZGREQkJCeTl5eHg4MCdO3d48eIFAB07diQ+Pp7Hjx9jYWEhFKuVlpaioaHB1atXOXPmDHFxcQC89957ZGVlERgYKHRqc3Z2JiQkhPLych4/fkzbtm1ZsmQJV65coXnz5kLRnLW1NYMHD64xbrlcTmJiIqtXryYuLo6cnByMjY1p2LAh77//PoGBgVhaWqKlpfUPzqaIiIjIf4coiEVERP4W6iuOUlBd7BYXF6OtrU1BQQHjxo0jPj4eIyMjIiMjadWq1T823v8FycnJLF68mEaNGiGXyzl8+DCpqamYm5uzfv164uLimD59Onfu3KF169Y1WhS3a9eOHTt2YG5ujpKSEsePH8fZ2RkNDQ2gqlBNKpXy888/k5qaioaGBrdu3UJbW5tRo0axdu1arK2tsbW1ZePGjaioVP0cWFhYEBQUVGestW9SlJSU0NTUZPDgwVhZWaGvry9GgEVERN5YREEsIiLyp6mvCUJtIfz8+XMkEglaWlosX76cTZs28fz5c0JDQxk9ejRbt24lODgYPz8/0tLS6NevHxcuXBDa7r4t5D0vI/NpCQ0NNTl79ixPnz5l9OjRrFu3jg0bNqCrq0uvXr0AsLKyokOHDiQlJdGrVy+UlJR4/PixsK309HQA+vXrR2RkJNnZ2aSmpmJvb8/XX3/Njz/+yIYNG2jTpg2jRo2iQYMGADRr1oy5c+e+dIz1dbGrL2JvbW39Z6dDRERE5LVAFMQiIiKvhCLiK5PJ6qQ71BcZTEtL49q1a/Tu3RuJRELfvn356KOP8Pf359dff2Xx4sV4eXlRWVkJwKpVqzAxMWHZsmXk5OSgra1NYWHhWyWI99/MImz3bVQlEsqlUjxzY7l58yZz587FycmJlStXkpCQwPnz54Eqi7OrV69iaGiIuro6rVq1YuPGjaSmplJUVERxcTGPHj2iffv2zJ49mzNnztC3b1/eeecdAPz9/fH39693LPX5Fiv4N+Vwi4iIiIAoiEVEROpBUeBWXfgqRFJ9Aur48eOsXbuWxMRExo4dS//+/YmLi2PHjh20atUKGxsbwd5LJpORn5/P4sWL6d27Ny4uLjg6OmJjY4OJiQnffPMNenp6qKur/6PH/HeT97yMsN23Ka2QUUqV28KpTClBHfz5edmPwus8PT1ZsGABW7duRUNDg4KCAoqKinj06BGjR48mNzeXlJQUBgwYQO/evTE3N0cul+Pj44OPj0+d/b6shbGY3iAiIiLyG6IgFhH5F1Pf0jjU7XAGcP/+fR48eMCxY8c4dOgQoaGhDBw4EE1NTTZs2EDr1q2ZPXs2H3zwAUpKSnh4eGBiYkJmZiY2NjbY2tqSkpKCoaEhCxYsID4+nlOnTjFv3jwmTpxIp06dOHfunLCsf/36dSorK/H29n7pON8kMp+WoCqRCGIYwMitA9dOzycyMhIlJSXOnTtHaGgoq1evZvny5SgpKTF27FhsbGwwNTUFIDIy8qX7UNia/VH0XkRERESkJqIgFhF5y5HL5Vy4cAEvLy+h4ErBy0Tmw4cP+emnnzhz5gympqYsX76cgwcPsnbtWoKDg9myZQtffPEFcrkcNzc3JBIJwcHBWFlZ0bdvX27fvo2zszN6enrcv38fX19fGjduzI4dO3jy5Amenp54enry4Ycf8t1333H9+nUmT55MdnY2bdu2paioCAMDAyZPnvy743yTaGioSUUtH16ZijrrNmzkwM6tlJSUMGrUKNq3b4+RkRG+vr4v3ZZUKq3Xnk4UvyIiIiL/HaIgFhF5y1CkO0BVeoNcLuf8+fPY2tpiZWVV47UJCQlkZ2fj4+ODioqK4AO8b98+njx5wvr165HL5RgbG9OkSRNMTExo27YtzZo1o3///sTGxqKvr4+6urqQ4uDq6sqyZcuwsbFBW1ubmJgYBgwYgEwm4+LFi0JXtIiICJ4/f462tjZr165FW1ub8PBwQkJCsLW1RUdH5x+fu78TYx115gU3Z9L/5xBXyGTMC26Oq6MVrlOn1nl9fWkrCv4tlnQiIiIi/xSiIBYReQPJyMhAS0sLY2PjOs/VTneQSCQMGTIEuVzO0aNHuXHjBhMnTkRZWZmdO3dy79493n33XcrLy1FTUwOgrKyMq1evkpKSInjRWlhYYGFhIfjKuru7s2fPHoYPH87hw4c5cuQIgwcPRklJif9r787jqqrzP46/vhcQEBAFFFkERdwgBQ3NvcwSl8kltxbTXEoby2zT1DZt1TGd0mr8lc3UOK2jTTlqlo7LZO77bigIoqIgiig75/cH3DugOGMzrtz38/HgweXce8/9nvM4l/u+3/M53++JEyeoXr06vXr1YsSIEXTo0IGQkBC6d++OzWYjIiKCCRMmEB0dTe3atR1tdXV15ZZbbgH+/bBtN6uesSG0iwxwjDLh713yJeJSNdsKvtfepWquRaRyUyAWuUmUrQ8dO3YsrVu35rnnnrtofNjExETmzJnDunXraNu2LW+88QYzZ84kIyODiRMn8vnnn/PNN9/Qr18//Pz8qFGjBoAjDJ87d44hQ4aQn5/PypUreeedd6hatSpffPEF2dnZfPPNN8TFxeHt7c2BAweIjo5mxIgRTJ8+nU8//ZSMjAw++ugjAJo1a8bcuXNxd3enYcOG5banbBCuSGUNI/7e7o4gbKfwe33Yv4TAv443lZ2IOCcFYpEbQH5+PjabzVG2ABd/MJf9OzY2liNHjly0ntzcXD799FMKCwt59dVXiYiIwLIsOnTowKxZs6hXrx79+vXjd7/7Hf369WPPnj385je/IT8/n759+3L06FE6derE9OnTGT9+PFAyBXDDhg0pLi4mMDCQXbt2MXjwYNauXcvUqVOxLIvOnTvj5+dHcXExjRs3xsvLC8BRY2xXtte3MlwoJzeHS818WPY9lZubC8CBAweYPXs2/v7+jBo1ivDw8GvWThG5fhSIRa4D+ylyFxcX1q1bx4oVKxgyZAjBwcHlPqTPnz/vKFHYtm0bjzzyCHXq1MHDw4Ps7Gyg5MMeSupK09PT+dOf/sT+/fsdPb4ADRo04OjRowD06NGDN954g40bN7J69Wqef/55qlSpwsyZM6lbty6urq7k5uYyY8YMdu3aRVJSEk899RQ2m42AgABCQkJo164db7/9tmNECMuyaN68+UXbeWHgLfu3wrBcaZZlOX7KBmD7bfuXsIyMDLy9vdm6dSvLli0jLS2NBQsW0LdvX4KCgmjXrh0rV67krbfe4oMPPrhemyMi15DODYlcA0VFRY7eUSh/irx169ZMmDDBES4TExPp0aMHLVu2ZMSIERw4cICioiJmzpzJk08+ybx586hTpw4pKSlASamDfV0BAQFYluUIw/awHBQUhIeHB4mJiRhjePTRR5k9ezZZWVmOdkVGRjp6qD08PKhbty69e/fm448/dvQW+/n5cfToUZo1a0bNmjUvqvMtu40i15q9BvvC3uAVK1Ywf/58jDFs2bKFcePGsWHDBrKysvjkk09o3749hw4dIi0tjbVr1zJkyBAeeeQRkpOTOXXq1HXaGhG5lhSIRf5H58+fd9wuKipylDyU5eLi4giN2dnZLF++nJUrVzJixAgWLFjAQw89xN/+9jcA5s6dy2uvvcbatWvp3bs3jz32GJZlsWrVKu666y6qVq3KM888A8Dx48eZN28enTp1omXLluTl5REUFMTXX3/teN3s7Gy8vb2pUqUKGzduBODhhx8mOzubTp06Ua1atXJttfdQP/DAAwwYMIDGjRs7lt1+++107doVNzc34N/3AIv8r+xnUi71viorJyeHjRs3MnfuXDp37kx8fDxLly4FYNOmTXz44YdAyZfGmjVrcvz4caKioggJCaF58+a4u7vTs2dPR019vXr1yMnJIT09/epupIjcEFQyIXKZLMvi8OHD1K1bFyj5AH788ceZP38+mZmZF10YVVhYiKurK5Zl8eijj9K0aVM+++wzxwxtgwYNolevXnTr1o3ly5dz5swZCgsL+eqrr1i/fj2FhYWcOXOGhg0bkpeXR2hoKIcOHaJ27dq4uro6enw7depETEwMDRo0wMPDg1GjRvH999/z2WefcfDgQYYOHcpTTz3FsGHDqFOnjqN98+fP/4/bbB+GzR50Y2NjiY2NvbI7VpxORfXjxcXFjuOt7Egbl/sl69SpU8yYMYNTp07x7rvvsm/fPkaNGkViYiK33Xab4wtnzZo1HeNj9+nTByip4QcIDQ3l9OnTFBYWEhQUhJubG0ePHr3oglARqXzUQyxyGQoKChgwYAARERGOi9k8PT3ZunUr3t7eHD9+HICZM2fSo0cPoqKieP311x1B+S9/+QuJiYn88MMP3Hbbbdx2220EBQVxzz334OrqSu3atTl58iRHjhyhadOmdOrUiUWLFrFlyxa++OILvLy8iIyMdITYrVu3kp6ezooVKwgJCaFp06aOSTeGDBnC008/zZAhQ/j666956qmnABg2bBht2rQpt132kopL0RX3ciXl5OSQm5uLMYYdO3YwZcoUDh48COC4qNR+zFmWRVZWFrNmzeKll14iOjqa7t27c+jQoQrXXatWLerVq0dERATR0dH07dsXLy8vkpOTiYiI4Pz585w/fx5PT0/H0ICurq74+/tz+PBhoCQsZ2VlkZCQAIC7u7vjPhGp3PRpJ3IZ3NzcCAsLo23btsyaNYvTp0+TmZlJp06dKC4u5sCBAwA0atSIqVOnsmfPHtatW8eXX34JQMuWLalTp46jPCEkJMRRdgBQt25d0tPT8fT0JCIigmPHjjkuplu+fDkpKSm88sorFBUVUa9ePT7//HMefvhhQkNDgYtrd6Ojo+nduzeNGjUqt/zC084a6kuuFsuyKCoqorCwEICpU6fy1FNPcfr0aaDkGJ04cSL169cHIC0tjYEDB9K+fXsmTZqEMYZly5Y56uYjIiLw9fXlxRdfrLB8ws3NDT8/P8LCwjh79iwAvr6+HDhwgNDQUM6ePcvu3bsB2L59O/v376egoAAfHx+2b98OlATibt26OUL5p59+ypAhQ67ujhKRG4JKJsSpXDiL2+Wwn8b18/OjR48erFy5kj179nDq1Cni4uI4ePAgmzdv5vbbbycuLo6ZM2eyZs0adu7c6ShRaNmyJfv373es89Zbb2XdunWOvyMiIli6dCnZ2dk8/vjjzJo1i5YtW5KTk0NkZCSTJ08mJiaGV199lYkTJ1KrVq1ybazotLK93WWpx1euBnu5g6urK0uXLmXPnj2MHj263Egnffr0YcyYMfz+97+nSpUqxMTEMGfOHHJychg+fDgLFixg/fr1NGjQgDVr1jBx4kTS0tKoV68e06dPp2rVqowePZr69euTlJRERESEY932EozAwED27NlDRkYGPj4+1K1bl82bN3PXXXfx29/+lmeeeYbc3FyaNm1KixYtyMrKYuLEiY5hAmvWrMm4ceMc21S9evVruyNF5LpRIJZKqWyNYtnb/8sECMHBwZw8eZKmTZuyd+9e9u3bR/369bn33ntZsmQJAIsXLyYpKYnVq1ezdOlSZsyYQXFxMe3bt2fq1KmOdTVr1oyZM2c6/g4PD6dGjRqcO3eOZs2a8dprr3Hs2DHHLHF2Pj4++Pj4OLbLPnRbRRR+5UorLi5m3759pKSkEBMTQ+3atR1j/NqPt3PnzrF8+XLq16/Pvn37SE5OZvjw4WRmZrJmzRqysrIICQlh2rRptG7dmjp16vDGG2+QmZnJDz/8QHp6OpMmTWLv3r0kJibSuHFjzp07R58+fSgoKKBq1aocOHCAiIiIi770BQQEkJaWRkpKCnXr1qVZs2bk5OQAMHr0aLp164a/v3+5L5QXzvZoH7ZN7x8R56J3vNz08vLy2LlzJxkZGY5l9gBcdiYqKDktO23aNOLj4xk2bBh79+79j+u3Pz8yMpLDhw8THx9PcXEx8+bNo1q1ajRu3Jjk5GSgZEpl+wdsZmYma9euJSkpiZiYGNavX+9Y56233soDDzzgqOENDQ1l1qxZNGvWDAAPDw9HGLZPJVtRu1TyIFdDcXExW7ZsYe7cuUDJF73Q0FA6duzIww8/zJIlSxxB89y5c8ydO5f77ruPMWPGEBMTw5EjR/jqq6/IyclhyZIlzJkzxzEl93333cfkyZNxd3cnPj6eqKgoGjduTHR0NEeOHCEmJoazZ8/i6+tLcXExISEhjpIGFxcXfHx82LJlC3BxqVCTJk3o16+f4yK48ePH88orrwAl9cBNmjRxhGF78L1wPWWnzxYR56F3vdxU7HWJF36ALVq0yFEfeP78eRITE0lISMBms/Htt98yatQozp07x08//cSWLVt46623mDhxomPEiH/HHogjIiLIysrC29ubrl270rZtW9q0aUP9+vVJSUkhJyeHbt26sXHjRtq1a8c333zDgAEDyM3NpV69eqxatcqxTi8vL1599dWLAm1FwbfsKA8iV5L9LIP9x3782Ww2EhMTWbFiBadOncIYg5eXF6tWrWLDhg2cOXOGtLQ0iouL6d69O8888wzbtm2jRo0ahIWFUb16dYYPH86qVavw9fVlz549ZGdnU61aNTZt2kRhYSH16tWjWrVqpKenExgYiLu7O99++y0BAQF4eHhw4sQJ7rvvPg4cOMDChQuZPXs2Xbt2JTY21vG+sbfb/v6oW7cu3bt3JzAw0LGNlxqurewIFnp/iYhKJuSGYz8Nmp+fz/r166levbpj+t+yvaL5+flUqVKFhIQEPv/8c/7whz9w22230atXL7Zv30716tWZMGECAQEBZGRkkJaWRk5ODvv37ycnJ4datWrh6el52e0KDg7GGMPhw4dp06YN77//PgEBAbi4uBAWFkZ6ejpxcXF88MEHVKtWjcjIyHLP79ChQ4XbWZY+mOVKu3CIswtLiC485k6ePMnevXs5efIknp6e5ObmsnnzZs6cOcPx48cpKipi48aNBAQEEBwcTEJCAnPnzqVv376Odfj5+TFgwAACAgIYOnQo+/fvZ/PmzYSEhJCSkoKfnx9BQUHk5+eTmZlJaGgoNpuNo0eP0rt3bxITEwkJCWHixIlYlsXnn3/OmjVrePrpp2nZsqXjdcpemJqRkeEYW7jsNqm3V0Quxw0XiI0xrwCPACdLF020LGtx6X0TgOFAETDGsqyl16WRclXZP8BcXFzYtm0bp06dIiIigtOnT3P69Gmef/55jh49SlhYGJMnTyYkJISoqCiys7P58ssvyc3N5cSJE44Zpho1asT58+fJysqiV69e7N69m0WLFrF9+3ZCQkKYM2fOf2yTPUSEhobi5uZGQUFBuV6on376CSgJuS1atCj3PCgJHhcGE31Qy9V0+vRp5s+fz/Dhwy8KwXb79+9nyZIlHD58mMDAQKpUqcL333+Pp6cnfn5+7Nu3j/T0dGJiYsjLy6NNmzZERESQn5/P3r17HeUFv//97zl48CARERH069cPb29vcnJyqFu3Ll5eXhw6dIjU1FRiYmLYvn0748aNIy0tjb1795Kfn+/4kvviiy9y7NgxBg4cSFRUFACTJk1i0qRJ5bbNsiwOHDjA3Llz2bVrF+np6fj4+HDvvffSoEGDchfziYhcjhsuEJeaaVnW9LILjDFRwH1ANBAMLDPGNLQs698PpCo3hKKiIn788UfS09MZNGhQhb2jACdOnGDHjh2cOXOGjh07MmvWLNLT01m3bh1jxoyhSZMmjB8/nhYtWrBz507uv/9+du/ezZgxY3j77beBkvpbPz8/kpKSyMvLIyAgAJvN5hjj98033wTg0KFD9O/fn+TkZMLCwipst/00smVZuLq68sYbb1xyGyu6EKds+FDvr1wt9rIAm81GrVq1OHLkCG5ubnh5eZV7rx06dIitW7fSsmVL8vPzmTx5Mlu2bMFmsxEYGMi+ffuIjIxk6dKl7N69mxdeeIE9e/Zw22234e3tzYgRI3jppZdYuXIlTzzxBHXq1KFLly4EBwfj5ubGjBkzOH/+PJ07d+bvf/87cXFxfPTRR5w4cYKffvqJnj17smvXLurUqYOfnx+33HILI0aMoKCgABcXl0sG2cLCQkdvtr2EyNPTk8GDBxMSEoKvr6++YIrI/+RGDcQV6QV8YVlWHpBojEkAWgFrr2+zpCJFRUXlLk4pLi7ml19+Yf369QwaNKjCcLhs2TKeffZZIiIiEJbyYwAAIABJREFUaNCgAT169GDChAksWLCAhQsXOh63evVqXnnlFc6cOcPevXvJzMzE29ub3NxcUlNTCQkJITQ0lG+//Zb8/Hzc3d1JTEx0fLB/9913rF27loSEBPr06UPt2rUdbYbyF9X8mg9ZBV652i41bGDZ49Td3Z1du3bRokUL/Pz8SElJITw8nBEjRnDw4EFqB4cyf9GPhAT6O96nQUFBpKSkUKVKFYqKihzvo/DwcJYsWUKXLl2oUaMGO3fudLxOUlISAA899BBTpkyhRYsWnD59mgULFjBhwgTq1KnjmCkxOzubpk2b0qVLF+655x7H9Mh2rq7/+iiy92aXDfJl77e71JdYEZH/xo0aiB83xgwGNgHPWJaVCYQA68o85kjpsnKMMY8Cj4L+YV5NGRkZ/PTTT4563ezsbNq1a+e4/8KLxdzc3GjcuDErVqwAKg6PH330EW+++Sbx8fGOD8J27dqxYMECDh8+THh4ODt37mT58uU899xzxMfH06BBAzZu3EiHDh2w2WwcO3aMkJAQYmJi8PPzY+DAgdSrVw9vb2/HlLCenp60atWKkSNH0rx5c8eH7YVtTkhIYP/+/WzZsoVt27ZhjGHcuHG0atXqiu5LkUuZOnUqMTExdO3aFbj0yCLr1q3jT3/6EzExMVSpUoXt27fTokULpk6dSq9evRgzZgzTp0/nh33pjP/TMtIWzgSXKvi75uLtXjIN+Icffsh3333HokWLOHz4MPv27ePTTz+lcePGuLq6Ehsby4oVK3jnnXfYsWMH2dnZ/O1vf8Pb25vExEQOHjxIVFQUM2fOJCQkhCVLlhAcHHxRW93d3ctdwHfh9tj/N6jHV0SupesSiI0xy4DaFdw1CfgAeBWwSn+/DQwDKup+u+iSfMuy/g/4P4C4uLiLL9mX/8qFY3OeO3fOMcxZcnIyq1evpmHDhhQUFADw2muvsXPnTvLy8njjjTfo3LkzgYGB5OXlceLEiXLjgNp7hOLj45k6dSoLFiwgMDCQXr16ERISgo+PD4mJiYSHh7N+/Xrc3d25/fbbOXnyJKdPn2bNmjV06dKFuLg4+vbtS1xcHDNmzODll1/m+++/p1GjRrz55puOWeIeeOCBcttWVFTEli1bWLNmDXv27CExMZEjR45QvXp1BgwYQIcOHRg+fDg1a9YsdxGPyJVgf2+VvcDNPrZvQkICxcXF3H333Zw+fZp9+/axf/9+FixYwJAhQ+jfvz9ZWVn8+c9/xtfXl4YNG+Lj48OmTZsYOnQot99+O7/88gsA/1y3iSEjHsdWLRCqVqcg4wjZkXGMvLc9x48c5vbbb8fPz4+5c+eycOFCbrvtNtq3b4/NZuPcuXM8+uij/PnPf+bNN9+kXr16DB48mPDwcBo2bMj+/fsvukA1ODjYEXwvDLkKuyJyo7kugdiyrLsu53HGmA+Bv5f+eQSoU+buUODoFW6acHG5A5S/Gv3s2bMEBwfTuHFjCgsL+eCDD1izZg2LFy9m4sSJtG7dmgEDBvD666+TlpbGU089RUBAAOHh4Xh6epKQkECtWrUuCgFDhw6lf//+ZGRkMG7cON5//31eeOEFQkJCWLFiBdHR0URGRpKUlER0dDR33nknd911F+7u7gA8+eSTPPzww+XODIwYMaLCbSxbc5mbm8umTZsIDw+nR48ehISEOKZNFrlSLlXuUNFID3YtW7Zk8+bNuLi4MGfOHN566y1mzZpFx44d+e677xwXwu3atcsxrN/YsWN55513gJILSteuLakq+2r+N9Ro2pkqMd3JS93HiflTyD+RyD/XuHD4lz3cfffdDBkyhFatWrFq1SqOHj3Kk08+SVhYGLVq1SIgIICTJ08SEBBQYVuLioocs9Wpl1dEbjY3XMmEMSbIsqxjpX/2AXaV3v4O+MwYM4OSi+oaABuuQxMrhbKB8EJlP6wLCwtxdXXlwIED/Pjjj6xbt459+/bxySefMHr0aN59913Gjh2Lv78/L7zwAo0aNQLg2LFjPProoyQmJpKSksL27duJjY0lICCAffv20bZt24tGXcjJyXEM9dSiRQuOHz9O/fr16dGjB2PHjuXAgQNMmDCBp59+mnvvvZfo6GhHGLYsC19fX3x9fS/azooCR9nt9vLy4rHHHvsf96jIv9h7Ri8MvheWB5w9e5adO3eSkJDA4sWL6d+/P3379nX0EDdp0oSFCxdSXFxM27ZtcXd3Z8iQIQBMmzaNf/7znwwZMoSEhASg5H3QqVMnnn32WQCioqIcZ3LcKKQgN4/iI3vIObiR4pyzBP5mLCF56zma5MawYcOIj4+nefPm1KlTx3FGxc7FxYWAgABHrT2UHyPbxcVFE8WIyE3rhgvEwDRjTCwl5RBJwEgAy7J2G2O+AvYAhcBojTDx37swCB87dowqVapQtWpVpk+fzuLFizlz5gyjR49m6NChFBQU8NFHH9G7d2/+/Oc/AyWzre3Zs4dBgwbx97//nT179tCoUSOSk5OZP38+nTt3ZtSoUUyePNnxwR0WFsahQ4cqbFNmZibjx48nJSWFW265hYcffhiAO+64g23btpV7rJ+fn+O2PTxcznaKXGkVfbms6LhLT09n9uzZbNu2jfDwcKZOncqJEycYN24cYWFhvPjii46JYuyjLTRs2JDs7GzHCCl5eXkAFBQUULduXZYuXUpoaCiurq7s27ePxo0bs3XrVrKzs8nMzCQiIoLk5GSOHj3KtDdfZ0efgez9eTsBLe/BK/BZpj10O/1uG+Zoo2VZ+Pn5OSbAqWjWNoVeEamMbrhAbFnWQ//mvteB169hcyqdgoICkpKS2LBhA4cOHaJLly4sXbqUWbNmMXDgQB588EHuvfdeRo4ciYuLCxMmTODjjz9m1KhRNGvWrFztb1RUFFu3bmXkyJF4eXmRkpICwKlTp9i5cycTJkwAYNu2bRw7VtLp7+/vz7p1/7o20n4a2RhD7dq1+eqrry7Z9rK9vWV7l/UBLdfC+fPneemllzh+/Djz5s1zHINlA+OpU6dwc3Nj06ZNfPTRRwQFBTF9+nSKi4tZvHgxISEh9OrVi8OHD9O3b18WLVpEeHg4jRo1Ijo62vE6e/fu5fjx4/To0QM3NzcSExO5/fbb8fDw4OjRowQHB+Pv709OTg7nz5/nhRde4MUXX6SgoIBWrVrh6+tLQkICLVu25N1333UMRbjpn8vJyM7jSGYOoTU88fd2L/cetG+LpgUXEWej7jMn89JLL9GzZ09SUlI4ePAgI0eOpEmTJpw8eZKaNWvy5ZdfUr9+fZ588knuvvtuVqxYwcaNG3F1dSUiIoKzZ8861hUdHe3o7Q0ODmbv3r0kJyfj5ubG3Xff7fi59dZbHXW9vXv35t133wX+dbrVxcXFMQIE/Gt65gunXC17elZDnMm1lpWVxaJFi0hNTeW7777DGENhYSGrVq1i4sSJ/OY3v6Fdu3a88MILrFmzhvj4eI4ePcoHH3yAzWbj1Vdf5fjx4/zpT39i5syZ7N27l+LiYvz8/Khbty65ubkAjBkzhmeffZb169cDEBQU5Hif+fr6smbNGgC8vb1xcXFh//79PPLIIwwfPpwHH3yQRx99lLS0NFq2bElxcTEDBgwod0aluqcrTUOqUaNqyQWiZd+DIiLO6obrIZYrr2yPUHBwMDabjeeff57U1FSGDx+Ov78/ALfddhuTJ0/mk08+oWHDhnz22WesX7+ekSNHAhAYGFiu3CEiIsIxLul9991H3759GTRoEJMmTWLMmDF07NiRhg0bOtZvX4fdqVOn2LFjBzt27GDbtm0UFBQwefJkIiIi1DslNxw3Nzfy8/N55plneOedd+jZsyeurq4cPHiQefPmsWzZMsfxPmPGDAYPHoyXlxc//PAD2dnZeHp6kpqaSrdu3Rg5ciSNGjVyTIhx7NgxcnNz8fDw4KOPPir3ujVq1GD37t0ADB482FFO0bx5c/74xz/i6upKcXGxY2g2O/uoMGVnSwSdURERqYgCcSX37bZUxs/fgZvNRkFxMUPr13EMj+Tl5UVQUJCjZyoyMpLz58/z1VdfMXHiRIwxLFmyhKSkJHJycvD19SUlJYWzZ8/i4+NDnTp1ePnllzl37hw1a9Zk9erV5V67TZs2jtsXzky3bds2Zs2aRUBAAO3bt6d79+6Ehobi4eFxDfaKOKNLXWB5ufbu3UtcXBzx8fFMmTKFpUuXEh8fT/369YmNjXUEzZiYGLy9vYGSL4BFRUVkZmYSFRVFTEwMvXr1AiAxMZFatWpRt25d/vGPf3DmzBmqV6/uaGtRURFubm5MmjTJ8Z598cUXHfeXndWt7AQ4Zcseyv4WEZFLUyCuxDKy8xg/fwe5BcXkUlJ+8OH2c3jk5ZOdnU316tXx8vLixIkTFBYWEhgYSGFhIR06dOB3v/sdY8eO5cEHH3SMgRofH0+HDh3w8fEBSqZIHjVqVLnXvJxRHQBiY2OZO3fuVdx6cWYXjmBSdgzt8+fPk5eXd9Fsaf9pXUuWLKFr1664ubkxcuRIvvzySxo2bEjt2rUJCQkhOTmZ+vXrEx0dzZYtW+jbty/+/v54enqSlJTE008/zfvvv8+PP/7IyZMncXFxYcaMGbRt25aqVauWK2soW0JUs2bNcu3RRaQiIleeAnEldiQzBzebzRGGATy8qmMZF3bu3EmbNm2oUqUKiYmJnD9/nmrVqvHwww/Tr18/HnzwQapXr37Rh3HZD23gotOx+kCWa6FsfXlFx5z9eDx48CD+/v5Ur16dhQsXMmvWLFJTU+nYsSNPPPEEUVFRl/VaLi4unDp1imeeeYYPP/yQI0eOYFkW0dHRPPbYY+UuKr3lllv4y1/+AkC1atXw9PRkz549jBw5ktq1a7N27VoaNGhAVFSU44xIRETEZW+7Sh5ERK48BeJKLLSGJwUXXJhWaGy0a30bWVlZQMkg/j4+Po4xR5977rmL1vPvTjXrdKxcDxeG4KysLHx8fBzH44QJE1i0aBGWZTF79mxatGjB/v37eeWVV2jbti3Dhg1jxowZzJo166IZ1i7k4uJCTk4OAQEB9O/fn/HjxxMREcG6det47rnniI6OxtvbmwMHDgDQsWPHchebTpkyxRF8w8LCKpxS/sKSIhERubaMvYevMoqLi7M2bdp0vZtxXX23LZVxZWqIp/VtRs/YEKDiU68XTtEsciMpKCggOTmZTZs28csvv3Dw4EF++uknGjduzG9/+1u6devGvHnzWLx4MR9//LEjiK5Zs4bnn3+e7OxsqlSpgmVZ3H///QwbNuyiyVwqcvjwYfr3788XX3zh6M09e/Ysf/3rXwkPDycyMhJvb++LzqBU5H+tZRaRyssYs9myrLjr3Q5npB7iSq5nbAjtIgPKjTsK/zoNfCF9UMuN7KWXXuK7776jf//+hIWF0atXL/74xz/y2Wef8d5779G+fXvOnj2LzWbDw8ODnJwcPD098fX1xcvLi9dee43bb7/9V79ucHAwd955J0FBQY5lPj4+DB06tMLHq85XROTmov/MTsDf252YOtUdYRj0oSw3j4zsPLannCYjO4/g4GCKiop45ZVXGDZsGDt37qR169ZMmTKF9PR01q5dS1hYmGPkFHs5RL169YiKiuKbb74BICEhgTlz5nDmzJmLXs8+wkNRUZGjRt7NzY233nrrovIK+xmVC6nOV0Tk5qJUJCI3rG+3pdJu6j8Y9NF62k39B+e8Qx2hNDExkffee48vvviCffv2ER4eTnp6Oq1ateLnn39m+/btZGZmsnTpUoqLi5k4cSKWZdGiRQvuv/9+fv75Z/Lz8x0ztdnZbDZcXFxwcXHBGENubi6bNm0iOTkZoFwA1hkVEZHKQSUTInJDqmjYwI92nMejsIhz585hs9k4fvw4oaGh5OXl8fPPP9OgQQMeeOAB/vjHPzJp0iSOHj2Kv78/H3zwAZGRkbz++utUqVKl3Bi+8K+LQxMTE9mwYQNbt24lOTmZpKQkbDYbERERPPvss4SFhSkAi4hUQgrEInJDutSwgcXY2L17N61atSI+Pp7mzZtTq1Yt7r33Xlq2bEl2djbx8fG0b98eLy8vx3OLi4sdE2bYSx2Ki4v57LPPeOedd3BxcSEyMpKmTZvSuXNnmjZtir+/P25ubtd820VE5NpSIBaRG9Ilhw1s05pTp04BMGXKFHJzcwkNDb3o+fYwXFRUVG6iC/hXqYPNZqNXr17069ePqlWrXsWtERGRG5kCsYjckPy93ZnWt1kFwwZ2A0qCbkBAgOPxlxoy8D9d4HY5w66JiEjlpkAsIjesXzNsoC5wExGR/5YCsYjc0Py93csNGQgaNlBERK4sfaqIiIiIiFNTIBYRERERp6ZALCIiIiJOTYFYRERERJyaArGIiIiIODUFYhERERFxagrEIiIiIuLUFIhFRERExKkpEIuIiIiIU1MgFhERERGnpkAsIiIiIk5NgVhEREREnJoCsYiIiIg4NQViEREREXFqCsQiIiIi4tQUiEVERETEqSkQi4iIiIhTUyAWEREREaemQCwiIiIiTk2BWEREREScmgKxiIiIiDg1BWIRERERcWoKxCIiIiLi1BSIRURERMSpKRCLiIiIiFNTIBYRERERp6ZALCIiIiJOTYFYRERERJyaArGIiIiIODUFYhERERFxagrEIiIiIuLUFIhFRERExKkpEIuIiIiIU1MgFhERERGnpkAsIiIiIk5NgVhEREREnJoCsYiIiIg4NQViEREREXFqCsQiIiIi4tQUiEVERETEqSkQi4iIiIhTUyAWEREREaemQCwiIiIiTk2BWEREREScmgKxiIiIiDg1BWIRERERcWoKxCIiIiLi1BSIRURERMSpKRCLiIiIiFNTIBYRERERp6ZALCIiIiJOTYFYRERERJyaArGIiIiIODUFYhGRG5RlWde7CSIiTkGBWETkBmBZFkVFRRQXFzuWGWMAyi07efKk4/EiInJlKBCLiFxDFQVfKAm/Li4u2Gz/+reclpbGggULHMtWrlzJnXfe6ViPiIhcGQrEIiJX2NmzZzl27BhwcXC9MPjag3F2djYvv/wy3bp1Y9iwYWRmZnLmzBmeeOIJTp06BUBqaio9evQAKBecRUTkf+N6vRsgInIzsyzLEXptNhtZWVnMmDGDvLw83nzzzYsen5qayuzZszl79iy+vr6cP3+emTNnsnjxYpKSkpg4cSJbt25l4MCB/PDDD4wYMYI//OEPTJw4kRUrVtCzZ89rvYkiIpWeuhhERC5TcXExlmVdVOdrs9kcPbbe3t6EhoZSUFDguL+st99+m3PnztG7d2/WrVvHiRMnAHjvvfd44IEH6NChA2PGjCEpKYktW7Ywfvx4Fi1axMGDB0lLS8PNzc3RFhERuTLUQywiUgF7+LXZbI5Qaw+9ZS9227VrFxs3biQ1NZUnnniCGjVq4O/vT1ZWFqdPn6Z69eoUFhbi4uJCUVERK1eu5PPPP6dRo0akp6ezaNEizp07h7u7O9nZ2Y7Xb9y4MevXr6dFixa0bduWN998kxo1auDt7V2uDSIi8r9TD7GIOLXi4mKKiop4+eWXWbBggWO5zWbDxcWlXPDcsGEDy5cvZ/To0bzyyiv84x//YPbs2SQmJlJUVMS7775LWloaYWFhWJZFcnIyAK6urhhj2LNnD3fccYejvrhBgwa4urqSkpLCnXfeycKFCwEoKioiICAAf39/AEaOHMnBgwfZsGEDsbGxgAKxiMiVpEAsIk7BHnwvvMjNHnzPnDlDamoqOTk5AHz99dcMHjyY+Ph4li9fDsDcuXN5+eWXadmyJePGjaN169ZMnz6dPn36cPbsWb755ht27dpFcHAwbm5upKens2HDBmJiYujfvz/79++nWrVqjvXl5uayefNmfvnlF4YOHUqtWrXo0qULbdq0wcvLiwEDBgAQGRnJp59+yurVq/Hx8bmGe01ExDmoZEJEKo3jx4+zdetWdu7cyfr163nuuedo3bo1UPGoDFlZWSxcuJBDhw6RlpaGv78/eXl5HD58mN27d/P4449TUFDAX/7yF4wx9OjRg5SUFLp27UrVqlXJy8vjd7/7HWvXrqVjx47ExcXx008/0alTJ7y9vUlNTaVXr17MmDGDli1bUq1aNfz9/Zk8eTKDBw8mNzeX9u3bc/jwYe655x4mTZrE2rVriYyMJDIyslxb69Spc032oYiIM1IgFpGbXlFRES4uLvTs2ZOMjAxGjhzJPffcQ+PGjYGSntjVq1fz/fffExwczP33309ISAjffPMNn376KY8++ij79u1jyZIljBs3jh9++IG///3veHl5sWrVKvbs2UO7du2IjIzE09OTKlWqALBz504WL17Mzz//DMAjjzxCamoqNpuN6tWrs3XrVh566CE6d+7saOudd95JYGAghw8fpmnTpjz++OP06dMHAF9fX7p27XqN956IiCgQi8hNz14GERsbS6NGjXjmmWfK3f/zzz+zYMEC7rzzTpKTk5k6dSpTpkxhy5Yt3HvvvQwcOJDQ0FCmTp3K7t27CQgIIDMzk7CwMMaPH09sbCw+Pj6kpKRw9uxZTp8+jZ+fH/Xq1cPFxYX33nuP7Oxszpw5w+HDhwGIiooiMzPT0b6yNb+ZmZls376dOXPm4O7uTtu2bctti+qDRUSuLQViEbmh2Ic1sw9ndjnsj2vTpg3Tp08nMDCQH3/8kVtvvZXRo0ezePFi/Pz88PDwYM2aNfzyyy/07NmT/Px8oqOjAWjSpAkeHh5kZGQQFRWFl5cXAwcOdLzGli1baNGiBenp6aSkpBAREYG/vz+///3vmTZtGk2aNGHy5Mn4+voC0Lt3b8dz7QHXHnbPnTuHn58fTz75JK1atcLLy+uix4qIyLWjQCwi1419LF17oLUHRhcXl1+1HnuIbNeuHcOHD2f//v107NiRzp07k5uby44dO/Dw8KCgoID+/fvTvn17wsLCWLZsGatWreKOO+7Az8+PNWvWEB8fz9133027du0YNGgQmZmZJCUlMWjQIFq0aMHjjz9OWFiY47VvvfVWvvzyy0tuX9lQb29nfHz8r9o+ERG5usyFV1xXJnFxcdamTZuudzNEnJJlWeTm5uLp6UlRURFAuTF9L5SVlUW1atVISUnh5ZdfZt++ffj6+vLZZ59Ro0aNy37N6tWrc+bMmXLLhwwZQufOnRk8eDBQUnOcn59PQkIC48ePp379+ri6urJ+/Xruu+8+hg8fjpeXF0uWLMHDw4Po6Ghq1ap1ydetaMxiEZFfyxiz2bKsuOvdDmekQCwiV4S91MHFxYXU1FR+97vfERcXx6BBg8o9rrCwEFfXkpNT27ZtY+zYsZw5c4bw8HD+9re/MWfOHI4fP86QIUOoWbMmHh4el9VjbO+NrVu3Lt988w3NmzenoKAANzc31qxZw9tvv01ERARnz55l69atvPbaa3Tp0oV169axatUqbrnlFuLi4ggMDHRsz6XCrep8ReRqUCC+flQyISKXLTs72zFTmn1kB7uypQ7Vq1fH09PTMfPaP/7xD95//32Sk5OpU6cOs2bNIjg4mLfffptJkybRvn17x8gN9qHTgoKC6Ny5M8HBwXh6ev7HttkDcZ06dVi9ejXNmzfHZrNhWRbt2rWjRo0aLFy4kEaNGjFy5EhiYmIAaN26tWNotrIurPut6D4REakcFIhF5JLK1vimp6cTExPDwYMHcXd3LxeGCwsL+emnn9i8eTPnzp3jpZdews/Pj/T0dIqKiqhatSoTJkygefPmjovQfv/735Ofn8+HH37I/v376dChAw0bNmTs2LH89a9/5cyZMwwYMIDOnTszYcKEyy6b6NOnDx4eHgDl2hgVFUVUVNR/3M4LKfyKiFR+CsQiAuCo8y0bIssGxICAALy9vTl8+DCNGjXiD3/4A8XFxYwaNYpvv/2Wjz76iGbNmjlGbQgICGD//v2cPHmS1q1b84c//IHx48eTmJhIeHg4e/bsYc6cOSxfvpyjR4/ywAMP8Jvf/IapU6cyfPhwoCTELly4kOPHj1cYiO1lGmXb+vTTTzvuuzDM2h9rjCl33+WOZiEiIpWTArGIkylb61tWRXW6y5Yt4/z58yxYsIAHHngAf39/EhMTAVi5ciVPPvkkNpuN999/n7Fjx3LPPfc4nhsYGMi2bdvIzs5m9erV/POf/2T27Nm4ubkxbdo0duzYQVRUFH379gWgRo0arFq1iiNHjjB37lw2bNjA8ePH6dmzJ02aNKGgoMBx0Zo9wF5qRIqydcplKfiKiEhFFIhFnMyFITIrK4vi4mJ+/PFHPvvsM8LDw3nsscdo1KgRU6ZMIS8vj4kTJ9KlSxf++te/smLFCn7++Wd69uxJmzZt2LVrF7GxsY4e3JycHDw9PQkODqaoqIjc3FwOHz7ML7/8QuPGjVm/fj0//fQTDRs2JDs7m0GDBnHixAnH64SGhtKyZUvatWtHbGwsAQEBALi5uZXbjoyMDHbt2sX27dvZuXMnhw4dIiMjg2XLljmeIyIicjkUiEWcRGFhITabjePHjzNv3jzuuOMOYmJimDRpEoWFhRQUFDB06FDWrl3LlClT+OMf/0j37t1ZunQpvXr1AqBLly4MHDiQbt260aVLFwA8PDyoUqUK69evp3379o4L4IKDg7HZbOzevZvu3bvz9ddf06JFC4KCgujXrx8+Pj54eXnxxBNPULduXerXr+9oa/fu3cu1vbi4mC+++IINGzZw8OBBjh8/TrVq1WjZsiWtW7eme/fuBAcHU7Vq1Wu0N0VEpDJRIBZxAqmpqbz99ts8+OCDFBQU8Nprr+Hm5kZISAi+vr4cPHgQPz8/evbsSYsWLZg9ezbz58+nbdu2zJs3z7GeRo0aERERQe/evZk+fTrp6en07t2bu+66i/Hjx+Pr68vevXupWrUqr776KrVq1cIYg7+/Px988AFpaWlER0fj7u7uWGfnzp2docQyAAAJ60lEQVQdt8vW/Za9bbPZ8Pb25qGHHqJ+/fpUq1ZN5Q8iInLFKBCLVHIZ2Xkcz3cnKKwe8+fP58knn8Tf35+8vDx27drFxo0bueeee8jIyADA19eXoKAgUlNT6dq1KydOnHCsKzIykpycHIYMGUJ4eDgzZ85kw4YNvPHGG7zzzjv8+c9/pnHjxnTs2BGAF154wfHckJAQQkJCHH9fOIsblB/R4cIL4nr27HnldoqIiEgZCsQildi321IZP38HbjYb5zK8KF66gGHDhtG+fXuCgoLYsWMHSUlJNG7cmFdeeYWXX34ZHx8ffvjhBx577DFq1KhBeno6J0+epGbNmnh6etKoUSMSEhK4++67qVevnmNc4nbt2tGuXbuL2vDven1FRERuBArEIpVURnYe4+fvILegmFyKwTuQDBd/prz+Ju3bt+eOO+7g/vvvJzAwkNatW1OnTh2GDBlCWloavr6+tGnTBoDJkyc7hmQDWL58OVBSkxwZGVnuNSuawvjf9fqKiIjcCBSIRSqpI5k5uNlsJWG4lF/MXcz75FXat7mN8PBwvL29HXW+H374IUuXLqVatWq0bt0aHx8fioqKePHFFy9at2VZGtZMREQqDQVikUoqtIYnBcXF5Za5141lxMiSIdUAvv76a3x9fR3328cEtnNxccGyLEevr516ekVEpDJRIBappPy93ZnWtxnjSmuIC4qLmda3FT1j+wAl5Q1lwzCU9PzCxWUOCsAiIlKZKRCLVGI9Y0NoFxnAkcwcQmt44u/tfsmZ6kA9vyIi4pwUiEUqOX9vd/y9/zXu76WmOxYREXFWugJGRERERJzadQnExpj+xpjdxphiY0zcBfdNMMYkGGP2G2PiyyzvWroswRjz/LVvtYiIiIhURterh3gXcC+wuuxCY0wUcB8QDXQF3jfGuBhjXID3gG5AFHB/6WNFRERERP4n16WG2LKsvVDhBTy9gC8sy8oDEo0xCUCr0vsSLMs6VPq8L0ofu+fatFhEREREKqsbrYY4BEgp8/eR0mWXWn4RY8yjxphNxphNJ0+evGoNFREREZHK4ar1EBtjlgG1K7hrkmVZ317qaRUss6g4uFsVrcCyrP8D/g8gLi6uwseIiIiIiNhdtUBsWdZd/8XTjgB1yvwdChwtvX2p5SIiIiIi/7UbrWTiO+A+Y4y7MaYe0ADYAGwEGhhj6hljqlBy4d1317GdIiIiIlJJXJeL6owxfYBZQE1gkTFmm2VZ8ZZl7TbGfEXJxXKFwGjLsopKn/M4sBRwAT62LGv39Wi7iIiIiFQuxrIqb5ltXFyctWnTpuvdDBEREZH/yBiz2bKsuP/8SLnSbrSSCRERERGRa0qBWEREREScmgKxiIiIiDg1BWIRERERcWoKxCIiIiLi1BSIRURERMSpKRCLiIiIiFNTIBYRERERp6ZALCIiIiJOTYFYRERERJxapZ662RhzEjh8vdtxkwkA0q93Iyox7d+rS/v36tG+vbq0f6+em2nfhluWVfN6N8IZVepALL+eMWaT5lG/erR/ry7t36tH+/bq0v69erRv5XKoZEJEREREnJoCsYiIiIg4NQViudD/Xe8GVHLav1eX9u/Vo317dWn/Xj3at/IfqYZYRERERJyaeohFRERExKkpEIuIiIiIU1MgdmLGmP7GmN3GmGJjTNwF900wxiQYY/YbY+LLLO9auizBGPP8tW/1zckY84oxJtUYs630p3uZ+yrc13L5dFxeecaYJGPMztLjdVPpMj9jzI/GmF9Kf9e43u28GRhjPjbGnDDG7CqzrMJ9aUq8W3os7zDGtLh+Lb85XGL/6n+u/CoKxM5tF3AvsLrsQmNMFHAfEA10Bd43xrgYY1yA94BuQBRwf+lj5fLMtCwrtvRnMVx6X1/PRt5sdFxeVZ1Kj1f7F+bngeWWZTUAlpf+Lf/Znyh5f5d1qX3ZDWhQ+vMo8ME1auPN7E9cvH9B/3PlV1AgdmKWZe21LGt/BXf1Ar6wLCvPsqxEIAFoVfqTYFnWIcuy8oEvSh8r/71L7Wu5fDour51ewCeltz8Bel/Httw0LMtaDZy6YPGl9mUv4FOrxDqgujEm6Nq09OZ0if17KfqfKxVSIJaKhAApZf4+UrrsUsvl8jxeegr04zKnmrVP/3fah1eHBfxgjNlsjHm0dFmgZVnHAEp/17purbv5XWpf6ni+cvQ/Vy6bAnElZ4xZZozZVcHPv+tBMxUss/7NcuE/7usPgPpALHAMeNv+tApWpX3662gfXh3tLMtqQckp/NHGmI7Xu0FOQsfzlaH/ufKruF7vBsjVZVnWXf/F044Adcr8HQocLb19qeVO73L3tTHmQ+DvpX/+u30tl0f78CqwLOto6e8TxphvKDmtnGaMCbIs61jpafwT17WRN7dL7Usdz1eAZVlp9tv6nyuXQz3EUpHvgPuMMe7GmHqUXNyxAdgINDDG1DPGVKHkwoTvrmM7bxoX1AD2oeSCRrj0vpbLp+PyCjPGeBljfOy3gS6UHLPfAUNKHzYE+Pb6tLBSuNS+/A4YXDraRGvgjL20Qi6f/ufKr6UeYidmjOkDzAJqAouMMdssy4q3LGu3MeYrYA9QCIy2LKuo9DmPA0sBF+Bjy7J2X6fm32ymGWNiKTk1lwSMBPh3+1ouj2VZhTour7hA4BtjDJR8TnxmWdb3xpiNwFfGmOFAMtD/OrbxpmGM+Ry4AwgwxhwBXgbeouJ9uRjoTsnFXueBode8wTeZS+zfO/Q/V34NTd0sIiIiIk5NJRMiIiIi4tQUiEVERETEqSkQi4iIiIhTUyAWEREREaemQCwiIiIiTk2BWETkCjLGvG6MSTHGZF/vtoiIyOVRIBYRubIWUjKrm4iI3CQUiEVEShlj/maM2WyM2W2MedQYE26M+cUYE2CMsRlj/mmM6VL62EHGmA3GmG3GmDnGGBcAy7LWaWYxEZGbiybmEBEpZYzxsyzrlDHGk5IpoW+nZNrXrsB6INKyrJHGmCbANOBey7IKjDHvA+ssy/q0zLqyLcvyvg6bISIiv5KmbhYR+ZcxpVOaA9QBGliW9ZExpj8wCogtva8zcCuwsXR6Y0/gxLVurIiIXBkKxCIigDHmDuAuoI1lWeeNMSsBD2NMVSC09GHewFnAAJ9YljXherRVRESuLNUQi4iU8AUyS8NwY6B16fKpwF+Al4APS5ctB/oZY2pBSamFMSb8WjdYRESuDAViEZES3wOuxpgdwKvAOkpqiFsCUy3L+guQb4wZalnWHuAF4IfSx/8IBAEYY6YZY44AVY0xR4wxr1yHbRERkV9BF9WJiIiIiFNTD7GIiIiIODUFYhERERFxagrEIiIiIuLUFIhFRERExKkpEIuIiIiIU1MgFhERERGnpkAsIiIiIk7t/wFKcAC9yNZJTAAAAABJRU5ErkJggg==\n", "text/plain": ["
"]}, "metadata": {"needs_background": "light"}, "output_type": "display_data"}], "source": ["ax = tr.plot(x='axe1', y='axe3', kind='scatter', figsize=(10, 10))\n", "for t, (x, y, z) in tr.iterrows():\n", " ax.text(x, z, t, fontsize=10, rotation=10)\n", "ax.set_title(\"ACP sur les variables - axe 1, 3\");"]}, {"cell_type": "markdown", "metadata": {}, "source": ["On voit quelques variables \u00e0 supprimer car tr\u00e8s corr\u00e9l\u00e9es comme la relation ou la situation maritale. On voit aussi que les deux genres homme/femme sont oppos\u00e9s. On voit aussi que certaines cat\u00e9gories sont tr\u00e8s proches comme Prof, Masters ou dipl\u00f4m\u00e9s. Il est probable que le mod\u00e8le de pr\u00e9diction ne p\u00e2tisse pas du regroupement de ces trois cat\u00e9gories. On utilise [bokeh](https://bokeh.pydata.org/en/latest/) pour pouvoir zoomer."]}, {"cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [{"data": {"text/html": ["\n", "
\n", " \n", " Loading BokehJS ...\n", "
"]}, "metadata": {}, "output_type": "display_data"}, {"data": {"application/javascript": ["\n", "(function(root) {\n", " function now() {\n", " return new Date();\n", " }\n", "\n", " var force = true;\n", "\n", " if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n", " root._bokeh_onload_callbacks = [];\n", " root._bokeh_is_loading = undefined;\n", " }\n", "\n", " var JS_MIME_TYPE = 'application/javascript';\n", " var HTML_MIME_TYPE = 'text/html';\n", " var EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n", " var CLASS_NAME = 'output_bokeh rendered_html';\n", "\n", " /**\n", " * Render data to the DOM node\n", " */\n", " function render(props, node) {\n", " var script = document.createElement(\"script\");\n", " node.appendChild(script);\n", " }\n", "\n", " /**\n", " * Handle when an output is cleared or removed\n", " */\n", " function handleClearOutput(event, handle) {\n", " var cell = handle.cell;\n", "\n", " var id = cell.output_area._bokeh_element_id;\n", " var server_id = cell.output_area._bokeh_server_id;\n", " // Clean up Bokeh references\n", " if (id != null && id in Bokeh.index) {\n", " Bokeh.index[id].model.document.clear();\n", " delete Bokeh.index[id];\n", " }\n", "\n", " if (server_id !== undefined) {\n", " // Clean up Bokeh references\n", " var cmd = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n", " cell.notebook.kernel.execute(cmd, {\n", " iopub: {\n", " output: function(msg) {\n", " var id = msg.content.text.trim();\n", " if (id in Bokeh.index) {\n", " Bokeh.index[id].model.document.clear();\n", " delete Bokeh.index[id];\n", " }\n", " }\n", " }\n", " });\n", " // Destroy server and session\n", " var cmd = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n", " cell.notebook.kernel.execute(cmd);\n", " }\n", " }\n", "\n", " /**\n", " * Handle when a new output is added\n", " */\n", " function handleAddOutput(event, handle) {\n", " var output_area = handle.output_area;\n", " var output = handle.output;\n", "\n", " // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n", " if ((output.output_type != \"display_data\") || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", " return\n", " }\n", "\n", " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", "\n", " if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n", " toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n", " // store reference to embed id on output_area\n", " output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", " }\n", " if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", " var bk_div = document.createElement(\"div\");\n", " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", " var script_attrs = bk_div.children[0].attributes;\n", " for (var i = 0; i < script_attrs.length; i++) {\n", " toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n", " }\n", " // store reference to server id on output_area\n", " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", " }\n", " }\n", "\n", " function register_renderer(events, OutputArea) {\n", "\n", " function append_mime(data, metadata, element) {\n", " // create a DOM node to render to\n", " var toinsert = this.create_output_subarea(\n", " metadata,\n", " CLASS_NAME,\n", " EXEC_MIME_TYPE\n", " );\n", " this.keyboard_manager.register_events(toinsert);\n", " // Render to node\n", " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", " render(props, toinsert[toinsert.length - 1]);\n", " element.append(toinsert);\n", " return toinsert\n", " }\n", "\n", " /* Handle when an output is cleared or removed */\n", " events.on('clear_output.CodeCell', handleClearOutput);\n", " events.on('delete.Cell', handleClearOutput);\n", "\n", " /* Handle when a new output is added */\n", " events.on('output_added.OutputArea', handleAddOutput);\n", "\n", " /**\n", " * Register the mime type and append_mime function with output_area\n", " */\n", " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", " /* Is output safe? */\n", " safe: true,\n", " /* Index of renderer in `output_area.display_order` */\n", " index: 0\n", " });\n", " }\n", "\n", " // register the mime type if in Jupyter Notebook environment and previously unregistered\n", " if (root.Jupyter !== undefined) {\n", " var events = require('base/js/events');\n", " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", "\n", " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", " register_renderer(events, OutputArea);\n", " }\n", " }\n", "\n", " \n", " if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n", " root._bokeh_timeout = Date.now() + 5000;\n", " root._bokeh_failed_load = false;\n", " }\n", "\n", " var NB_LOAD_WARNING = {'data': {'text/html':\n", " \"
\\n\"+\n", " \"
\\n\"+\n", " \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", " \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", " \"
\\n\"+\n", " \"
\\n\"+\n", " \"
re-rerun `output_notebook()` to attempt to load from CDN again, or
\"}};\n", "\n", " function display_loaded() {\n", " var el = document.getElementById(\"1001\");\n", " if (el != null) {\n", " el.textContent = \"BokehJS is loading...\";\n", " }\n", " if (root.Bokeh !== undefined) {\n", " if (el != null) {\n", " el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n", " }\n", " } else if (Date.now() < root._bokeh_timeout) {\n", " setTimeout(display_loaded, 100)\n", " }\n", " }\n", "\n", "\n", " function run_callbacks() {\n", " try {\n", " root._bokeh_onload_callbacks.forEach(function(callback) {\n", " if (callback != null)\n", " callback();\n", " });\n", " } finally {\n", " delete root._bokeh_onload_callbacks\n", " }\n", " console.debug(\"Bokeh: all callbacks have finished\");\n", " }\n", "\n", " function load_libs(css_urls, js_urls, callback) {\n", " if (css_urls == null) css_urls = [];\n", " if (js_urls == null) js_urls = [];\n", "\n", " root._bokeh_onload_callbacks.push(callback);\n", " if (root._bokeh_is_loading > 0) {\n", " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", " return null;\n", " }\n", " if (js_urls == null || js_urls.length === 0) {\n", " run_callbacks();\n", " return null;\n", " }\n", " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", " root._bokeh_is_loading = css_urls.length + js_urls.length;\n", "\n", " function on_load() {\n", " root._bokeh_is_loading--;\n", " if (root._bokeh_is_loading === 0) {\n", " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", " run_callbacks()\n", " }\n", " }\n", "\n", " function on_error() {\n", " console.error(\"failed to load \" + url);\n", " }\n", "\n", " for (var i = 0; i < css_urls.length; i++) {\n", " var url = css_urls[i];\n", " const element = document.createElement(\"link\");\n", " element.onload = on_load;\n", " element.onerror = on_error;\n", " element.rel = \"stylesheet\";\n", " element.type = \"text/css\";\n", " element.href = url;\n", " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", " document.body.appendChild(element);\n", " }\n", "\n", " for (var i = 0; i < js_urls.length; i++) {\n", " var url = js_urls[i];\n", " var element = document.createElement('script');\n", " element.onload = on_load;\n", " element.onerror = on_error;\n", " element.async = false;\n", " element.src = url;\n", " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", " document.head.appendChild(element);\n", " }\n", " };var element = document.getElementById(\"1001\");\n", " if (element == null) {\n", " console.error(\"Bokeh: ERROR: autoload.js configured with elementid '1001' but no matching script tag was found. \")\n", " return false;\n", " }\n", "\n", " function inject_raw_css(css) {\n", " const element = document.createElement(\"style\");\n", " element.appendChild(document.createTextNode(css));\n", " document.body.appendChild(element);\n", " }\n", "\n", " \n", " var js_urls = [\"https://cdn.pydata.org/bokeh/release/bokeh-1.4.0.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-widgets-1.4.0.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-tables-1.4.0.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-gl-1.4.0.min.js\"];\n", " var css_urls = [];\n", " \n", "\n", " var inline_js = [\n", " function(Bokeh) {\n", " Bokeh.set_log_level(\"info\");\n", " },\n", " function(Bokeh) {\n", " \n", " \n", " }\n", " ];\n", "\n", " function run_inline_js() {\n", " \n", " if (root.Bokeh !== undefined || force === true) {\n", " \n", " for (var i = 0; i < inline_js.length; i++) {\n", " inline_js[i].call(root, root.Bokeh);\n", " }\n", " if (force === true) {\n", " display_loaded();\n", " }} else if (Date.now() < root._bokeh_timeout) {\n", " setTimeout(run_inline_js, 100);\n", " } else if (!root._bokeh_failed_load) {\n", " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", " root._bokeh_failed_load = true;\n", " } else if (force !== true) {\n", " var cell = $(document.getElementById(\"1001\")).parents('.cell').data().cell;\n", " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", " }\n", "\n", " }\n", "\n", " if (root._bokeh_is_loading === 0) {\n", " console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n", " run_inline_js();\n", " } else {\n", " load_libs(css_urls, js_urls, function() {\n", " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", " run_inline_js();\n", " });\n", " }\n", "}(window));"], "application/vnd.bokehjs_load.v0+json": "\n(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n \n\n \n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n var NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"
\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"
\\n\"+\n \"
\\n\"+\n \"
re-rerun `output_notebook()` to attempt to load from CDN again, or
"], "text/plain": [" TR-24878 TR-18056 TR-920\n", "age 20 21 23\n", "workclass Private ? Private\n", "education 12th Some-college Some-college\n", "education_num 8 10 10\n", "marital_status Never-married Never-married Never-married\n", "occupation Other-service ? Sales\n", "relationship Own-child Own-child Not-in-family\n", "race White White White\n", "sex Male Male Male\n", "capital_gain 0 0 0\n", "capital_loss 0 0 0\n", "hours_per_week 35 16 25\n", "native_country United-States United-States United-States\n", "0 0 0 0"]}, "execution_count": 56, "metadata": {}, "output_type": "execute_result"}], "source": ["train_nn = pandas.concat([X_train, y_train], axis=1).iloc[[24878, 18056, 920], :].T\n", "train_nn.columns = ['TR-' + str(_) for _ in train_nn.columns]\n", "train_nn"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Il faut comparer la premi\u00e8re colonne avec la quatri\u00e8me, la seconde avec la ciinqui\u00e8me et la trois\u00e8me avec la sixi\u00e8me. Ces exemples sont voisins. On voit que les exemples sont tr\u00e8s proches. Il n'y a qu'une seule valeur qui change \u00e0 chaque fois et il est difficile d'expliquer les erreurs."]}, {"cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [{"data": {"text/html": ["
\n", "\n", "
\n", " \n", "
\n", "
\n", "
TR-24878
\n", "
TR-18056
\n", "
TR-920
\n", "
10408
\n", "
5953
\n", "
3059
\n", "
\n", " \n", " \n", "
\n", "
age
\n", "
20
\n", "
21
\n", "
23
\n", "
22
\n", "
20
\n", "
22
\n", "
\n", "
\n", "
capital_gain
\n", "
0
\n", "
0
\n", "
0
\n", "
0
\n", "
0
\n", "
0
\n", "
\n", "
\n", "
capital_loss
\n", "
0
\n", "
0
\n", "
0
\n", "
0
\n", "
0
\n", "
0
\n", "
\n", "
\n", "
education
\n", "
12th
\n", "
Some-college
\n", "
Some-college
\n", "
Some-college
\n", "
12th
\n", "
Some-college
\n", "
\n", "
\n", "
education_num
\n", "
8
\n", "
10
\n", "
10
\n", "
10
\n", "
8
\n", "
10
\n", "
\n", "
\n", "
hours_per_week
\n", "
35
\n", "
16
\n", "
25
\n", "
15
\n", "
35
\n", "
25
\n", "
\n", "
\n", "
marital_status
\n", "
Never-married
\n", "
Never-married
\n", "
Never-married
\n", "
Never-married
\n", "
Never-married
\n", "
Never-married
\n", "
\n", "
\n", "
native_country
\n", "
United-States
\n", "
United-States
\n", "
United-States
\n", "
?
\n", "
United-States
\n", "
United-States
\n", "
\n", "
\n", "
occupation
\n", "
Other-service
\n", "
?
\n", "
Sales
\n", "
?
\n", "
Other-service
\n", "
Sales
\n", "
\n", "
\n", "
race
\n", "
White
\n", "
White
\n", "
White
\n", "
White
\n", "
Black
\n", "
White
\n", "
\n", "
\n", "
relationship
\n", "
Own-child
\n", "
Own-child
\n", "
Not-in-family
\n", "
Own-child
\n", "
Own-child
\n", "
Not-in-family
\n", "
\n", "
\n", "
sex
\n", "
Male
\n", "
Male
\n", "
Male
\n", "
Male
\n", "
Male
\n", "
Male
\n", "
\n", "
\n", "
workclass
\n", "
Private
\n", "
?
\n", "
Private
\n", "
?
\n", "
Private
\n", "
Private
\n", "
\n", "
\n", "
0
\n", "
0
\n", "
0
\n", "
0
\n", "
NaN
\n", "
NaN
\n", "
NaN
\n", "
\n", "
\n", "
y_test
\n", "
NaN
\n", "
NaN
\n", "
NaN
\n", "
1
\n", "
1
\n", "
1
\n", "
\n", "
\n", "
pred1
\n", "
NaN
\n", "
NaN
\n", "
NaN
\n", "
0
\n", "
0
\n", "
0
\n", "
\n", "
\n", "
P1(>=50K)
\n", "
NaN
\n", "
NaN
\n", "
NaN
\n", "
0.0146811
\n", "
0.00972505
\n", "
0.0145646
\n", "
\n", "
\n", "
pred2
\n", "
NaN
\n", "
NaN
\n", "
NaN
\n", "
0
\n", "
0
\n", "
0
\n", "
\n", "
\n", "
P2(>=50K)
\n", "
NaN
\n", "
NaN
\n", "
NaN
\n", "
0
\n", "
0
\n", "
0
\n", "
\n", "
\n", "
pred3
\n", "
NaN
\n", "
NaN
\n", "
NaN
\n", "
0
\n", "
0
\n", "
0
\n", "
\n", "
\n", "
P3(>=50K)
\n", "
NaN
\n", "
NaN
\n", "
NaN
\n", "
0.00288558
\n", "
0.00299048
\n", "
0.00561586
\n", "
\n", "
\n", "
pred4
\n", "
NaN
\n", "
NaN
\n", "
NaN
\n", "
0
\n", "
0
\n", "
0
\n", "
\n", "
\n", "
P4(>=50K)
\n", "
NaN
\n", "
NaN
\n", "
NaN
\n", "
0.000149386
\n", "
0.000395875
\n", "
0.000863302
\n", "
\n", " \n", "
\n", "
"], "text/plain": [" TR-24878 TR-18056 TR-920 10408 \\\n", "age 20 21 23 22 \n", "capital_gain 0 0 0 0 \n", "capital_loss 0 0 0 0 \n", "education 12th Some-college Some-college Some-college \n", "education_num 8 10 10 10 \n", "hours_per_week 35 16 25 15 \n", "marital_status Never-married Never-married Never-married Never-married \n", "native_country United-States United-States United-States ? \n", "occupation Other-service ? Sales ? \n", "race White White White White \n", "relationship Own-child Own-child Not-in-family Own-child \n", "sex Male Male Male Male \n", "workclass Private ? Private ? \n", "0 0 0 0 NaN \n", "y_test NaN NaN NaN 1 \n", "pred1 NaN NaN NaN 0 \n", "P1(>=50K) NaN NaN NaN 0.0146811 \n", "pred2 NaN NaN NaN 0 \n", "P2(>=50K) NaN NaN NaN 0 \n", "pred3 NaN NaN NaN 0 \n", "P3(>=50K) NaN NaN NaN 0.00288558 \n", "pred4 NaN NaN NaN 0 \n", "P4(>=50K) NaN NaN NaN 0.000149386 \n", "\n", " 5953 3059 \n", "age 20 22 \n", "capital_gain 0 0 \n", "capital_loss 0 0 \n", "education 12th Some-college \n", "education_num 8 10 \n", "hours_per_week 35 25 \n", "marital_status Never-married Never-married \n", "native_country United-States United-States \n", "occupation Other-service Sales \n", "race Black White \n", "relationship Own-child Not-in-family \n", "sex Male Male \n", "workclass Private Private \n", "0 NaN NaN \n", "y_test 1 1 \n", "pred1 0 0 \n", "P1(>=50K) 0.00972505 0.0145646 \n", "pred2 0 0 \n", "P2(>=50K) 0 0 \n", "pred3 0 0 \n", "P3(>=50K) 0.00299048 0.00561586 \n", "pred4 0 0 \n", "P4(>=50K) 0.000395875 0.000863302 "]}, "execution_count": 57, "metadata": {}, "output_type": "execute_result"}], "source": ["pandas.concat([train_nn, wrong_study], axis=1, sort=True)"]}, {"cell_type": "markdown", "metadata": {}, "source": ["## Ethique\n", "\n", "Le mod\u00e8le qu'on a appris est-il \u00e9thique ? Il n'y a pas de r\u00e9ponse simples \u00e0 ce probl\u00e8me car il est difficile de transcrire math\u00e9matiquement le caract\u00e8re \u00e9thique d'un mod\u00e8le. Dans le cas pr\u00e9sent, admettons que l'on souhaite v\u00e9rifier que le mod\u00e8le ne retourne pas une r\u00e9ponse biais\u00e9e en fonction du genre. Une premi\u00e8re id\u00e9e consiste \u00e0 enlever la variable pour \u00eatre s\u00fbr sur le mod\u00e8le n'en tienne pas compte mais cela ne garantit que la variable genre n'est une variable corr\u00e9l\u00e9e aux autres. Et la corr\u00e9lation implique ici au sens du mod\u00e8le ce qui a un sens plus fort si le mod\u00e8le n'est pas lin\u00e9aire. On aura tout-\u00e0-faire enlev\u00e9 la variable genre si elle ne peut \u00eatre pr\u00e9dite \u00e0 partir des autres."]}, {"cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [], "source": ["X_train_sex = train.drop([label, 'sex'], axis=1)\n", "y_train_sex = train['sex'] == 'Male'\n", "X_test_sex = test.drop([label, 'sex'], axis=1)\n", "y_test_sex = test['sex'] == 'Male'"]}, {"cell_type": "code", "execution_count": 58, "metadata": {"scrolled": false}, "outputs": [{"data": {"text/plain": ["Pipeline(memory=None,\n", " steps=[('onehotencoder',\n", " OneHotEncoder(cols=['workclass', 'education', 'marital_status',\n", " 'occupation', 'relationship', 'race',\n", " 'native_country'],\n", " drop_invariant=False, handle_missing='value',\n", " handle_unknown='value', return_df=True,\n", " use_cat_names=False, verbose=0)),\n", " ('randomforestclassifier',\n", " RandomForestClassifier(bootstrap=True, ccp_alpha=0.0,\n", " class_weight=None, criterion='gini',\n", " max_depth=None, max_features='auto',\n", " max_leaf_nodes=None, max_samples=None,\n", " min_impurity_decrease=0.0,\n", " min_impurity_split=None,\n", " min_samples_leaf=1, min_samples_split=2,\n", " min_weight_fraction_leaf=0.0,\n", " n_estimators=100, n_jobs=None,\n", " oob_score=False, random_state=None,\n", " verbose=0, warm_start=False))],\n", " verbose=False)"]}, "execution_count": 59, "metadata": {}, "output_type": "execute_result"}], "source": ["ce_sex = OneHotEncoder(cols=[_ for _ in cat_col if _ != 'sex'], \n", " handle_missing='value', drop_invariant=False,\n", " handle_unknown='value')\n", "model_sex = make_pipeline(ce_sex, RandomForestClassifier(n_estimators=100))\n", "model_sex.fit(X_train_sex, y_train_sex)"]}, {"cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [{"data": {"text/plain": ["0.8368650574289048"]}, "execution_count": 60, "metadata": {}, "output_type": "execute_result"}], "source": ["model_sex.score(X_test_sex, y_test_sex)"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Il est possible de pr\u00e9dire le genre en fonction des autres variables \u00e0 83% pr\u00e8s. Ce n'est pas en enlevant la variable qu'on peut emp\u00eacher le mod\u00e8le d'\u00eatre biais\u00e9 par rapport \u00e0 cette information. Il n'est pas \u00e9vident de retirer toute influence de ce param\u00e8tre. On peut choisir de la garder en supposant que le mod\u00e8le la choisira plut\u00f4t qu'une autre pour pr\u00e9dire si elle s'av\u00e8re pertinente. Dans ce cas, on pourrait comparer combien de fois le mod\u00e8le change de pr\u00e9diction si on inverse la variable *sex*. On rappelle la performance du mod\u00e8le."]}, {"cell_type": "code", "execution_count": 60, "metadata": {}, "outputs": [{"data": {"text/plain": ["0.8448498249493275"]}, "execution_count": 61, "metadata": {}, "output_type": "execute_result"}], "source": ["pipe2.score(X_test, y_test)"]}, {"cell_type": "markdown", "metadata": {}, "source": ["On remplace la variable *sex* par la pr\u00e9diction de l'autre mod\u00e8le."]}, {"cell_type": "code", "execution_count": 61, "metadata": {}, "outputs": [], "source": ["X_test_modified = X_test.copy()\n", "X_test_modified['sex'] = model_sex.predict(X_test_sex)\n", "X_test_modified['sex'] = X_test_modified['sex'].apply(lambda x: 'Male' if x else 'Female')"]}, {"cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [{"data": {"text/plain": ["0.843928505620048"]}, "execution_count": 63, "metadata": {}, "output_type": "execute_result"}], "source": ["pipe2.score(X_test_modified, y_test)"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Quasiment aucun changement. Inversons la colonne maintenant."]}, {"cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [], "source": ["X_test_inv = X_test.copy()\n", "X_test_inv['sex'] = X_test_inv['sex'].apply(lambda x: 'Female' if x == 'Male' else 'Male')"]}, {"cell_type": "code", "execution_count": 64, "metadata": {}, "outputs": [{"data": {"text/plain": ["0.8505005835022419"]}, "execution_count": 65, "metadata": {}, "output_type": "execute_result"}], "source": ["pipe2.score(X_test_inv, y_test)"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Encore mieux. Regardons les diff\u00e9rences maintenant."]}, {"cell_type": "code", "execution_count": 65, "metadata": {}, "outputs": [{"data": {"text/plain": ["(1024, 16281, 0.06289539954548247)"]}, "execution_count": 66, "metadata": {}, "output_type": "execute_result"}], "source": ["diff1 = X_test['sex'] != X_test_inv['sex']\n", "diff2 = pipe2.predict(X_test) != pipe2.predict(X_test_inv)\n", "diff2.sum(), diff1.sum(), diff2.sum() / diff1.sum()"]}, {"cell_type": "markdown", "metadata": {}, "source": ["La pr\u00e9diction change dans 5% des cas. On est s\u00fbr que pour ces observations et ce mod\u00e8le, le genre a un impact, cela ne veut rien dire pour les autres. Regardons les cinq premi\u00e8res."]}, {"cell_type": "code", "execution_count": 66, "metadata": {}, "outputs": [{"data": {"text/html": ["
\n", "\n", "
\n", " \n", "
\n", "
\n", "
2
\n", "
14
\n", "
17
\n", "
19
\n", "
28
\n", "
\n", " \n", " \n", "
\n", "
age
\n", "
28
\n", "
48
\n", "
43
\n", "
40
\n", "
54
\n", "
\n", "
\n", "
workclass
\n", "
Local-gov
\n", "
Private
\n", "
Private
\n", "
Private
\n", "
Private
\n", "
\n", "
\n", "
education
\n", "
Assoc-acdm
\n", "
HS-grad
\n", "
HS-grad
\n", "
Doctorate
\n", "
HS-grad
\n", "
\n", "
\n", "
education_num
\n", "
12
\n", "
9
\n", "
9
\n", "
16
\n", "
9
\n", "
\n", "
\n", "
marital_status
\n", "
Married-civ-spouse
\n", "
Married-civ-spouse
\n", "
Married-civ-spouse
\n", "
Married-civ-spouse
\n", "
Married-civ-spouse
\n", "
\n", "
\n", "
occupation
\n", "
Protective-serv
\n", "
Machine-op-inspct
\n", "
Adm-clerical
\n", "
Prof-specialty
\n", "
Craft-repair
\n", "
\n", "
\n", "
relationship
\n", "
Husband
\n", "
Husband
\n", "
Wife
\n", "
Husband
\n", "
Husband
\n", "
\n", "
\n", "
race
\n", "
White
\n", "
White
\n", "
White
\n", "
Asian-Pac-Islander
\n", "
White
\n", "
\n", "
\n", "
sex
\n", "
Male
\n", "
Male
\n", "
Female
\n", "
Male
\n", "
Male
\n", "
\n", "
\n", "
capital_gain
\n", "
0
\n", "
3103
\n", "
0
\n", "
0
\n", "
0
\n", "
\n", "
\n", "
capital_loss
\n", "
0
\n", "
0
\n", "
0
\n", "
0
\n", "
0
\n", "
\n", "
\n", "
hours_per_week
\n", "
40
\n", "
48
\n", "
30
\n", "
45
\n", "
35
\n", "
\n", "
\n", "
native_country
\n", "
United-States
\n", "
United-States
\n", "
United-States
\n", "
?
\n", "
United-States
\n", "
\n", "
\n", "
y
\n", "
1
\n", "
1
\n", "
0
\n", "
1
\n", "
0
\n", "
\n", "
\n", "
prediction_sex
\n", "
True
\n", "
True
\n", "
False
\n", "
True
\n", "
True
\n", "
\n", " \n", "
\n", "
"], "text/plain": [" 2 14 17 \\\n", "age 28 48 43 \n", "workclass Local-gov Private Private \n", "education Assoc-acdm HS-grad HS-grad \n", "education_num 12 9 9 \n", "marital_status Married-civ-spouse Married-civ-spouse Married-civ-spouse \n", "occupation Protective-serv Machine-op-inspct Adm-clerical \n", "relationship Husband Husband Wife \n", "race White White White \n", "sex Male Male Female \n", "capital_gain 0 3103 0 \n", "capital_loss 0 0 0 \n", "hours_per_week 40 48 30 \n", "native_country United-States United-States United-States \n", "y 1 1 0 \n", "prediction_sex True True False \n", "\n", " 19 28 \n", "age 40 54 \n", "workclass Private Private \n", "education Doctorate HS-grad \n", "education_num 16 9 \n", "marital_status Married-civ-spouse Married-civ-spouse \n", "occupation Prof-specialty Craft-repair \n", "relationship Husband Husband \n", "race Asian-Pac-Islander White \n", "sex Male Male \n", "capital_gain 0 0 \n", "capital_loss 0 0 \n", "hours_per_week 45 35 \n", "native_country ? United-States \n", "y 1 0 \n", "prediction_sex True True "]}, "execution_count": 67, "metadata": {}, "output_type": "execute_result"}], "source": ["look = X_test.copy()\n", "look['y'] = y_test\n", "look['prediction_sex'] = model_sex.predict(X_test_sex)\n", "look[diff2].head().T"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Il existe visible quelques observations \u00e0 v\u00e9rifier o\u00f9 la relation *relationship* et le genre *sex* semble \u00eatre en contradiction ou plut\u00f4t ne pas prendre en compte tous les types de relations possibles."]}, {"cell_type": "code", "execution_count": 67, "metadata": {}, "outputs": [{"data": {"text/html": ["
\n", "\n", "
\n", " \n", "
\n", "
relationship
\n", "
Husband
\n", "
Not-in-family
\n", "
Other-relative
\n", "
Own-child
\n", "
Unmarried
\n", "
Wife
\n", "
\n", "
\n", "
sex
\n", "
\n", "
\n", "
\n", "
\n", "
\n", "
\n", "
\n", " \n", " \n", "
\n", "
Female
\n", "
1
\n", "
3875
\n", "
430
\n", "
2245
\n", "
2654
\n", "
1566
\n", "
\n", "
\n", "
Male
\n", "
13192
\n", "
4430
\n", "
551
\n", "
2823
\n", "
792
\n", "
2
\n", "
\n", " \n", "
\n", "
"], "text/plain": ["relationship Husband Not-in-family Other-relative Own-child Unmarried \\\n", "sex \n", "Female 1 3875 430 2245 2654 \n", "Male 13192 4430 551 2823 792 \n", "\n", "relationship Wife \n", "sex \n", "Female 1566 \n", "Male 2 "]}, "execution_count": 68, "metadata": {}, "output_type": "execute_result"}], "source": ["X_train[['sex', 'relationship', 'age']].groupby(['sex', 'relationship'], as_index=False)\\\n", " .count().pivot('sex', 'relationship', 'age')"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Pas de conclusion \u00e0 ce stade. Il faut poursuivre l'exploration [Machine Learning \u00e9thique](http://www.xavierdupre.fr/app/ensae_teaching_cs/helpsphinx/td_2a_mlplus.html#machine-learning-ethique)."]}, {"cell_type": "markdown", "metadata": {}, "source": ["## S\u00e9lection des variables\n", "\n", "Il n'y a pas de m\u00e9thode optimale pour s\u00e9lectionner les variables. Il existe diff\u00e9rentes options comme celles propos\u00e9es par [scikit-learn/feature_selection](http://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_selection). Certaines partent des features brutes, d'autres utilisent le mod\u00e8le qui doit \u00eatre appris. Mais ce n'est pas toujours \u00e9vident de faire marcher ces m\u00e9thodes sur n'importe quel mod\u00e8le."]}, {"cell_type": "code", "execution_count": 68, "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["could not convert string to float: 'State-gov'\n"]}], "source": ["from sklearn.feature_selection import RFE\n", "try:\n", " model = RFE(pipe2)\n", " model.fit(X_train, y_train)\n", "except Exception as e:\n", " print(e)"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Dans notre cas, on retire les variables une \u00e0 une en fonction de l'indicateur ``feature_importance`` ce qui n'est pas facile car les variables sont des modalit\u00e9s. Il faut en faire la somme..."]}, {"cell_type": "code", "execution_count": 69, "metadata": {}, "outputs": [{"data": {"text/html": ["