module mltricks.sklearn_example_classifier
¶
Short summary¶
module papierstat.mltricks.sklearn_example_classifier
Defines SkCustomKnn
Classes¶
class |
truncated documentation |
---|---|
Implements the k-Nearest Neighbors as an example. |
Methods¶
method |
truncated documentation |
---|---|
constructor |
|
Computes the output of the model in case of a regressor, matrix with a score for each class and each sample … |
|
Converts a distance to weight. |
|
Train a k-NN model. There is not much to do except storing the training examples. |
|
Finds the k nearest neighbors for x. |
|
Predicts, usually, it calls the |
Documentation¶
Defines SkCustomKnn
- class papierstat.mltricks.sklearn_example_classifier.SkCustomKnn(k=1)¶
Bases :
mlinsights.sklapi.sklearn_base_classifier.SkBaseClassifier
Implements the k-Nearest Neighbors as an example.
constructor
- Paramètres
k – number of neighbors to considers
- __init__(k=1)¶
constructor
- Paramètres
k – number of neighbors to considers
- decision_function(X)¶
Computes the output of the model in case of a regressor, matrix with a score for each class and each sample for a classifier.
- Paramètres
X – Samples, {array-like, sparse matrix}, shape = (n_samples, n_features)
- Renvoie
array, shape = (n_samples,.), Returns predicted values.
- distance2weight(d)¶
Converts a distance to weight.
- Paramètres
d – distance
- Renvoie
weight (1/(d+1))
- fit(X, y=None, sample_weight=None)¶
Train a k-NN model. There is not much to do except storing the training examples.
- Paramètres
X – Training data, numpy array or sparse matrix of shape [n_samples,n_features]
y – Target values, numpy array of shape [n_samples, n_targets] (optional)
sample_weight – Weight values, numpy array of shape [n_samples, n_targets] (optional)
- Renvoie
self : returns an instance of self.
- knn_search(x)¶
Finds the k nearest neighbors for x.
- Paramètres
x – vector
- Renvoie
k-nearest neighbors list( (distance**2, index) )
- predict(X)¶
Predicts, usually, it calls the
decision_function
method.- Paramètres
X – Samples, {array-like, sparse matrix}, shape = (n_samples, n_features)
- Renvoie
self : returns an instance of self.