{"cells": [{"cell_type": "markdown", "metadata": {}, "source": ["# Donn\u00e9es antipathiques (skewed), Appariement - \u00e9nonc\u00e9\n", "\n", "Un probl\u00e8me o\u00f9 le map/reduce n'est pas la meilleure solution dans l'absolu. Comment faire quand on n'a que \u00e7a et un probl\u00e8me de d\u00e9tection de doublons dans un jeu de donn\u00e9es ?"]}, {"cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [{"data": {"text/html": ["
run previous cell, wait for 2 seconds
\n", ""], "text/plain": [""]}, "execution_count": 2, "metadata": {}, "output_type": "execute_result"}], "source": ["from jyquickhelper import add_notebook_menu\n", "add_notebook_menu()"]}, {"cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": ["%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "plt.style.use('ggplot')"]}, {"cell_type": "markdown", "metadata": {}, "source": ["## Description du probl\u00e8me\n", "\n", "On se place ici dans le cadre d'un probl\u00e8me classique d\u00e9sign\u00e9 par le terme anglais de [conflation](http://www.citygategis.com/whatisconflation.htm) (voir aussi [Conflation Optimized by Least Squares to Maintain Geographic Shapes](http://www.mdpi.com/2220-9964/2/3/621). Il s'agit de fusionner deux bases de donn\u00e9es qui d\u00e9crivent chacune les m\u00eames entit\u00e9s (deux annuaires par exemple) mais de mani\u00e8re l\u00e9g\u00e8rement diff\u00e9rentes.\n", "\n", "Par exemple, on dispose de deux bases $B_1$ et $B_2$. Chacune d'elles donne les positions g\u00e9ographiques de $N_1$ et $N_2$ b\u00e2timents. La mesure des coordonn\u00e9es est faite \u00e0 dix ans d'intervalles et on souhaite conna\u00eetre les b\u00e2timents qui ont \u00e9t\u00e9 d\u00e9truits ou cr\u00e9\u00e9s. Il faut donc apparier les $N_1$ entit\u00e9s de la premi\u00e8re base avec les $N_2$ de la seconde.\n", "\n", "Une premi\u00e8re option consiste \u00e0 calculer toutes les distances entre les deux bases soit $N_1 N_2$ distances puis \u00e0 apparier les deux points les plus proches, puis les deux suivantes les plus proches jusqu'\u00e0 ce qu'on d\u00e9cide qu'\u00e0 partir d'un certain seuil, deux b\u00e2timents sont probablement trop \u00e9loign\u00e9s pour \u00eatre appari\u00e9s.\n", "\n", "Lorsqu'on dispose de grandes bases, 10 millions d'entit\u00e9s par exemple, ce calcul devient impossible \u00e0 r\u00e9aliser en un temps raisonnable. Il faut ruser."]}, {"cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAFpCAYAAACLVuWeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzsvXt0XOV97/3dMyONkC18ycgGzKU2LhhSUmNuCsceySkpMbACOtA2eRVlNTWkgNdqkzRZTtq+zTpnrTamp4EkfY1ojd90VcxpTsOpkvRtXRIXSzIFBUhxyklsiGI1xGBbMxGWZcseaWbv94/RHu3L8+z7XP39rJUVvDWz59n7efazf/efommaBkIIIYQQQgghpMrEaj0AQgghhBBCCCEXJlRICSGEEEIIIYTUBCqkhBBCCCGEEEJqAhVSQgghhBBCCCE1gQopIYQQQgghhJCaQIWUEEIIIYQQQkhNoEJKCCGEEEIIIaQmUCElhBBCCCGEEFITqJASQgghhBBCCKkJVEgJIYQQQgghhNQEKqSEEEIIIYQQQmpColY//M4779Tqp5uaVCqFXC5X62GQCsI5bm44v80P57j54Rw3P5zj5obzGw2XXXaZp8/RQ0oIIYQQQgghpCZQISWEEEIIIYQQUhOokBJCCCGEEEIIqQlUSAkhhBBCCCGE1AQqpIQQQgghhBBCagIVUkIIIYQQQgghNYEKKSGEEEIIIYSQmkCFlBBCCCGEEEJITaBCSgghhBBCCCGkJiRqPQBCSGOjjg1DGxoEpnLAyhSU3n7EunpqPSxCCCGEENIAUCElhARGHRuGNrgbmMuXDkxloQ3uhgpQKSWEEEIIIa4wZJcQEhhtaHBRGdWZy5eOE0IIIYQQ4gIVUkJIcKZy/o4TQgghhBBigAopISQ4K1P+jhNCCCGEEGKACikhJDBKbz/QmjQfbE2WjhNCCCGEEOICixoRQgIT6+qBCrDKLiGEEEIICURohXRubg5f/OIXUSgUUCwW0dXVhd/8zd+MYmyEkAYg1tUDUAElhBBCCCEBCK2QtrS04Itf/CLa2tpQKBTwJ3/yJ9i4cSOuueaaKMZHCCGEEEIIIaRJCZ1DqigK2traAADFYhHFYhGKooQeGCGEEEIIIYSQ5iaSHFJVVbFz506cOHECd955J375l385itMSQgghhBBCCGliFE3TtKhOdvbsWfzFX/wFPvGJT+DKK680/W3//v3Yv38/AGDXrl2Ym5uL6meJgUQigUKhUOthkIj47pFJPPXizzA5k8eqjiQevv0q3PUrl3GOmxg+w80P57j54Rw3P5zj5obzGw2tra2ePhepQgoA3/zmN5FMJvHhD3/Y8XPvvPNOlD9LFkilUsjlcrUeBomAkYlp7P7+CeSLi49oMq7g83f8Mjal3KPtRyamMXgoi9xsAan2BPo3dqJ77bJKDplEAJ/h5odz3PxwjpsfznFzw/mNhssuu8zT50LnkJ4+fRpnz54FUKq4+/rrr2PNmjVhT0vIBc/goaxJGQWAfFHDUy/+zPW7ujKbnS1AA5CdLWD3909gZGK6QqMlhBBCCCHEP6FzSN99913s3r0bqqpC0zS8//3vx0033RTF2Ai5oMnNikNFJmfyrt+VKbODh7L0khLSpDAqghBCSCMSWiG96qqr8Od//udRjIUQYiDVnkBWoJSu6ki6flemzMqOE0IaG2uIvx4VAYBKKSGEkLomdMguIaQy9G/sRDJubqGUjCt4+ParXL+bahfbmmTHCSGNjVNUBCGEEFLPUDolpE7RvRrWELxf37BKmGhvDNdbmowhrgBG+TQZV9C/sbNawyeEVBFGRRBCCGlUqJASUsd0r13mKdzOGq43k1eRiAEdCQVn5jXmkxHS5MhC/BkVQQghpN7hm4qQJkAUrldQgba2OJ75zfU1GhUhJCrUsWFoQ4PAVA5YmYLS249YV0/57/0bO4VtohgVQQghpN6hQkpIE8BwPUKaF3VsGNrgbmBuocL2VBba4G6oQFkplYX4MyqCEEJIvUOFlJAmIGi4npvXhRBSe7ShwUVlVGcuXzpueF69hvgTQggh9QSr7BLSBMgq8jqF65W9LlNZANqi12VsuLKDJYT4Y8pexMzxOCGEENJAUCElpAnoXrsMO267BJ3tCSgAOtsT2HHbJY7eEkevCyGkfliZ8necEEIIaSAYsktIk+A7XI9eF0IaAqW335xDCgCtSSi9/bUbFCGEEBIRVEgJuVBZmVoI1xUcJ4TUDbGuHqgA870JIYQ0JVRICakRtS4oRK8LIY1DrKvHVMCIEEIIaRaokBJSA7y0cag09LoQQgghhJBaQ4WUkBrgtY1DpaHXhRBCCCGE1BJW2SWkFrCgECGEEEIIIVRICakJbONACCGEEEIIFVJCaoHS2w+0Js0HWVCIEEIIIYRcYDCHlJAawIJChBBCCCGEUCElpGawoBAhhBBCCLnQYcguIYQQQgghhJCaQA8pIaTpUceGGR5NCCGEEFKHUCElhDQ16tgwtMHdi31fp7LQBndDBaiUkoZmZGIag4eyyM0WkGpPoH9jJ7rXLqv1sAghhBBfMGSXENLUaEODi8qozly+dJyQBmVkYhq7v38C2dkCNADZ2QJ2f/8ERiamaz00QgghxBdUSAkhzc1Uzt9xQhqAwUNZ5Iua6Vi+qGHwULZGIyKEEEKCQYWUENLcrEz5O05IA5CbLfg6TgghhNQrVEgJIU2N0tsPtCbNB1uTpeOENCipdnEJCNlxQgghpF6hQkoIaWpiXT1Q+ncAKzsBKMDKTij9O1jQiDQ0/Rs7kYwrpmPJuIL+jZ01GhEhhBASDJpSCSFNT6yrB6ACSpoIvZouq+wSQghpdKiQEkIIIQ1I99ploRRQ9uclhBBSD1AhJYQQQi4w2J+XEEJIvUCFlBBCfDIyMc1QSdLQOPbnpUJKCCGkilAhJYQQH4xMTGP390+Ue0BmZwvY/f0TAECllDQO7M9LCCGkTmCVXUII8cHgoWxZGdXJFzUMHsrWaESEBID9eQkhhNQJoT2kuVwOu3fvxqlTp6AoCu644w7cddddUYyNEEJs1DpcNjdb8HWckHpE6e0355AC7M9LCCGkJoRWSOPxOPr7+7Fu3TqcO3cOn//85/G+970Pl19+eRTjI4SQMvUQLptqTyArUD5T7cyAII1DrKsHKsAqu4QQQmpOaAlqxYoVWLFiBQDgoosuwpo1azA1NUWFlBASOU7hskaFtJJe1P6NnSalGACScQX9GzsjOT8h1YL9eQkhhNQDkZr0JycnMTExgfXr10d5WkIIAeAtXLbSXlT9HKyySwghhBASnsgU0vPnz+PLX/4yfvu3fxvt7e22v+/fvx/79+8HAOzatQupFAsnVIJEIsF72+RcyHO8qiOJkzN54XH9nmS+MyH0omZen8L9t1wdyTg6cipi8SkABcTicXR0dEQ2Jxfy/F4ocI6bH85x88M5bm44v9VF0TRNc/+YM4VCAY899hh+9Vd/Fffcc4+n77zzzjthf5YISKVSyOVYtr+ZqcUcq2PDjrlm1So0ZPV+AqVw2R23XVL+vfsyRyDa1BQA3+rbUJUxhIHPcPPDOW5+OMfND+e4ueH8RsNll13m6XOh275omoannnoKa9as8ayMEkIaB3VsuFSNcyoLQAOmstAGd0MdGwawqKBlZwvQsBgiOzIxHflYutcuw47bLkFnewIKgM72hE0RlBUXiqroENu+EEIIIYRER2gJ7Y033sDo6CiuvPJKfO5znwMAfPSjH8WmTZtCD44QUnu0oUFzawgAmMuXjnf1eC40FAXq2DA2Dw1is9FTu9acs16pokO6lzh3w2cBRbH9nW1fCCGEEEL8E1oh3bBhA/7+7/8+irEQQuqRKUnIysLxavXlLHtqdeVY99QCpvDhShQdKj4zAIzsAwCk8qeQbVth+wzbvhBCCCGE+IcSFCHEmZWphXBdwXFUry+nm6fWSPfaZZF5Z9Wx4bIyCgB9R/dh4NoHkI+3lo+x7QshhBBCSDBC55ASQpobpbcfaE2aD7YmS8dRCpFNxs0hrMniHPqODJXzTCPBxVNbKbShQdO/05OH8Mgbz6Lz/LtQNE2Yx0oIIYQQQrxBDykhRMhi5dxLkEp/EX1H9yF99AVbld1yiOzLP0duPo5U/lTps5OHoB172RZSGxgXT23FECi86clDSE8eAlZ2Iv7Y3sr+PiGEEEJIE0OFlBBiw9raJFtIYGDthxH7yCeFnsDutcuw+anP2BVGSUhtEJTefnMOKWDy1FYMmSK8MCZCCCGEEBIchuwSQmwEam1S4ZDaWFcPlP4dwMpOAAqwshNK/45ovK8OCEOWAaB7W8V/mxBCCCGk2aGHlBBiI1Dl3CqE1Ma6enx7WxdDj4NV3I119UDFQi6psd0MlVFCCCGEkNBQISXEJ3o/ymZWToJUzq1ZSK0DttDj2QJ2f/8EAPhWSqMIOyaEEEIIIWYYskuIDw58bwyf/FES99/wWfxu1+cxmlhT6oUZZTXZOkBYOdeltUmtQmqdCBR6TAghhBBCqgY9pIR4ZGRiGgMnliDf1gIAyLatwMC1DwBvPIt0RIV76oVy5Vyfoa715kkMFHpMCCGEEEKqBhVSQjwyeCiLfKzFdCwfb0Vm3Takx3bVaFSVo3vtsobvrRkk9JgQQgghhFQPhuwS4hGpty25vPK9MEkggoQeE0IIIYSQ6kE3ASEekXrb8qcqWrjHWiX20S0qNqUax5ZUyyJQQUOPCSGEEEJIdaBCSohH+jd2miq2AkBSnUfflUrFFCxRldhd/zqOHbeubgilSh0bNlfencqWikABVVVKG+FeEUIIIYRciFAhJcQjYm/bpRVVdoRVYgsqBg9lG0LJ0oYGzW1gAGAuXzpeR8WP6gV1bBjZ72SgZiebtqUQIYQQQogRKqSE+KDa3raGrxI7lfN3/AJG9yZrNfQmE0IIIYRUGyqkhNQxDV8ldmUKmBL0/PRZBMqaR9uMeaD0JhNCCCHkQqRBpFpCKku9KjzCvNVErGGqxCq9/eYcUgBoTfoqAiXKo939/RMA4DhHtSymFAh6kwkhhBByAUKFlFzwiBSex188jsdfPI7OGiunorzVR7esa5gqu7GuHqhAKMVQmEdb1BzzaOuhmJJvIvImE0IIIYQ0ElRIyQWPSOHR8eqNqyTWvNVUKoVcrnG8ZrGunlAhp0HyaBsx/DUKbzIhpLo0XCQGIYTUIY3hZiGkgrgVCNK9caQ2yPJlHfNoGzD8NdbVA6V/B2KdqwEowMrO0r8p3BJSl5QjMaayALTFSIyx4VoPjRBCGgp6SMkFj6xwkJGGqWrbhAjzaOOKcx5tg4a/xrp6kLrngYbygBNyoeIYiXHPA7UZFCGENCBUSMkFj0jhsVKNqrb1Wlip1oj7vzrfG4a/EkIqycjENAaveRC55HKk8qfQd3Qf0pOHSn+s40gMQgipR6iQkorSCEpW99plOJydxXPj01AFOqmrNy4CglaSvVDw2/81imJKjbB2CSHVp7xft60AAGTbVmDg2pJHND15qO4jMQghpN6gQkoqRqMoWSMT03j+6GmhMmqssisrXhFFUYsglWSJM2GKKTXK2m1kqPCTRkW4X8dbkVm3DelThxmJQQghPqFCSipGoyhZsiq7ne0JPN27HoC8jUhx/DDw0vOh24sEqSRLKkdUa5dKlxgq/N6o5fph9Vg50v06uZyFyAghJABUSEnFaBQlSz7OeRR3bi8JZDEFUFXzB+bywMHnhMe1r3/Fl1IqK6xUjdxVYieKtUulS06jGKtqSS3XT0P28a0i0v16ScsFcX9oaCOERA2lXVIxGkXJko7z/KnFSq2ieF6grIyOrtqIzLpt5gIXPgQ4p0qy1pf/o1tUbErFKBRUkCjWLpUuOY1irKoltVw/jdjHt5oEqvzdJNDQRgipBPWlGZCmoh5f2qIwtP6NN9rHqc6j7+g+9xPGYhhNvQ8D1z6AfLwVgKHAxRvPIu1RgJNVkgVge/nv+tdxfGBtB54/eppCQYWIYu0GUbpGJqaR+c4EJmfydW9kCBPS2SjGqlpSU6W9Afv4VpMglb+bBRraCCGVgG9/UjHq7aUtC0Pb0r8DuO1G0zj7Xv27xRL+MlqTwPs/gEx+Y1kZ1SkXuBjb5Xl8okqyDw6N21/+BVVYEZhCgZkwClMUa9ev0tVInoewIZ31aKyqN2qqtNdRH996jQTxW/m70dH309wNnwUUxfZ3RjcQQsJAhZRUlHp6aTuFoXU/1gNgUQHJrL8LgGZXSmOxUviuQcHJZQ4Lfy+XXO5JgHMSuGQveVkEsfTzF1iBkihy4MKuXb9KVyN5HsKGdNabsaoeqaXSXi99fBvJSNPMGPfTVP4UsgvtbowwuoEQEgbuIOTCwSEMzSb4tC4z95UDSgKZoIJiqr1F7MnIn3IV4NwELpmXJKaIlVKRUHAhFiiphxw4v0pXQ+VVRhDSWU/Gqnqklkp7FH18rQTxdDaSkaaZMe6nfUf3mVJUAEY3EELCQ4WUXDg4hKFJ+8qtvxvpyR86CmRCT4Y6j74rFVcBzk3gEp47EbPlkAJyoaAelDMn3ATVQN7dOsmB86N0NVReZR2FdDYztVTaw/TxtRLU09lQRppmxrBv6gbachG/JS2MbiCEhCYSSefJJ5/Ev//7v2PZsmX48pe/HMUpCYkcpzC03E8lgk/rMsT3fNvxvGJPxqWeXtBuApfo3I9uWYdNqRiu62z35nGoE+VMhJugGti724AKUyPlVdZLSCdpDIJ6OhvKSNPMWPbT9OShkmK6shPxx/bWcGCEkGYhkl29p6cHH/rQh7B79+4oTkdIRXAKQ0sdH/ct+Bg9d5tXprBF4rlz8vB5EbisXpJUKoVcLufde1LHypmboBrUu1vPCpNsPehzmXl9qqpVdoN4oCsR0kmal6CezkYy0jQz9byfEkKag0gU0uuvvx6Tk5NRnIqQiiILQ/Mr+Dh57gCDoL5kKXB+FigWbZ+LdfVUReASCROjl92CzPW9yGWO1KSgjB6mK1LGAYOgGtC7W68Kk5vHt3vtMtx/y9XI5arjvQ6TXxxlSCdpboJ6Oln8qj6o1/2UENI8MO6FEPgXfKSeu2/sAebnFv92dsb+ZYOHL4zA5dWzZRUmRtdtxsBVdyNfiAGobOVK0RgPrrb3fbVSFlRDeHfrUWGqt3zeehsPWSTqyth+igpF/dthDG8sflUf1ON+SghpHqqmkO7fvx/79+8HAOzatQupVO3DBZuRRCLBexuQ+1Mp3H/L1Z4+e/JdiQdLpICKeDdXnien3/3ukUk89eLPMDmTx6qOJB6+/SrcdUkCL/yvf8TfnEkhd8NnkcqfQt/RfUg/sxtLOjpwUfed9hPd80DpfwD+7v99BfkZsxKSL2rIvD7l+fq9cG7kOZx+ZjeQN3jfntmNZ9L/DfliTPq9ZCKGR7esQyqVwrmPP4rTA7sWzwEAySQu/vijuKgB17l03RjWQzWfYS/jIdHjNseyZ0f6fLvw3SOT2P3ySeQLpRiO7GwBu18+iY6ODvz6hlUV/W2gtMd1dHTY9jLrbzcTfBc3P5zj5obzW12qppDecccduOOOO8r/rlZI2oWGnl9IosXqXehbuxnpoweDn3CF+zxZC/6cnMlj1/6f4NXvjmB/4Srk20pl97NtK0otat54Fum/fRJn33uT43knLcqo8XiUa6f4t0+aFUkAyOeRnVMAe191AEDngudmUypWGst7b4LysR02b83Z996Es424zldIPL6G9VDVZ9jDeEj0uM2x7Nk57eH5FvHkwaNlZbR8uoKKJw8exaaU2TgU9W/rbErF8NcfXms61sxrjO/i5odz3NxwfqPhsssu8/Q5huwS4oKoEuzAVXcD588j/c4rix9sTQItre5eUo/FIGQFf/apq6DG4+bj8VZk1m1DemyX63mjrFzpGAYoyfOUNVbvbE/g6d71tuPNFCpWyeIgQfo8slhJnRJxZWxfRYXquCo3IYSQ5kQeN+eDr3zlK/jjP/5jvPPOO3j44Yfx/PPPR3FaUgNGJqbx4NA47sscwYND4xiZmA51PnVsGMWd21F86F4Ud26HOjYczUCriFAx1GLIXN8LrOwEoAArO6H074DykYdKiqmReAJY0mH6nJd8LJkQqSrixzaXXO6aW6mODaPvyBCSxTnT8SCFlHRFPTtbgIbFXNTympGMpe/tA0iq8+bfV+fRt7T5Bd5YVw+U/h22dRO2OIjrXFR5PCQksuc4YGVsmbFJeDzi3yaEEELciMRD+qlPfSqK05AaE7R5uYwwFTzrCal3oZAQ9mCTVSPUC4Voe59AcWjQtVCIzJMp/Xz+lKNnS5+P9FweODOz2Ni8pYj+W6/wPcduLVuE3rd4ouRVzp9f/H09B3bsMNSO5leGKuHxDdrnsVLjIeGI2nPtp6gQveaEEEKqDUN2SZkwQq0VdWwY2te/AqjmvKVGrODpN8RVJOAHUc5FQiQAQFEATSv9/wLJ4hz6ku8g1nW/9DqMFVXLjc2BUnPz3/Lf3NwtDFDUKgD588DZGfPvW8fYQGujXgja55F4I0g4dBiibrPhp5o3W3wQQgipNlRISZmohNqy8mVVRnUaLBcpil6hQdpr6MLiV146DtXaIUVREFOL0JRYycP41n5s/W//t/MgpnIYXbXR7pmc/KHn6zDiRVG3KufFh+51HWNYqq081ANR5gUTM1FHjnglas+1n/Yp9JoTQgipJpRWSJmohFqh8mWkwXKRZN6FLSdfQ/Epj16EgIVCutcuwxMvHhf+TVNi+N8jO4F4HMpv/77rdYyu24yBNXciH7dU513aga2u37YTSFGX9RU1/j0EB743hoETS5CPtQConvJQa6IwmhAxUUaOEGei7n96ocH7RwhpVKiQkjKRCbVOSlY83pC5SFbvgu8QXJki5kEBkxoK8qdKRWg8Ch2ZdduQL5gfeb06bxCF1E8YoI4wP00nZJ6aOjaMzFtJ5NtaTMe9Kg+NLMwFmQviDYZDV4dmqTlQK3j/CCGNDBVSUiYyodbJC9bW3hQvR78huGEKhUgNBR+4HvHt3nM/cwXx4y477gVdUdfDZJ948TgGD2U95qdlgVisFNrtQ7GWoQ0NInfDZ4V/c1MemkGY8xOSSbzDcOhweDX0BElrIIuEvX8XYqoDIaR+4BuVmIhCqFV6+6HtfVz8x7NnQp27bvAZghumUIjVULCqI4m+G1b6mid1bBipuYuQbbV/J6xg7TfHLqr8NKugi6mstMep2zVSGCYyKhkO3cheeS/4MvSw/2k4Qty/WuVJNwJU1AmpDlRISeTEunpQ/MYe4OyM/Y8Nlj8qfRkFCMENo4gZDQWpVAq5nF3IkI1VFwr7ll+HgWsfKOeQAtEI1rXIsRMJugDQd3Sf/RrVefRvvNT5hBSGA+FVWGtkoa5S4dDN4JV3w5ehJ0Raw4WAq/EixP1jnrQYKuqEVA8qpKQiKB95qOF72Tm9jLbUWa8+p7FuXhAK9TYr5Sq786fR37Mh9ItVmmN3dh7q2HBFhGtZ4SzbNeZPoe9Kxf0aG1QYrqWHzauw1gyFpioRDu1HWWtYhd6HoYf9T+WoY8MY2XcQmWseXNzX9u1HNxaNF2HuH/OkxYRV1Js9AoKQKKFCSjzjZ3N1ClFtFOHK8WXUG75XX5T3wWmsmw3Cn7n/p4L4J74d6PeMOBVdqpjHx8FzmS68jfTYLl9z0ojCsMzDdmCmDZkzqYo/X16EtbCFppoaj8paQ3tpfBh62P9UzsiBVzBw9b3mCulX3wsceA5bF+5PmPvHPGkxTsbW4s7tOPfxR4H33iT8zIUQAUFIlFzYuw3xTJDNVRSiWmnhKkolz81qHCYEN+r74DjWCnv/hDl2xTn0Hd1XuTxMyTWNrtuCzIbexflf3YluD6erR2HYbS2LPGyjy69b8EaW1kMllRcvXpUwhaaaHo/PZSOHU/o19LD/qZjMqs2mNARgoUL6qs2mCulB759bnvSF6ulzrHA/lcXpgV1QPraDRboIiQAqpMQTUW2ulRSuHENsT77m+4Uaxmrs9gKP+j44jbXS3r9yjt3zP14MJzu6b9ETW4E8TNE1jV52Cwauuhv5WYMy9sJbUJ9+FunCMdc5rydh2JPBQnBfM+u2lUNjdaJ6vqxrOrXp08gKKjSbno+pXOBCU/VG1EK51+eykcMpa2XoaZQoHK/kkssdj4e9Xqc86QvZ0+dobAWAvIMMxLoEhPiisSQCUjt8bq6yF2QY4Sqwkvfyz7F51P8LNWh1TS8v8CiFzJGJaZyfL9qO62ONrV1fcaGwe+0ybH7z6arlYYoE3cz1vcgXYqbP5WMtyKz7ENJjX2ooIcqTwULgYZMKriGVF9Ga7vvxEAauvR95bfGe256PlanghabqiEoI5V6VtUYOpxyZmMbg8cuRe9/nqqYYuhlzGtHbl2opio0/LcXIom1kedIXsqfPpKifnbcbWwG5bNSgdQkIqRX1/0Yj9YGPzVX4glzwVKXW3xWo9UgoJW8+LgxtzBy+CLmfHpEKSkGra7q9wEcmpqEogKbZv+tXyLTea52OZAwP3bS6PNZqeP+qnYdpvaZc5ojwc2UlrYGEKC8GC9H99uON9ONVEa3p9DuvAG1t5hBpyzmU3n6kB3cDbzzrv9BUHRGFUG683+XWTR6ey0q2nYkao7I3um5zKWJhwWBRrdxXJ2POlpOvNaS3r//WK7D7pbfNxh9FRf+tV1Q+pPsC9/Tpinpx53ZfCmYj1iUgpJZQISWe8LO5Cl+QC56qvvF/CtR6xItA6JjvYWB01UbTGJwEJT/VNReFMcFLCwCmcmUFUhUoo17uw8jENDLfmcDkTB6p9gTOzxdt9xoA2uKxqgv8tQ7PE9xSAJb5bxAhyotXTHS/+65UMPALxVV58e1Vkdy39NEXsPULn5Nehz7G9NCg70JTdUVIodx6v0/O5D0rZ5VqOxM1VqNhZtVmkwIFVCf31cmY06jePqc18MSLx4XfiSykm54+ABIZKOmcD11vdQkIqWeokBJP+NlcpQJBcvliW471dyPXusy7cOVBIJR5EvomXzB9JbNum71AREhBySiMja7aaPYG6SE+K1NCZR0AYgqw47ZLHH9fpESzD839AAAgAElEQVTIqGR+mZNnrdp5mDIPsY4p3wdoGCHKq1fMer+3Aoh58Hz69qqEEErrKTc3MCGF8rBerEq0nYkaq7JXqfBxNxyNOQ3s7ZOtgUqHdIf19DViiLQIkQx08ccfxVlJlV39Ow2/9xFSJaiQEil2xeNGdD/W4/q9pckYZvKq7bjuqSq1Hvkh4nt8tBzxIBDKrMhbfukWaMdeLr9QKyEo6cKYzfvatgID1z4AJFrQvW0Lcj8V/4amuXtKZMqsiErll3n1rFVLCJHfEw2d5y35PlUKl4ri2sN4xbwoL35zmP0IpSMT0xh8+efIzcdLBpnJF9C99ZbyPfB7f+qhQE1YobyRCxN5xqLUhSlm5WWNyD7jaMwZq623rxL7YqVDusN4+pqtIJJVwbwolcLZXP0bMwhpBKiQEiFBCyWMTExjds6ujCbUQihPlReBUB0bxuahwVLfTf2luXY9sNb8Qk3Nnw6Ux+rIgpAj9L7GW5G5vhex1VdAOXrcd+6oLpA7eUSNJOMKbl6zBA8OjUcuxHvtPVktIUSqQEHBX783D+3NtwEoVbPMR3ntlfSK+fWqyITSg6tvxKBhnd28ZgmeH38XeS0BKAsGmTV3Avu+XW6/4+f+1EsPzrDhd41cmMgzFqOhsJhVREXhnD7TvfAZYcVYh/dIVMqifp6T7+aAFYvnqdS+WI2Q7qCevkYNkSaEVJ8mehuSKAkaYjZ4KAuRw+qiwvlQnio3gdDtZW98ofYLwjzDWJTVseHyf8u8r9lCIlDuqFtIKlAqYNQWjyE3W8DSFgXzGrDvJ9OLv60XlRo/i60f7PJ2URK89p50K+oUlfDkJOjXIlxq5MAryGz6jC1cu94EMK9eFSchXaQsltadJW8w3orMlXcgPfR06YAPAbWeenCGWU+NVJhIx+9zajUapicPAYkWZK7vRa6QiKwonJfP6MYc/RqeePE4Bg9l0b/xRmzp32Fb04A3Q4nbPXF6D1VSOavbkO4GDpEmhFQXKqRESNAQM9nfz7QsQVhPlZNA6OdlH6VFuSyALCALU4spCJQ76hamm4wr5Wq6TsprPtaCzFsauseGQ1njPXl6HISQqD1etRD0ZULpyMQ0BtbcaQ/XBpCe/KHr96uJl2fAzcjjJ4Q8l1zuLIRK/tYooa5u3jXr/S5X2a1HJQLBW6dYjYbd27Zga9ev+PtxyVoYTVyOjO6Nv+ZBe/sNy3el13CbPfWkuHO76/vDy97l+B66EJUzFkQihHiECikRIlU8Es6CoPR7S1r85Yz6xefLPiqLslUAkYWpyQR3t9xRJ8G706JEuCkIueRyaF//AvSAamH4pYui5EkBFAgho6s2IrP+bmQFFSHDeLyqXYHUSSgdPJQVh2uv24Z04W3X7+tjPjfyHIp/+2TF82/dngE3I48fpTCVP4XRdZuRuSSNXMvF9n5+EgG1EUJdvYZiGu93KpVCLkDumUkRXLK0dPDsGV/PsBdCtU4Ju1Yl+8fAhgeQX1gLZmPPIfN3PVyD7Z54eH94Op/TeepMOatGnn+ztT6xGhMf3aJiUyrm/kVCiCv181YndUX/xk5737PiHPre/DbUsZz0xVWz0LRavewtAki5irBeZbelWO4VF0Swlgnkne0JPN27HiMT0+VcUTdfVSp/ClBVaH/zVQAKUFw471QWI/sOYuDaVa49A70ogFYhxFroSUQYj1c1w9WchFKn6tK6AOYm1Kpjw/j/9h1E5poHF8N+9+1Hevww8Pqr1a1U6SKky9YmoAFQyv9KFudw07tvmHtSGhWKU4elAmojhLpWK0/OpvienVn8o4dn2I8C4qd1Srmq+PhypI6PhzYIiZSYzLptyMdaTJ8rG3skqSC+vOse3h+ezudwnnpSzqqV599MrU9ExsRd/zqOHbeurttIB0IaCSqkREj32mVQv/HXyKzaLMiH+0+poFWrnnk1e9kLBJD05CGkc/8B5ROfMr14bYJ1cQ59R/4R6tgt/hT8RAz9Gztx4HtjGDixxCaoiTC1PykWbX/PXHmH556BbgqgVQjJrL/bURkFovV4RWn5t54r977Pwqhs6ehrXWh0aCmWf99NqB058AoGrr7XHPZ79b3A4WeR1tdZhMKjY/iwi5AuUxY/sG4ZXp34hanKbmbdNuQLgtzS9Xej+7oPSK+jIXpwVikUU6j4GnB6hl29mha8tk7x09PZKyIlJtcmqYyeXA5ZKsjSFgUz83Yz3dIW+/Pr5f3hxVvvdJ56Us6qWWyoWVqfCI2JBbUm+eyENCNUSImU9NEXkD560P4HF0GrFgUWonrZhy3kAaAkgPTvEOeQGdth6Ar+sZelgqFIIH90yzpsHB/FJ99KIt/mooxqGjrmz2L7+Hfs+VYGom6FYxRCcpkjjp+N0uMVpeVfdK7UeXkrC6k379YrTJ9zEmozqzbLw36N8xeB8CgMH37hLahPP4t04Rhww83AS89LhXRHZfHWSw2/9H58VbIGcq3LEOu6zXGcdVuwRada0RkO++7oqo3IOjzDfhUQr61TKtHTGbArMamhcWkqyAt/+LelNfjTgtlDG1MAUdxIzK6Qenl/ePHWm85jqbIruq6acSHms4akUfLZCWlUqJASOXWW8+KGn5e9yIt2cPWNvgvu+FGEu9cuw+anPmO/py7KhVUgT6VSOPk/BpG74bPS61NQyvfte/1ZpE/+u/Rz5XPKega65Ax7QR7aac+DDUuUln/RufqO7sPAht8weaV1obR77TKo44eROaaU8iTnT6Pvcg3da68tf9ZNqJUaBkTHQwqPQot/rAWZdR9CeuxLJWX0/R9wDBX2qiw2Qi5oUKoWnSHZj3UvJRS7ogXYvZomHHLsAffWKZXo6SxC9tzcvGaJdM8+I+iF7XTc7f3h1VuvnydonnBVaLB3ez3QzHsYIfUAn6QLgKAhjPWU8xIlMi/aYPqLyBfNj4QXa78vq3dUlumpnFSJ1PNLAUC9Kgdt8EfmOYzHYcohBdD31n4M/PJ/RV6Jl495yRn2gkyYdKouHJgoLf+C75S8lAoyN/fbBfWxYaS/tRtpy/Oidix6y92E2lRLEdmCfVtO5U/ZxxdSeHTKeQVQWjOvv4r4Y3sBGKIHMkfK495y8jVPe0sj5IIGpVqhmML9GGIvpY7Iq2nCYQ3JjA3l6937uNyQFbGQLntunHKyK6FA1L233iPN+m6vJE7pM4SQ8FAhbXLChDDWU85LlMi8aLn5uCg90Le139EAEJVlemVKXNHXkpcqm0NYjnVv2wIc+GffOcM6TqHOfvMAQ7VFidLyLzlXunAMWxcUfiNReGf7b70Cu196B3nNUBRIK6Lvrf3mD0YgPEoFdqPyu6CUC8N7D/4M6hvPe8ptbYhc0BBUIxTT9iwvVNmVeSmBxZZSasQKSKyrB8WhQfEepM6jf+OlDt8OhkgZfEJQtRso7dmfvv3SpjCCVKJNVLO+2yuJLH2GVXYJiQYqpE1OWCG5bnJeokTiLYvC2u9mAIjKMq309iM9uBt449nFir6SvFTpHFqOpfc+EShn2EsrE6+ehbB9SqO0/Ps+lwfvrNv1da9dho6ODjx58KhBAL0UW9ZvKRkGIhQehRZ/Y/ErAICG4s7tGNz0aXv0gM/c1mbxLhmpZk/ZkYlpDB6/HLn3fc70W7L8ys72RHkslVBApHvQlYrtHlSqxYiTF7QZjCBR92020pTv9gojSp+p27BsQhoMKqTNTsAQxmoKWlVH4vnqm3wBA2s/HMqirhsAyq0QdCHtwAvY6uCx9Cuc6edJDw2W8v2seDQ6mATFmAKogiIgLt5FX/3+XJCd6yv/9jbU8cPY+sEux+97vb9eBGTfc+XBO+vlXv36hlV2q/vansiFR7PAPo/UeUtvUJ2prDx6QOCdG01cjsxCK6Km2zsMVFJZ8PNbXsOho1ZAzHvQLudnLeIWI/r7SaSMGq+90Y0gXvaLpn5XE0IuGKiQNjsBQhiDCloyIb/eXphKbz9G9h1E5so7FhXGt/aje+stiK2+JNxYp3L2VghtKzCw5k7EJqbRvXZZZIKhfp7iQ/dCWE3SwegwMjG9UPF3NVLXPChWRABP3sUoqw/KvqMqMQwcbwe+N+ZJKUVXT3k9anufQHFocLH1gg8B2c9cefGo1lulRqPAro4NQ3vzbeHnpNEDltzW0VUbMbDhAeQXrqeSSlqtidIQE/S3Hn/xODrbE/jAuovx6ttnA+1bYfZnL89H1C1GrO8nI1EXSas1rm2iqmgUIYSQSkKFtMmRFcLAVBbFndttFm11bBiDhy9CvtX8MnMTtGRC/oGZNgz8YkVdvTAPrr7R3EC+bQUGrr0fsdVrwlvUV6bErRDirZXrV+bT6LAoxCQARb/+BwAsFO2JxUqeUovHQ2ZwcCsesijwziM1dxp94/+MdOGY0JviVJE3H29F5tg5bPVwS4Trce/jKO59HKOrNyGz6TOCXNlwbVS8eFTruVKjk4FDmq9sCu9dKLBj6YtbKSWt1lTTuOB0zuxsAc8fPR2oSFhVFJqIW4yIlHPAXMytkXAyCLjtF9UwitSbQZkQ0pzUXgoiFcUsJFuUFotnSBfic+//78JzOQlFMit45piCfGt1vAheGTyUtTeQ12KRjEnp7UduvDqtEIy/6eaZMwoViiAy15QPqGqI7/m26e9OXsX+jTdKQwbNAq+CbOsyDFx7P/DGs0gLvJKi8EMjuZaLPd0T4XrEggfvmv9q9l5f+wCOXHwVfpC63lRBNshacPMYha02W6lcPBMCA0d68hCwtKMUhm7po7v4vU7k2uRr3yrY9i3NIb1/T10VVfEifOtzkLrmwYpVmLWOY2kyhhlJuxJgYU99+ecLbaW838+qeHkjbjFSLUOAV0UszDPpZhBwbRNV4XtBDywhpFqwPNgFQKyrp9S6YaVA6NVDp7AoxAtbTMBF0BIJHJArELVsJi3zwMmO+yHW1YNUS1H4t0p5wWJdPVD6dyzMrwKs7ITSv9hqRBcqsrMFaBCniQKGfECBoOgUdte9dhl23HYJOtsTUFDyVOjeGqHAu6D8Gteejn6umCYWvpcWz7ncjQUk3heZ9/pf1tyObNsKaFgUukYmpr39lg/06+tILm69rR534bJRYCoLQFs0CowNhx6XOjaM4s7tJe9o/jwQt6zV1iS6t96Cp3/rV/AP60/ir958GunJH5bW2vbPIL7nO4g/thep9hbh+ZcmY6Y1mJ0tYOB4O0YTayK7lpGJaTw4NI77Mkfw4NC47/mzPieidWCcg76j+5AszpnOEUUVV9E4ZudUJFzWSW4+7mltGO+TbM+Lcn9WevuB1qT5YIgKv7J9NMr91ctaAMI/k04GAQCOeytQ+XvhNj5CCImKSHatQ4cO4etf/zpUVcWv/dqv4b777ovitCRq3EKnFv5fGJ7nIGg5vXxT86eRbbVbUmsZoiir3RMT95UvY7WEj97xEDJnUjYLev+tV1S93YCTZ04W4mYllT8lFxRd1o4s1Nm116XgvN1rl0EdP4y/PLEUxZh5nZxLXISRhVxcRyReGWmLDMU8+ZX24s8VFudjZl7z5HWIOhdPx+b9PjtT6lW7pAM4e8bm9XFaazKPDlRNapgoe1kjzCsM4snx4i00zoE+7nLxsiUtNi9aEO+ZaBxFDehIKGhri0uVSJshUXA/nfIvTeeS7M9BwjejrvDrNcogTKipV8+x4zN5zwOuv+PFw+mURlLp/r5+PbBVieAghDQlobUCVVWxd+9e/PEf/zHe85734Atf+AJuvvlmXH755VGMj0SJW+jUwt9tgtb8afT3bJC+FK1eLiN9l2sY+IVSV73gZB5C2XHALrSPJtZg4Hg78nF58ZZ6ybvx4u1IFufQN/mCybNqImDYnWuvS8n3t36wC3v/7keYsThKC1A8KYqy3GlZcR4RlfLiBw6TjDgXT0coVBeLQLINL/z+k6V1/NMCUsfHXdexbO1L+0VaDQQR5hX6NSrkZuchKiVcOi4eX3ry0MJ+qZjC3NWxYWjf2FNS7svfXQxzd1JWZOvuzLyGZ35zPZ56+Tj2/cTsqRPl8+q/aawVsOcHJ12VUdn+HEbpj7LCr5f9NayBwosipo4NSyODvK7jsDnllX7X+BlfJaopNztU4AlZJLRCOj4+jksuuQSrV68GANx+++145ZVXqJDWIW65htICSO1LnE/s8PLd+sEuxOqsKEKn5CXb6SAEWIV2YeinQQCup3YDMqEipgCahnKvy+61n5OeI2h/T8del4bvi7wZZ9S48JxeFEVZ7rTI+y+jUl78wHlfEefilZE8v6OJyzEQQKgXrX1Ziw6bV68CeYVehb7UnCSaY+60eXwuc2ATzI148J45KQEjE9N4/uhp29+2vvu6uEo2UC7odeC7L2Lm6l4I+/csHHXan6tZVdgN2f6qz/XgNQ8ibzE8+RmrmyKmz7GtvZeeV+1xHUfh4azku8bP+CoVwdGsUIEnxExoiWtqagrvec97yv9+z3veg5/85CdhT0tCIgxXcgmd0oX4kQOvYGDNnYuFXwoJZ0FUKqTVZy+4QEKARWiXhX46KRW1qlYou149F0kf1xMvHpeOK2jYna3XZbnK7ttlb+yB741h4MSScnVWXfGRFXLxrygqwJKlAFDKe9SL8xQSSLUncPOaJXj+6OlIvfhhKmdKryKgUcAVyfObWX9XZAqIo2FCpzUJ3HAziju3+/YYSO9pouBZ6Osb/2cMXHu/rZLwTZM/woND7ynN5aZPo+/HQ0i/84pp3MY5kBXUKuPiPXPan2Th9z+45FeBN7/l+LuZNVshU0a9VKitt5ZFVowCvnx/nve0vvo3duKrLx2H8VbHFZT3BG1oEKPLr7O397r2ASDRgu5tWzyNWbY/bn7tGNQ68Jb58sBWKIKjWaECT4iZ0Aqpptlfjopif+nt378f+/fvBwDs2rULqVRIqz4Rkkgk8O85FbtfPol8oSTMZ2cL2P3ySXR0dODX73nAObflngfwd5NXIT9j3ijzRQ2Z16dw/y1X275y7uOP4vTALiBv+E4yiYs//iguquI8nxt5DmcyT0HNTUJZejE0aMCZGcRSq7C072Fc1H0nAOD+VAodHR146sWfYXImj1UdSTx8+1X49Q2rpOfOdq6Cmj1Z/rcs9PPitgQ++Z0J23m/e2RSPicOv2u8Jv06Er92t6/nx+l6fY3Lbe04/L553dxtur7MWxrybfZWIclEDMlErDw2AEgmYnh0yzrX6z838hxOP7N7cU2enSmtyU/9CX6j+078huXztx6Z9LUenHC7p49uUbHrX8el15VIJMTXd88DONfRYVsP+roOiuz5zbWKC5JlZwv45HcmfN0j0Rr8nRXncduR41AVBbHUKrTe9F9w/sA/LY5jKgvtmd1Y0tHheo2ye/qxieeEQp/ynQxSlrXco70DvPGsyeN1U+7HOHDZrYt9VQsJDFz7AJSL2rHl6KhwDk6+6yyAxzpXyedYcK86W1T0Hd2Hzc+P4on0Llu+MwDkCglc/OjnS2vDsE+ZPiPLnwY8PVOrOpI4OWNXeFPn34X2hw9J1+K5kefwT/84jGc6b0cuuRydrRoe+cAG17Uj2vuc1kH2OxloC3Mt7Zt7/tSi8cVhfXXkVMSUEyga5JuYoqCjowOpVAon380hc9uDwgJp//O99+M37kk7zrGR+1Mp3DU7bnsGva79SmPfv8VY35E6sc5VoeQ9v+ugmnidYxHSfeLdHOXjOiHM/BL/KJpIo/TBm2++iW9+85v4oz/6IwDA0NAQAKC3t9fxe++8806YnyUSUqkUPvTkv2FmPniftvsyRyBaFAqAb/VtEH7HGBY3um6zyQNVDU+gY5gcUPJiyPIjA5x/dNVGW+hnIlYKgTVa1XVPpCxk0WlOhNfUmsTFj34eZ997U6DrsPLg0LjvcUVJced23H/DZ6EJhGwFwKdvvzRQ6wXkz5vz93RWdpYqTlcQL/fU0YOaSiGXq65XQRTW+snjlztWnjZ62aOg5LkSR1p4mTPRPd38Zx+HtadqCcW9tRGA3+36glCxcXo+pNcBlPehVfc84GmOrWNyG486Ngxt7+PCc8m+29Gi4JnfvNZ1LKKCSMniHB5549lSmKpgj1XHhjGy7yAGrr7X7HlWVOx4/xrvfa0B1z3c2D9XtD8n1Xk8cuSb9tBmwfpye4bd9q1v9W3w9RyHXfv1QJA5q8U5oyTMXt0Mc97s1OJd3Ixcdtllnj4X2kN69dVX4/jx45icnMTKlSvx4osv4vd+7/fCnpYE5LtHJoXKKLAYWuUWOhokpFAvWjEyMV3KOytUt2+Za5hcyFAYa8hquvA2cOksMmfay6FW5xHHTOtS0/f0EMcg4W6ykJ4zmaeg/NmeQNfh9ferFoY3lcPS+bO2+waU1puXcG9RLo7T70WNVZnLve+zEBfH8VY5sxaIis70T0xj90tv23r26kSePxgy5E90T4s+8m5FYelOfVVlSHPxl3RA+chDvgRp6x7gVgHdscCc5LsP3XKJ4xiM74ulyRhaY8CZOdXei1awx2pDg8hcI/AkuvR9DhTOaJhrUQXkvlf/TpxnK1hfbvui0tuP1I8kXtgguedNEO4adTVloLnDWiuWgkFIgxJaIY3H4/id3/kd/Omf/ilUVcXWrVtxxRVXRDE2EoCnXvyZ9G96UQy36oNhCi3UrPCFlxd3yJe7LrTrCkj677+E9JKlwPlZoFjE/d2PCb+nK/6+8wYl41VzkxCX+/GP33FFnQc7um4zziXabMfjagH9Gy/1dA5XY4SRkAWAbJ7YG24GXnrepAynzkcoqNaQLSdfg/rGQWSuvAPZ5HJhqGh2toD7MkeiiYSoQNEmv0KfVTFPSTxlbsY5mWA+MjGNwaFx5GY93jNBVV9gQdFqW2E/h8Mel548BCRakLm+13P0ivV9MZNXkYwr+P3D30B68jXX8WIqFyjfPoiCZp3r9OQhpE8dLnvTimPHxF8UrC+3fTHW1YO+mTEMnJgv574DIXLPXdZ+o1RjjbKaMoCmUNRlVEKBJ6SRiURC2rRpEzZt2hTFqUhIJgU5PjqyohhWhTFMKfmaedxkL3TrZ0Ii7Nm4gDRvaeH++VbyJdcUSwXLbRThZ1xR9Hq0klm3DYWCfRtqTyjez+lHOLnhZu+ftSD0xI7YW230Hd2HgQ2/EY2gWkNGDryCzJV3IJdcjpimQlXEZhAN0ayFSngMwgp9QY1zIsE80PMj2APSk4eQLrwtDutz2gdXdqJ72xZs7foVx7Ebkb0vMuvvEiuk1j12ZcpxX9SxGXqWLJWE3Mv3cLe59rO+vMx7lBXkncZ2QVdjrVRl8TohcgWekAamsUz2DUy1LJyywhMdyRi61y6T9wO0KIxBQwrD9lULijRMTseHYOs0V07eOKdwOpuSnyiUCpX86wsoStaDTEhZ2vcwznq6Enf8GB+kxozhI9j8Z38WaF3nBMooAGnLFx2Tp/b2P0Tf+D/J214Yef1Vz2Oz4tUTq/elzNzc70lQta63cx9/FIgoRzgoIxPTpkrbmhIvJUgLvKQ6+lrYcvJcoL2tUh4DP0KfdS629PYDt93o67k1srhO56FoGlTFHP7sFj3iV0nXPz+6/DpzO5IrFWz9YJene2BEamBsvbhUFdllXEpvP/r27RfmkOrKndDQE48D8QRQNPy+hz3caa79rC+v+2JUofdOYyvu3F6RsNVaVX33A8NaCblwoEJaBapp4Xz49quwa/9PbJbdh24q9YkNozB6eYFF0VfNK+bxXI6++/4A6f17Si/0hTYfOHvGl2DrOlduIXEw5y0Z75EuvHhdD1YhpVws6lACqTfHAwsQonn0UsBIKpy2XAxAC7Sug6xHm6epdVmp3QLgrpQa5s+3QObDE5suHMNWD/dUtBZOD+yC8rHaFu0YPJS192pVFMTUIjQlJizmApTWgjb4F4H3tmp4DGTzLnsut/TvQHdvj/jvex9Hce/jwMpO2x5jXqeK/J45RI/4VdJjXT04MNNmbqPUtgIDJ+aBP/oi0oVjvpT8pS2KsCbB0pYYlP4d9r3ppwmkji/uTbGuHnQDwIHnkFm1ubQvthTRf+sV5WdNaOgpFoElHUCyrWbGiSjzvIvPDAAHnwNUFYjFgC13Iv6xR8p/H5mYxuDxy5F73+e8h2GHCFutRLRLmLHI9mGGtRJy4UCFtApUMzH/1zeswszMjHSDD6owen2BhQn3tf6e0zlE4xnIr0Ds4cdDvVBd58olNNiatxToNwxEXSwqjCAiVR7zp1yvQ0aQ9Sj01MZbkVl/d6nP6MoUcOa02Ju5YKiIKnxSiA8LvnAt5CtXtMOrEi5TkjQlhn9Yf1JagTeVPxV4b6uGx8Zp3jcb5mJ01cZFw9Lh0+hfPQ31wCvIbPrMotfRWNBHYIyR9Qy14mYM9KukZ86kkI+Z5yYfa0Fm3YeQHvuS1Ggkuv+IKRBWKY4pnvemWFcPtnb1YKtgrOrYMEYTa5DpehC55HIsnT8LQMGZlnak8qfQ/4HrPa+Bes2zLD4zYA7tV1VgZB+KAOIfe8R9L6pA2GqQWg+VeD697MPVDGttBK+xjEYeOyEAFdLqUOXEfCfLblCF0c8LLKxl2ctLKmzxJKnw4jJXwhCieAJou8i7N1b6G1lp0/aoikWFOY9QeSzOoe+oJY/Sx7oOsh7lYYTLyq08ip/qcwyvDXIfZOFjeP8HSqHAQQThKu4NfpRwqfGhpYhYV0+pAq/TWvA5fr8GgqDKh2zeH3/xOAavebA8fmPofbZ1Gb42dhza5dtQjJVemdm2FfjKdR/FkYuvwifHF9rHWBRxL3nzlYgekT4fenEhgcFAdv9lCvWZ/GK/16B7SrkljOFeG6ttZ9tWeDaWCb3Xf/NVFL+xx3eUTOQcfE5+/GOPuN6/SoStyto5yY5XyqNasyKIAurJa+yXRh47ITpUSKtBnSXmB1EYq1msyMtLKsx4nEJm3eYqkhAiJ0+bsesSveoAACAASURBVGm7wZMhExT83v8w982sPM4jdd7iJdLxua79rkdPYb5nz4i/vHA8yH2oSPhYFfcGP8Kf1HN9a6mCenktDB9BruViu8fQ5/i9jk0dG4b2jT3mgjc+QsWd5jfbtgID1z6A1uK8LVy5oAKIWV6XioJ/WXM7Npz+mcFTuqiIy9apHvZcumf/gs2vHYMaobLkKZJhKmdS6gdv/0PkW81rIF/UEFMAVaCTGp+13Ow8xG2O5h3HKWsJYx2DF+VEGvarr5NaFgJSVcfjbntRJfYd2bzGJCnilVIca952zEA9Kcd+aeSxE6JDhbQKVDsxvxKhS1IhJxH9i8PLSypMLqw0ZPbrXxELD5a5MoYQ6fe6uPcJz/fatQCTcUxDgxhZfaP0I36LRYUtOtW9dhm2nHxNPv4qFJzwFObrougFvQ9Rh48J10KyMvdQ+lydnUdx53bT2vXiuS6thXPQBv8i9N7m5Zm3GZKMeAwTls27Tj7eaqqO7IqiILNum00RH5mYxvmifS9JFufwyBvP2ow4USpLniIZliw13ctSHrgdVSs9W07PWmruNLKtdqE3NXfaeaAOLWGMGNeANCzRi0e+Bv0r1bFh+R9jpQJXXvaiqPcdkTLqdNzL8xkkZLRWRRBF1JNy7JdGHjshOlRIq0A1E/PPjTxXkQJK/Rs7sfult5HXFqtEJotz6Hvz21DHcpFei5eXVKjiSTLhRaSMCoqVlD8esFiVaD3IPaY5DB6S5y3evGaJL0EgiqJT0mqzsZhj7mxUbDn5GtSJV6RFUgB3I1A1i285IVoLF3/8UZytQJVdR8+ZYO168VxHtbd5eeY1WY5n2Tv7Q9ffEc17WMpK1cL6sobPLYweHYVz2P7mt5HO/Yf9JBEqS2Vjwss/R24+bvdexxPl39SRtWbpXNhPnPaXvvF/xsC195ur6Bbn0Df+zwBukw/UoSWMEX0NjExM46svHYd+W7OzBXz1pVLV+M1e87s9FjULatQ1fu9kRwcwOyv/8JY7AdRmL+qUPG+dEkXQ7fkMGjJaL/swUF/KsV8aeeyE6HC1VolqJeafyTwVqoCS7EXcvXYZ1G/89aISYBBytKH/jPTaZC+pvqU5FHd+CZjKYfPKFNQ7HkLmTMp/Er9X4WVlp7jX3wJhilVZ10Mpd1Ts0XOycr7wn6fx/NHTngWBSIpOOSj0XoS2MMUXdCNAei6P9NGDi394qQPqRx4q/76bohRV8a0osK6Fi1IpnM1Fn0N685ol2PeTafNBTcNNuR+X/jugUhTF3uZJMF1Yd6OrNppzPBdCbbG0Q1g4x4hx3mWe0o7WGOZUmMaSUAsoKHFh25tU/pTJcDU4NC5QeBW0XXwxtv7pf0PxoXvFg4s6b3j2LCDyfOr57gbcWlY5PRfpwjHgjWftBoLC247Dk7WEMRJXUF4De145AettLWql41u8Rp0YPNgyBcoWAeLR0GgzUM44eIi7t5Wr7NZiL/KrCLp9PmjIqNB4MvkCtvzSLcDanqCXF4h6Uo790shjJ0SHCmmToeYmxX/wIOy4efzSR18wKwE+zu0H0Qu6b2kO6W992TS29Le+jO4AHjnPIbNu1xVhQRonj17quDzMUNSSIV/UMPj8j7H59f+ndMBS1CN0OwMHhV4dG3btyxim+ILUO3t2xiY0uilKUbZ1aARefVvQvVZR8IPU9YBemCeiZ9mvh8mTUL4yhdHEGnxtw29BjZn71Objrcis2+aqkOq/1b12mdCTmYwreOiWS0pjsXgYj1x8Ff5lze0mpTQZV9D/gesR375ouJKHzy3kVC5Zas6BNVyfXw58bwyZY0opj3f+NPou1xBbf13puhbCaMsKOxbaIi3sB8ZnuNyyav3dyLUu86QULc5xFmlkzWHIrUko/Tscx25tCZNNLl9IRV28v0UNOJydRffaZcK9DijtgTYD1JKlwPlz0j6mTgrU5rFghkavfYoBxdTyBaj+XuRXCXb7fJiQ0S0nX8PmUfO7Tzv2ctXzfevJSOmXRh47ITpUSJuMWGoV1OzJ8r9NoW1Dzr0rA7c88SFIefWOWV/QxZ1fiqx1jk14iSmScF2X6/J4P7wI504evf6JaTz+4nFf15hLLg9c+MUNpbcf2t7HhX/TvrHHVr3TON/n54vhii84KUxVyhGrdHuJcyPPofi3T0Z+fmlhLGMen8dn2ekeOBm2Dq6+Ufr8uwnlo3c8hIHj7TZltHwdBX+vMzchbvNTn7EpbRtO/8xVaZOGz50/VWoBcl4QxhlP+M67PfC9MQwcb0e+dbEa8MDxObTmjiGvihX29OSh8nxZDWDpyUMLf1/w9q6V99F1zOd1SHOwYmwJ87Fn38RM3r4P7/vJtN2zLzmX8dl3WqOOCpRHQ6N1b+tLXI40vETe1KaYoRW/SrDT5ytS06HK+b5AYxspG3nshABUSJuOpX0P4/STu4C5vD20zc0bFaTliccCJiMT09jzygmTlduXdyzi9hi2wkRBruuGm8395YzHFwiaZ2qke+0yHM7O2oSyRGyh+qcAU0VNnYhe8rGuHhQlCqlRCRZ5Q2XIimMsbVGAmIIzebUk9K3bDJyZEeQP2qucVoIo5tPt/Kef2Q3koz3/yIRcoDeuFS/Psts90AVMa57nTd8/igOrLw3sHc+cSSEfl6+hIPlSjkKcYC2VlLYfltsLjUxM48GhcZNC27+xE7tfeMtUHKlcVCj3H2LjV9tFvuc3c0wpK6M6+Xhr6f4KqqVmk8sxetkt6N62xWIAsyhRHtac1BvokuagI1IWZ/KXuH5PREdhthQGvXCe8vj0c2//tO06HBUoD4ZGYR/sDQ8A0OxVx41UoeibX6IwsFWkpkOF93JCSH1BhbTJuKj7TszMzJRK6q/bZsvNcfJGja7bLMwRNbY8OTDTZgsR29rV5TgmcZEP9/GYqGB7DJF3cvSOh5A5nkIuc0TuyX39VfEJDcdFgtvo8uuQOXwRcj9dPLdb3tLDt16K6zrbbd7GGVFZRE2z9wbVkbzkK9FUWxQWJ0NWHKNkwFgU+v7yyruhqCoKhn6QpnDECnsfKm3N14YGF5XRCM8vLYzltFYkuN6DqZwwz/NfkptgTQL04x13C/87P1/EyMR0dF4Cw55jUq7nT6N/QcEXhZ/vuO0SPHLkWWTWfQjZ5HLENBX5WAsy67YBgFhhkbUpckBWGVeKomDg2vuBmdNIG/odY0mHPYTYbc35UCKsCg9uuBl46XnbXofb/zuEmrQDCbWA7W9+C4BW7j0KKIuhuhLl2kmBUi51N7wKQ34X5tg0v/E40NZe+16oEqIysIUKGa2ztniEkNpAhbQJ0b1/ucwR4d9Fgt3IxDQGrrq7XEW3LOgnWtC9bcviZ36xAvnWBQGsdRkGfqEg5iIEuikmXvJMKt06x+gxHZmYxsD3TyC/INRIPTkC4assuC4ostYwLpnXWp14BWkXRUf35qRSKeRyOdwnmV8A2Lv+Xnz1uo966g8psvZ/9aXj2PODk2XPpE24EAmx+vEFpPOqafY8PIfiGEaKiJXbJeiUwxFPHa6898GnNd+3ol8hb4HTM2YUoGXCqEmpgGR+9DGuTAmNYaKCQECp7Yxb7jHg3rJlZl6LtBm8vueMLr/O/My2LsPu759AawzS8PO/KhwDLIWCbMYTI5bn0su6Sc2L2610FM9hLrlEbADUYsi8pSE9lZVUKjaMy6nwm590BYvCI4wqmcujo3AOM4l2+W8aUACk5qbRN/5P5jEXi8JzW5VrRwVqrXvlaGnIb9tyYGUnMJVDrHMVtA/31ZUCaiVKA1vQkNFqt8UjhNQnVEibGD95HYOHsqaWLsCCoH99L7Z2/criZ1w8HKLwn9yscyiWcTyy8KEg7SWCev08Vwy0CGUiZdMaxiXzWmdWyUJR5a0spAK6omCmdUlpDEYh+BevA/nzpvC2WFeP8HqLGsr5XCKFXPnIQyVvhFEAjMehfOQh1/F1zM+iDQVhHl7Qvmm55PKqtJzxY80XKfpfGzuOPa+cwJl5TVq4pxLeAtlcxDQV93c/ZqmaPWjPxfNRwVTp7Udu3L2/ZHls+VOevDJeWraUC3q9+XRob5S+52QOXyR8ZvMFTahk52YLUHr7kflR0v49Yy6njkX49lr4q+9yDQPH52ztVrZfNofY+quleee55HJ5peIFyvvQ//o/tpZKgHclwnuhH2D7m9/CV6//v2TmjjKd7Qk83bsexYc+7Om8AICprG3fc1KgZAXRRiamsecHJ6VjTLW3lEOWdcNhXVOlcFnTe33J0tJBg9dY6d9RlbZ4FxqViHyq598ljQ0V0ibGT16H1OJrKBQi/czZ+dLL3lrZcCH8J5X+IrKSgiPG8biFD/lpLxGmmqvXioFWoUyobFrCuGSN4LPJ5WIBUYkhbRGkdPo3dnoqdpSPtyJz9V1I/+L/LHo1DffWzWAA2BVyL+Hb/Rs7sfvgz+wC8/i3TXl4Rty8YDJSS1qqIsD4seaLFP2CinKYtVDR7+2HZswhdTi/H4TKnKaVCwSZvXdmI4gnpcIwxoOrb4Ty03fEQrvVO67nVnrwyli9Who0iEI8c8nlkeXexrp6kPupPBJBRKo9sfC9w8K/59qWI9a5Gmp2UvhcezWIbf1gF/C9MWSOnTM/gx/sKp9H1ndWuFfFW7F3/b2Yi7cs7kOFhHDf9Gwg9KHYpHP/gdjtf4A9PzhpKG5knuOkoi6+v2IxcT6uFC3UuhiZmMbXxo5L8/b1d9miMO6Q7lEvVKFQoe29Lii2p/Tv8JR73OxEqciFrWgflFr9brNjddaMBm17WMfE3D9CGpXutcuw47ZL0NmegIKSZXnHbZcIF62sIIjxuPQz+VMAtNKLpmgRgOby6Du6D8m4XXDsSMZM43EMH0LpgSzu3I7iQ/eiuHM71LFh8YXDWahzw8u9AEoCjdK/oxSiBUWqbJbDuKAgNS/uTRdTIPamrL0TZUFq7+OlKp0LdK9dho6kt0c417pMODfa0KDnYjDWwkMDv1iBbOsyaIqyEL69wlQ8p3vtMjzy9nPoPP8uFE1D5/l38cgbzzrmevZv7BSuFZ24UirmZCTqfmt6oZr7Mkfw4NC46ZrMc46SULxwH63r0Yu317omY109uPiRz5fXC1Z2RuL5te4FMQU2757uvbPNjaNSYR6jLoyoAkUxqc7jQ2+/KF4Prr+zeB1P967HP1x9Ap3nBYW7YCjSZNg7wiB7PjrmZ5EszpmOGddiqr1F9DWk2lvQ+ddDiO/5NuKP7bXNrZ8WGls/2IWnP3EbPv1fLgOWvwdfnVxeXrOiZympzqPv6D7pXjXT0i6tO2Al1tWD+GN7pdcBwJdiM5p6HwYPZXEmr6KzPYFPrTqFT735rGW9/G9sOfla6Qu+lFEDAdbFyMQ0vvKSXBmNKcCO20qGvd3fP4HsbAEaFoVxp6JitUTp7Qdak+aDPgxg+vNuvN7HXzyOew17p6tBK6LntNER3cswayeMDBSGWv1uM1M26kxlAWgYTazBwPH2htlnvEIPaZPjNa/DyZuqW+1E1vayh8OB9NEXEPvIJ90tfw7hQ36LL4Tpi+bHs2z02qaGxoX3aGlLDL/b9YVS1dhkDPE51VTbJRlXkBekPgECj+rIPpy78VbgvTcBAB66abVrGCMgqboLAFM5T6GQgFkw9xq+nT55yN671kHgsXrBrFV2jbmmlbAMerHulr1DLuvRq7fXuiYv6r4TZxfmN+y1WO/T072lVh6y/ONccrltbuTFzuwVVWU5wDEFeOTIs0hPvrbY81TwIWtYpQxtaBB9iTWmqAJAsB+FCD3ULdJ9icsxsOEBW9Xc7QvXkVm3Dbm2FUi1J3DzmiUYPJTFEy8eLz3rCmzPupvxxG8LDdma3XHbJdhx2yWWfs6nkB47jEz+FLJtKzzfC+Ma9VOV1WvP59FVGzGw4TeQn13M2x84swSPFObxV2NfMn3uk3pBuNv/yJ5DCpTy2JNt3vKdPVA2sjhsj5pW2h8eHBoP19aqygRJhTHilPNfro/gpR0OK+p6TxXySBgZCAhefTns7xI7VqOO34KljQIVUgJAXuQBgFRZ6Tz/rr0QhoiVKW+KsUP4kN/iC0H6olnbjbQmYvKiPgJEil1cAc4VNczMl8Yyk1eRiAEdCcWUR+gUXmflTOYpKH+2B4BYgTtX1EyW/GRcQd/kC+JBL8yNOn64HH67tHgO5xIXoQBx4SHA/aUjzTtc0gHlIw85vti8rJVKbbpehQIv6zGIou8XWYiXk2K95eRrSM1dJCyIk2opmubGS7EzI7J1oWlAunDM+WJ0j5eXsMqpXFnIdSzMI+kJPJq4HJn1dyHXejFS7S2OYYal39Gkv5MuvI34Y3vtFaIlz3qQfSQZV9C3NFfqx2wREJ3W7NO96y2/tx5qxw70HXgBA2vutCnzrcU5zLQutY1JX6N+DYMihcdaZXd01UZ8bcNv2frL5mMt+NqG3yoXZ7sp92McuPQWU3EpW5Go1qRpfynu3A4YCjjpVY9VJYZOl77cOl6qhacSBRR3bkfuhs9K84rrFT+pMFbcritf1JBZf1fJEOUEK+qGUuRElaxT85vEe7yH902Y6sthetISCRaDjTQar473GS9whZAyIkVAZPEFSuG/f/UfTztXYgR8hf845edpe58Qf0liWfXbF03UbiQZBz59+6WelR+RUn++qNqavRdU4KyqwpgbJRyvxPusZk9CMVQltc6bSEnZ8ku3QDv2svDeqmPDSH9rt6nK7+hltyBzfS9yhYRQkHZ76UjDtM6dhbb3CRSHBuuycEVudh7CvMTZefMBD8VAbMaCZAyzAu940HBjJ6VTqqS8/HNsHt2NPkvl2PJYbr3C9B0vxc6MOK0LqbdMUUoaqxG3nNIF41WpL6jcIGbce3Qhq1Q1937H/szW9Sv9HcP+JssZPmu9NhdE+0jf0hzS3/qyUECU5YDLhJNYVw+2dvUgVt4n5pE6f6q81wjXxcIaDVKVVaTwqOuvKxsGBjY8YFNGy58z5Dj/y5rbxWHm6+8u5T0LvDhKbz9G9h3EwNX3lq9JVRbOOVvA7oM/g/qN59C99RbpXuQm5MXVAvp+PARMZZGSeJ4VBTjwvTGk9+9pqsI9XqJAcq0Xl8KCZV5yVtQFEFyRk1Wy7lt13PFZdiJM9eVQPWmJGIuzRrbPNLrS39ijJxXHyWonFDBD9F1zCh8qLjRwt7UqmHwBWwXn2nLyNagTryyGGrYUhdUidaIKl7Eqh7LQSD3HThpelyig78fPSoVtJ2ul0MPo0MqguHO77eWTfucVpM//p7TQhOtLR6aw+fGCBSBsk/fUnLiVRmrOkvvrsRiIF2NBUG+vdM0+/+OSBVXkqZmPl7x+hqrP5d6aPRtM4dYjB15B9op7xOcpLPaNNV7PzWuW4Pmjp4XrIrZ2PVQAIwcWn8ulMRXIn8eZlna7h9MhjE+m3Nr2hxmlvD/oQpancCenEMKFth7W9SXbK/VQT6Pie3/K2SO05eRr2Dxm8Hjkz0sFxFTXFwIJsvra1L2IRsr3cInFexxBVVbjM5q5/ZOmUGhHZG2DWpcJC6QBpb0l87MU8pKievl4KzKrNiM9+DjKZZQs+0eq/XKx0qVp6Jg/i+3j3ymv2T5Lq5/yNWvAX55Yir0bHl1c6/v2oxvR7n/VwDh/fes2myIoRKTaW8xVdAVVdhvtHlSCoIqczPjrtsc7EuI5D9WTlgixvu9E+0wzKP1USIkjMqudopSqaW6JuFy7LHxIZOnOtq3AwFV32/qg6hbD9Fx+MX+xNQnlqh3AWvHYos570F/aqWsedM3VsobX6UL+V6/7KPau/zAAxS6wW6yVXhQxaWiW9OWTRXHnduG5XF86MoXNSMB+dzKiaPLeN/5P4rzE8X8GcFv5WNDeebJwZKNit6ojib4bVgavBr2gjAktqIYQcLPXT0H8EyWhXh0bLj9rMiUg1Z4QemifP3oaH1h3MV59+6xwXRxcfSMG1l66GImgxQFRiyKHwleA1XhVWmfCViYn5hf3h4V17incSWpwsOfNGu+Jm7dIf9bvv+Vq6WeEHg8Zkhxwo3DiagSZypkU+aXzs5DmXoasymq9tlzLxZ6+54RM8db3xFIYrfz7ueTy0l70jT3A/Jxt/+i77w8wkF9hi14xFeRaQP+3KAS5GEtgprU01mzbitLzdeA5bG0gZcw6f+mjB4Hz55G5vldYSd9ojIpqn29WAityDkqibI93JeRzHrQnLRFjddakC28Dl84ic6a9qZR+KqTEEVkenKqVcktx243ofqyn4uOQWbrzWqwUhvjUZzx5E2QvxSjzHowvbZnF3IouDJuEfEUx5XPZBPaFF1FoRcxJeTScCzB7D7b09qO7V3x+r8VMoixmEbbJuzo2bLcq60aAwtumz4YtBmLEqtidnMl7CiWUrtmFMYssqE65xDra0CAy1zwoXbO6kCnz0L769tly8SR1bBjaU19CceEeDW76NPJF+TNV7tN56rCrcq8bWNSxYWh7H5e2XdI9n3pxJnkPycVxBTE4eM0Zzs3OI/vJXmnbFz+9O/UccEAsyHop0jW6brMpn1TvYSz6fFBDjOzaZIYTa7sXGTKvgHFPlP9GCUVTMbpqozgaZS6P9P49iD38OAZf/jly83GzYbA1CbS0mlqZpCcP4avXfdR17Lp3VhThU6+I1qYxmob9J8MRSJHzYvzVP+eRsM85iR6rQ2Hrwv+aCSqkxBF9c/zKS8dtVQaNYW7VeBHlJGFXufn44obs4k2Q4TVcxst1Gl/aVgVH0VRhvpQuDLsV0CgL7AYPkldFTOZFNb58bCGPC4KXzHvguZhJTBG3aYiymEXAMKPynJ5djVTXF9B3dJ+psicAKNs/Y/temGIgRoSKnSWUUHSPnfKOTetuoQJs39Ic0mPOeZAAgKmc1IsIoNyq6QlJD1xpYaupbOlZddEzcsnlvlrdxLp6UPzGHgfP57ytOJMV67Pu1eBg3Q+M3mFFgbAya+r8KajZk6V/iJ4jr0Yaw7zJBFkvqQiZddukIa3Wz8vuy1/HrsVz//MIVK30qN+5fhkevvVS+8ks1yY0nBTnsPXED7B/TZepsBpQWjpLk+7F5ox7optRUI3F7cWRLGPW7695D+0s33+r8O6mBOvkkstDpxlUFZc9lp6x6uPJ+OtTmYzS4EqIV6iQElcchc+z8zjwvTEM/GKFoxU+Cpw8Qp5wUH68hMuIvA2Pv3gcj794HJ3Gz1te2sawGWtYIWAWhr2ECOeSy80vGA+KmJsXVc/tM3pKbB5ZKz6KmVh/v6z4ti1HymO1S1cChBlZPdKya476RWwUQnPdu8R5mnoooeQem9bs2Xl79dfJQ+UKsL6qHq9MSQXqzvZE+XeDFLbyIqinlrT4vt/KRx5C6keSMOW50xh8uYi8JnrdaegUVNkF3A0OspBlvR/lnrFjmFFjprnV+4CasM6xk8cjFsNo6lcXKwQfb0H/xDS2nHxNKDzK9pPsbAH3ZY6U5tBBGdUxnsd6X556+Tj2/WSx/52qofxvm1JquTZpRMLkIfzbqvdhpmWJ6esagLZ4DM/0XeM8YMPeZ/yNbHL5gkFEUBzp6rvE+5xh/5CtCavw3nelgoGpGPKyxqULpHA+dJpBVQkZyglEm0dfz1TrOqWVrF9/NZQyGZXBlRCvUCGtEo2+CTspg5m3/n/23j0+qvrOG3+fM5OZkAsBOklAUAyggi6Wi2Bkw0zig3VRi6a6LXZM97cFqshrt6ttX9T26W4vzyo+fYqXFmNF3O7Gedana5tit0UqJRcopCAaexHUkFQEA5kRk0wSMpmZc35/nDlnzuX7PZe5JDPJeb9e7pbJzLl9L+fz/lzeHyBSmP3ea/6SEBqHijX9AI36oAKQCJzeOBh5d830XAOAGtpLm2UFNciSUsEASyjY+ktCqHn2fyN+MQTPmm8QRXXk8EQHlREkE0aCURSVra5FoHee1AdQhCIiS4LJaI78pdmu6uuYKQeGXpoRbdyp0Un5Pc/KrFCAXO01UL2ZnkIqOloStbwk40IRudFJsaKmgboLNYYKU98A/74DinptAHAznCKKmIqwlVG0KlVhBra6Fv5f/jN+uPiziLPJ15qDi8Hf9SshhZIQmWXASOnFVvdoWvRx94kLGBuLIcLLosEEARwFZM9KUBXfSTxnu+d6NC79vNL5d/QcuHcOwSvLEhFJDVWQB5AaqpuBXunC/i5yM/b9XQMaQkpaozQF4yFnEfG4pur6CcRX7J179/VfI665kLtMqwZrMrJESqcrC3F45lC3oLDNxIV2XLK56WY4+M8cSKvMgIRsRlzTTeU0k0I+GTDe92mTRxuTATYhHQdMhk1YLz2QVi+TyZ5IYmsSzFii9KafayEbeMWlaK9cplDZvYH9BA6mMQ5meq41dQaxlvbSTpBIee6/mkiQRHXkcHNR+Lt+Df7UWcmLbspIMBFF1RPJQXGpok5KggXPuPjSDDR3aYlvBhwYtDSjQ5XLqetP956BtOpmaASHb25KtB7RGWe1o0VFNuJdJzUecEZPYMxCOjNbXQsfgFO//yN+M2sZOIYFywA3L5qpGB9SWxtwPJ440oumziD8l98I7wcdimN7+zoFh8zieslQRzSCsGMaWPCIxBk0dQYVxzeNklIN5xSCYayhTH4qezRt7ghtnlSpwQyDQi4Kb+gPlIvnFQJi8Zd2E9dbYMF6LQnmWQSuWAfvh8eTHyZITcMDO03VtRohOBLDZkomAyktmfY5MZpDiQan2tqgrWcATSseItZ7MvUN8PTSIvsFumvIqsPiU4srsMLDSiJhe65cL0V8S2Mj2DQ3Cm8LpaY7xdr6TAi76SHdVM5MqdnnOqbKfdqwkUnYhHQcMBk2J8n4TLSUkL/oAwvWZ70nkhjh0XjTi0uJXu322/9BmUYccyrSykRYGQdTPddGYpZe2qR+hwAQWHQ7Qq4ylBQwAMtgKBKX7h8VOwAAIABJREFUegWK31Gn3Oqez0QUlRoFL4iD2bglYyIHmVY0loPkKW4i9NIVx512zzyA+9d8E/55POqqqy1fhx7BqbkYQqCaIhrE8yhXtz9RYywCtCnJKt+0C0zDNqoCrNVUu0OVy9FSOQdc4vo5AAe7B7GkvEhDSmniOY1X3gFERpX34XDCV7cKPpwV6pKHw1p1XAIZNBP1CSxYj5gq/TTGOhGoupVaq9iwTIjgpbJHm9kP5Ai5Zwh11LSejDLywGzcQoySUutkSZ8nah+BpNNAj5aWFjAIR4VvMNDq7NJIOkuplWUptcJsdS3aKpcnyV2kH/7Tv9bMd3/3q4p+sYBxBD05D50AIys7KCmVBMIaVHNVflyaGmw6TuW2luOabIMxtgBo+yV01YxTQKrCblbIdjrRODN7f17V1FKQzXecDRuTFTYhzQCMNtDJsjn5qspQ8+7zGsPW370PjYv/VplKm+meSDSP8fAQmE0PaZ5/oNeDSNzc8w2NRE19z4yKpkjCTb+0CfclkO63FL31SL0C1Sm3euczE0WlpmCuvhxs1V9lTOQgk4rGZkBdf8NRfPnkS4r0YQkMg6CrDI0fMZq2QmagR3BqZnmoxIJhgN2nX0gosJYrWpqQ6uwkGBid7eu2IHCGV/6+/6TweXOXuVRmCkFr6xkgi56R0r0LpwFQisAY9QU1E/Vp6xmg1kKG3DPItYp9h+Gr+prwHZ09mra/09aLi4VE7OTwRPolIRz+p88D4UHNd8RxdDy+By2/PKgZczPtfCQUlyC+fRNqLoZQM8uD9nVb8GQfed6VFjAYi8UhRnZ56f+qai3jPJpaT6Hm0UelZ3HromuIzr5bF5HXjIbcuWcQ67a9fW8C4JPPQNZLmjYm1BT8xfWoqxZSs1Npr2FmPahJ3dqF/Th0OkTs5RtxuBCouhXeC29oT5aOmmkKwm5Esm1C5TsVGO392Y7wjhfG+x1nw8ZkgL060oSZDXQybU5MfQP4nzwFxOPSZ96P/gjMvg2BIU/2amRlER6FcR4dREPlYk3rmVDglOlDl4wNg+toNXzhyQ0Z0nimRMLNRq7SbEhvJoqqMdScMfi796Hmt4cRT3xfjMBJxldCGMXKeKfaADxV6NU/y43eYOEMkAzwnYkUVCv3qEdwmPoGugBPUQHKn2tGKCSMa3z7JrQ752r7a5LEpihzoa1nQMgWSNR5BwtnonHx3+JU2RhaPiqRHDemUplVn4vGLC1tU0O8h4c0URw9ddyWx74vpN3f9F1qH17xGmjwFMQBl1uZXZFIoZe+Q5sjzhh1f/cl1o6a2ADArqPnFIq+7vgY/GcOJImGniLmxZAwZjInnzjmdb3H0XLZapUDhUfQPQP3JxSivX2dgMMBjF5Kpv1eDCJwhgcKKeeMJ2peFSCHOIXeobz0LL7UsA246hrs7xowVtmFjqr0otuFGvuEIrfWCdMC3+e+QX3ntoQLERwx0WMW1tVgjdYDidT9/I+JOUnp5Rtyz9DeY99hUySQGtFMvE9Ix6W1iEhV5TsVGO396bbuyhUY3edkiALbsJFpOL797W9/eyJOHA4T6tHyENwPvwcMqTzd8TjwfhfYW+4EAJQVOvDGh8OQ7/luB4PNN1Tiypk0CyE1FBUVYWRkJKPHlIM/+xeg8xjAy9QDWQfmf6IIn37jp/jcyVfw6Y/ewPzLK8DMu1Lx27aeAfyv1rN44Y0+HDjdj7JCh/n7Ly0D/vwG2j+xFI3X3INBVwnAMBhxFOKND4dRUVygONaB0/0YiRIUDnleYyBwDIvKP7Shau1fG17GlTMLsWHJLNx7vQeXlRag66NRXIpyKC9yYvMNldZJeOK+5AQfLjeYz21WPD/+dwfQXno1Hl369/jJwk/j4JxVKBsbwnx3XJpnRmDmXSmc7/0u4UX4fhdQWqY4j3h/nx35E+745fcxP9Qt/OHSiHCdn6hAe3Qmdv3+PAbHhOc7EuWIY0DDlTMLUVGcgWdnEsT1Fx/DF7tewfzh85g/fB6fPnsYP51/C9V4HIlyOPrBEAZGo7hhbqnhOWnzr7zIiTtvWYHSj87hzbADcSZJAsQ94dq5s5JruLQMj8YWC/NdhjjrwOnSefj0WVkN2qxy4lz4X61npbGSfs840B11QS0CGueBrvc+QBE3hhGHdizLi5zYsGSW7rEV34/0a65RTZwPzlmFEec0zW9Lx4bx+7JrkmvdOQ1vzroGFaMXMX/4PHDpEtgN9+peg9vBYPONczF/4eXCfL90SYhSfm6zwgCk7dFf7PlVcg1IDym5v4vrZeP1HmxYMgtXziwU5neJC129/bgUZ1Ae6ccXz7fAd8tNOFS5HP/6+gB+Mv9vkmt4WEWmZ5XjX50rMBhTzsU468CAqxRfnBvFab5ENr8Y5fNxRjE/8pHQj1mGnyz8NHV+RzmG+jc1FGMajwPv/gmrN/0dNi714N7rPdi41KO7Rl54o4/4+SXWjY3rlgJvHJXSuBVjX7YQnr4evH/kKB5d9DnFPvh+YTkaC5cp1pPimscGcPsz28D/7oBmzzMDvfW8Ycksw3VAQml0BL8vX6qa34tRec1VuvuoSH5J++/8yyvQfiGGxqs+ozzujKtQUeLSHLetZwC/7R4AyflwyVGIz3W/qrBl0oXR3s//9AXyDxNrPddAs7f07lOsKX50wT34ycI7cHDGtZh+ohXzp/GW56WN7CLb9vRUQWmpsc0E2BHS9GEicrX2wpvgeo4rBHbE1KN8A9/cBKhTYeMxYk2bOqUuHWEnMcIXODlNN71PBM1DyURGMepUvpRjrDOlBuWZ6Llmtt60fd0WNPYWaaNkc0ZMX7eVdCg9T3VT9by0a6LHs1+dFPklNbaXwUxLkn3vDWjqKEkw8pDX3VIN1kTdFltdi9Dpk8RzKCKLOml+tOiOXlTzyyf/U7c9kdGxAYH0rwy9jfurH0lGaq5g4D2wW5EVQKzv5KIAGO1aJ/Th1bsGsWcqqmo1ERZ5lKJmlgfcui2aLA/uj0PK6xfnjUFmgnZ+35TcAxMq2sRId2IcQ6cpEbnCGai7ZQnqAGxu7tJEdaXn060Vy6G28nHGgKEwee6rHHhEVfPhsKkME+k6dDIW+KZdaL/8RjxddaemX3PE4cKeD2MYI7SmcsWj2rR7+TV3/QryqK7VqJ/RerZafuOOjwHgTb3L1NBNH66vReB9j6avbIRnNcdt6xnArqPnoBHgSiCp8p2awBINunt/BtrK5Apo96muKQ4WzkTjwjuBlv2os6OkNqYwbEKaLgw2UJEEeMci8HYfEv7mcoOZv00wkvINZl9OqjSbTAg7CcY5ORWXlJIlnlduYD7xuw/Jv6ekDY4HzNSbBoY8iDgIxudQkWlCaikdiupoEXpeEvtm5nBNtK+qDDXPPkzv7wjA33cYjVUbDBVJzcxZM3VqZkm5p6iAbMBHBwEwhilfNAJAE6MRUplV4loqBV3xXvSOXTcjihZmtTLt9CMGWLcF3l/8QJqL0rkW3oaQuwyeogL4X/9PPLVkI/F+1H14adcg75mqBsk54/3FD+CTtVMS0mbv0aTNAoA39AdLJAzQSY0UCTbLSkrcnl4t2RTuNUm6qGmkUQdQXKJR6aXV+vu79wFDYa3qszqbhOdR13ucKLbFv7RbqQys6m8rJ//+BTVonH+7NqW5e5+gPn3lHRoyKiLsmEasx6SRUfA8tr7zsqV6axKMyhk8Kx4y1c8VEBwA/nf34qmr7iH+3WgfNUofDtFqqVW/a+oMKsZADoXjwSIZNCuQRPoeVaE+1ZraHESgoobsaEvBKW7DxmRCWoT06NGj+K//+i+cO3cOjz76KBYuXJip68obGInFTJaaCAl6TdvVMNNSxCKJ0av1UoNk8Dcd+4BoOHgK4prPcglWnh+1PsVKHWoW2jFMOPScKS63ULtVORu7j58nitKIMDtnU40C/+ZUn9S/0FPkxA1zi3Gwe1AbnaldDMff79U5kgBadOfmBdNx8FRQozwrGqKiuNbhb/yHJrth55Fe7DzSi1I3CwcDTarrthtnCwYvq23vExjywKdqr+H79M0KNeN4x1kEaPNM1Yc3lZpkM/uycP1KoiMnkFYjbYJ4GsGRIxJsk/ckGvK6/WtjUY2ar7evE3AXInDNBqkHcsOyctT89jBEGSOx7pDhOS0pZBic8FwLdBHmnLpFzXAY/E+egpjEKr4j2yuEVlwRjgHLx8ExrEJV+v7qR6itkFJBucy5okAKUT9qz9+LQfjfbhYUgSkED0iuC+EYIQRODhJ7Thvto0aaFGY1K6j7mJzEWySDeplQay+8Ka355/7qs3jVswLiepD2FMxGufdfhPnQfXhS1ldaUsq2YWMKIS0L8vLLL8dXv/pVPPfcc5m6nryDYcplmmI0uQYiAafBTEsRiySmYVk5WTDk3b3gOkKGL66G1Zdrfg/wuKHqEwByQ2yA5DmmPr+xAUWkRi8t10o6lHyc1QIZK0Nvo2XOKkvtGDINqz0BAdDvXxaZQs8AjErBskm823oGsOvYBUQSxZ3BkRgOdg/i5gXT8fq54ZREw/Sitdf89sVkKQEplbm4hBjZExGOcHCyQKmTwVCUVxz7iSO9xN+ERqKGa4ypb4B/3wFNuww3w6GhdjFYnX6opp6Pqb68OgQSsORY5Dpa4Rl1myLYAP2eAOgqfUsOhcgo4FsPvH5YQRa9H3TAe+FNxfniiXUhF3262/c48fiWjOZ4XHg+gLSPyKOwHOOQrlc8r97x3fExuJwOhDXiS0Apy2GMdWoIvL+P0uczjRRQkjPD++FxoLBQ6q8rqOx6cOh0SDN+m5u7EBqZjZLCOByxGOJscj8xs48aOWDMOmiomQUiiU8oQqedBRDn0XTsA9S0J98nr34iSUbVCMacaKzaAHbjl3KmrCml9w0FnoJ4XjrFbdjINtKyrObNm5ep68hr6KZcTqKaCIDS2HzpDcDRg6m1FLFIYnxVZeBeeo5oRPPNf6GOg0g0ay6G8LbKOwsw2PfeAPa914/yUTf8zrnwIjghkvM0D/PNC6Zro2SJ2ij+9ZPSNepFfmjRfCy9IdFWRkkQOCTqXVQ1Wy1zVqGu9zhOeK4VxqC4IPOqyjpItR6ZqW9A275DCFyxLjl3zhyAb/1aaXz1yBeQfeLd1BmUyKiISJzH6+eG8Xz9opSPS4vW+upWwdu0U9fBZBQRjnFAYaEDL35WeX1UJ8pof3JPpKwxtroWPgBo2W+q9t5yNNpMX94xSgRL3mLFpGORb26CX6WWDAi1smqCLcJXVaaIKqHDg/tXPCT02NScQOhfuzL0NgIL1uOpJffCEx2Ev3IoWSoiQkWkSfsCNQsioVhsyiEJKJ4Psb2PqjUQ7bwsz2HrnBGwi5YQ3yNbbhRsEU0K6JWrwJ89lrEU0LaeATRdvZnowPF2H0bdI1+TvuvxePB3189Q/FZ+7WHOASdiKB0bwlBBsVRj7au6RnFOtZN0bX0DcONyKkEy66ChOnfPHACz6eGU3nm0vSIYdeD+FQ9L0XcjAa1c6tOu976522PdjiM5xd0Mh4bVl2fmgm3YyFPkeI5dfkLhTVvxEPxvNwseVBF5XhNBIuDcoiXWWoqk4WX0dh/WGlkA1ThURw1PlCwA2TvLIFg4E08uuRdPLrk3mUo2junVNA/z6+eGhTTI1lMIFUzXGEOSgakT+THlTFARhEDvPEQIwiknPNfixx2PAbPKpVYw44VU65EPVS5H4zUVkiEg1ATeDbZyLtYmjL7Q0q9SjaXybLQzUiGV1PZ0ovrSnNizk/yF4SGUuFmEI/phY1IvX6ITiotqRXFULVySe8Q8NGxcjuez8LzN9OX1d/1aSMOkpDQL4BHfvsn4mV8MCU4uJNNiS6LDABhNXa4IUrZDKOogbl0MtOJQQVcZGufeCgyFtWmrsn2CtC/4r2DQ+BGjWWejDhfa7/pKQpgqsYdERrUpuyJEgn8xiCAl+hl0z0B7xXJ4Y2fhd3+Ixnix5plvnTOCuluSKd0a4pkg7jXyNVC1CKjSz2CyEvmSiEmCMGtEqeS6Ec1NuPBxCJip3yM1xjpRyEXx723bhQ/eLQdk90nLeFnbsA2++lryM4c5Bw1R7K3vsMJBZxU0JxQAydHAU5SQ1cgVTQK9983dq8yVqZkRUMsF8m3DxkSC4XleV8Hje9/7Hvr7tU23N27ciFWrVgEAvv3tb6OhoUG3hvTAgQM4cOAAAGDHjh0YGxtL57pzFr851Ycdv+1SRDncDI8Hz/waa7vbwXoqUOJ/ANN8t2bl/E6nE7FYbmzkNPzmVB+ePfI++sIRVJS68cCa+fjU4grT3//82z/H2tNtmu+x5ZUof65Z83nwS/Xgghek1NOge4bpFgfu+Bi2vvMy/vbHz5i/QQu41LYfQ4FnwYX6wHoqUH/dw+AJFicD4PCXa3DhM38tiI1ovsCg8ue/k+5VDaNnQ/t+zVOHybVqiYjM5qun4Y76dSbuNHOgXZP4jGj4zAvHcSGsjexUFHB4tv1fgEgE91c/QozQVJa68fMvrkrjqs2Bdo20819q24/Bxh1ARPYbtxvTt37d0h6jngdW10r52AB+8bXbNZ+r1+69v/9JoverCgyDtx5t1u6dThZf/x+LdPeHVKFeeyX+B3Cocrl0vZ6xAazs+1MyE4CizixcqP4zJz1fTbRUda+ktUmbnywn1GOSxqp89GPBeST/PmU/kOM3p/rwROtpDEaUqYTq67zUth+DP3pUqFuVw+HA9H/4nwCAwcYduOfGb1PFisRjLt95P1qZOar+o/tQy/dSrzfVNUB8V+vMN9raLB/9GD9+cyemb/26dK+ka7mls5i8b/E8fiYSUgDT/+lfpOu2up+r7y+d96zR92nHUD9ToT7Z3PtWjvHac42g977p+Eqtob2VqT3axvgjH+zpfIDLZU4XwDBC+q1vfSvtiwGAdevWYd26pOEqNn6fbHjmULc25Y5n8OI1d6L2618BAAwDGM7S/Xs8HtPPdiLqJdXpLxfCEew48B7C4TBViU/9/WeuWA/+0ogy6gyAu3YF8d65YB/RADQDMaWsTueZpvoc1d5vLngBnlFKqtzYAC7U/7UgX0oipDOFcec3+AFC5Iff4Kc+G+K1BfsQCoXoHm9GiCbvPMcgcvw0fFVlaHmtA4GzjBDBjQ7CP49XRDUyBY8zRq7BccZ0534fwZgEgOAYIxkLxBYkDgb+pbMUx87W2rl32gU09hdp1E4vhEdx1+4OjSc9/h/PKA0dAIhEMPgfz2D4upWmzyufN1bXipA6/muEQjdq/rbCw+K5DVXJ6/3dWfJBZnrIe2eMwzOHurHCQxeLSRnXrQTz6G44IOwzu4+fR7jzXenPQVcZWuas0qq0kmDwzNXrkpi+qrpX0tokzU+ApxI9gFCXqbMfyLHCw8Lt0BIJzZhctxLM3/0DeILKrvg8mPu2geuij6F4zB8HL8CLC5rnzYFuM6S6BqzON9r+EXLPAHPfNgxft1IofaBci6f6EWq7GzkGn9mBcDgsRK4N9mcaMvGelX/f7H63wsNi2+pKRdQ5OBw15qPq9kKEPXeioKd/EYvpv3OAzO3RNsYfVuxpG3Rcdtllpr6Xhbf81Eam1GSzDYkMXQxC0Z+tozWr59VLfzH9fZ5F4Ko7tF8+epB8/bM8RAPQLPSENtJ5jqR6T3/3vkSPuiQUffQ4QuqkLNWQra4F07ANmFUOoSVIOdrv+gq+1DsPdwVOYXNzF9p6BpK/pdUyJz5vWFZONEpFiGPX8loHGnuLEHSVgWcYIV2wtwgtr3UYPgeroD4jdSqoCjQxIrlB6O3rxNZ3Xkb56MdgeB7lRc5kL8sEsrV2uI5WeF/eIZ0fPC8z1BipdkkxfhkSTZPPG1NrheeF5zP6sUDYYhSiqQJT3yDUIMqRqGMODWvTfoHU9s62ngFsbu4iz3nCd3f9nqysHHG48PSSjbjb9zjuX/NNtH/2G6Ba1zrPXL0uqUqb8nslrE1vXye2ntuP8iInGAj+KSNr34NRxX6gFlDSg9n3GVtdC8eTATh2vyL892RAUxNcXkxpzSI/JksxSQifi2N899Kv4v7qR9BesUz5BYM1YPVdTVJyB4Tleahyuf45L4aIeylx3xJT2AHD/VkNrqMV8e2b0HTw7fTfs4nvW93vfFVleL5+EX7hX4yGZeVgeXK6P8vFpT3kb84d0d1zJxLEcbOiJZBFYUsr+5wNG7mOtGpIjx07hhdeeAGDg4PYsWMHrrzySnzzm9/M1LXlJTKlJpttTFQ7GqtGAPVzFGo/pFw/U9+AUFfqkupCv0cy0nqOhBeS1JNRlbKmidCwLNo9n0Rg0W0IuabD01uAhp4B+KrKFDW+bT0DaPz9eUTiwnNUCwCJtXTtM5Zgz6I7ES4oAiCoVm5JHA8QDBZabVBoJIZAP4OIiyBYcvZSxnurebsPA0NhwjN6C8DXqL+jCWuplTgltVFKfWw21o5k9HGcdH5SeqamVjaDomnivAkFyL1+5SiP9CvSQJlND5s+B62O2bNiWUbaCVkVvTISsuKYRM2xq0zoo7qghlzDrvPM23oG0NQ7D6HrvwZPkRPTOWBgVLueStxsQoWVrj/gq1uFumpBQOoug7Fyx8fgP/3fKUfwM/k+I60/zTFJDjdA8/mzx3qx772E8Z3I1lDUcwKGa8Dqvfm79ykE3qRLAyPNrxqd9UjsZfo2JfqeeDeYqXWWrkOWcWPK4WHy81T3O3EdkqL3YimM4t679gJg4Nht3MpqPJG2/kWWhC1TFffLJjKpRmxj6iEtlrR69WqsXr06U9cyKZApNdmsY4La0Vg1Aqjfj2jrmgEQr5+troXn/T8R0zxFoRqBcEUT5S7KZvArP0FfJu3OeQhUE1QXzfRqpbyo5O0XxFq+p5bcqzh+u+eTaFz6ecOXkZEAEFtdi5ZwIX50vgQxWfuBMO/AU0d7peP5qsqwubmLOnYhfjrxFkMF5M/TwiyP4hklP9dfYzTDwooSp57KZjprh2T0mTEqrRisZqEnTAIQojrFpZbIjloULb59EzAWoaZLW907rYpeWYnARuI8nr7iDjx1+R3K8dd55m09A3jqaK/UqzU4EgMDwMkKCsUinFwMI5eAcGIdBmNONF5zN1BYSO3JSEtfF2u8zSiQ6yGT7zPx2ZP6/ErH7ChX7ImKllPNXdJ5JTIqg0Kx18QasHpvoiPs6cWf05AscX6tNViParGh+BtPkC8uQVYM28rJIN9DrPaK1n0vp2gr0Bw9LBenp8HnaPeBVHtKA9nZo4HUxf2yhVwkyDbyC7kVtpsEyKSabFYxQe1orBoBZqNaEijX37D6cup55S+bxldO4NXBoiQpZRi0jJTgWlm0UERbzwAaF9+DCCukoqm99PL+oCQY9XRV1/LJjx9YdJupl5EZj3hgyIMYq/1enIfieHpj19R6itwiQye6nCrSecETDQsDJU4RZlU2UwLBuDNjVFoxWM2CHsniUT6qIuEuN5iNW1I6T7IuTdiHSNkBDTdfq6t6SlJbDQ1XEsV9qKmYBgRcc91gAEY2/iWl8NWtUvYCFu+LZbG7+n8i7ipRHIMH4AAws8iJ0EgUntF+jLIFCKu+F+FZBBbXK9qJSNfR0Qr/24e0vVpJ0acUnSW+qjJwXSc1teHq1iSkayPNSXH90SIpnKr/sWL/Sxi4Lp1Co6B7BtoXrFWMh969ARbe1QlH2FNL7iX+OTQSU65HlcouCWb2Mt22cnLIxtiMc0c+Rv4FNWicf7uyFYmDgb8kJOSFc4SotsF+R1tvPMPCu2QO0H8y4yQtF5GNPRrIvfKwpmMfaFpS5VL7Hhu5D5uQZgHpeNPGC9ny2hkhFcLucibbD5QWMNiyarbl/nJmz3siXgYwqjYnlE21qTMokVHpuzIvvVFKk+ZFxTKK1DS9vn0hFyUiqXoZmYlI673A5H/Te4ZcF4/G3jFti4x5uiLeKYH0gm9ftwWBXg9CgVMpOYHMGH1Ej7Q43v0n01s7BAeRnlGpaY/ywE5LxE3v2eiOc0cr+HfPQahHTN2w0rSzSEAR+Z5VDscmckshojf+6Dlw7xyC54p1lqJDRqmkepBEz6r/inxfHIdwQTH5txzwfP2iRA/gIO72PU78HtWwb26C92IQiEWNU/xTdJZwHa3w/mIXvKp9livdJl1Du3NesnSgqAArHQM4EXQjtPSryetR9ZqlvSPla5u4/8V5qER/lWAYNFZtAFs5W+hjawAr72rxnUl1FI0NIL7lTmldVNxxj6EgSkbJimwP0Th3VL2i1fPU230IGB1F4Np6hGJOeIqc8A+/Be9P/518LhO2AvXdU1wAR/1Ww1ZxkwmmnQoWkEvlYVxHK0LRSmI5e67pp9jIXdiEdIoiW147MzBrBKiNTgAYG42Ae+k5oG4VmIZtlq7fzHmteB2p3xVTLU1EJeQvKrWRQE3ZLJwBT1GBqZeRmYi0XoRIfTzaM6y7pRp4rQOBs5eyrrILKJ8bqU5255FenAyO4IHVcwyPZVZBUm+8rQjFkEByEHn7TwJzRhAYKlIQQwCmU6OIxO3wGXBdw7pjo0cYMmFYEevS5DAweKliZ1esM4wOqcd7bX0DTi64hpgGagahaDJ90/C+SEjsE3oRcdIcFX9HTF+XIw1HI7V+8KXdQHQM7TOWKHq1BkdieJUvAgoFEi5Fkd952XQ/Zyu1zCRkKyojvjP9LYc1taQK4bmE6M+l0lLAhIpqptaUeg/x9nUKjjLC3kQaV++Hx+Ed/Qscj+8R5tseChllWVP7ndG7JxskbSIwEd0KgNwqD+Obm+C5enNGNABsTF3YM2UKg62uRVvl8mQkpNcpCePkAqgRqYoaeJt2gmnYRhSdSQdWvI6G9a0WoxJqJ4EnOkhMg60oLYR/6SzDlxHX0Yqa5iZwqgiGOkLWsKwcT3f0QtUBAQ4Gll5udbdUZ1zAyAxotUr73hvAkvIi6nzmOlqVrSqApILQMQIBAAAgAElEQVQkoDEq9Dz+6RogtFS/uupqsLIIZ1NnEKPRuOnaIeIaYgsQOMPDZ5BSroe2ngE0HfsAoahDiIL1HTaVJilBz1kzq9zQqNNzDnj7OnFq+nz85rJqcAwLludQVzqajPDKif/FINr2HcLBaypAEp13ssA0B4OhKA+GixMFWhT17IT7Ko2OIOzSRklL3YnzJSJb1JZDJSHNNfNNuwCXi0x+XW6gZHpmDGTaOCXWDFGRWZUuLWURdOywdGraeit1sxiL8boR7eBIDG1ZeJex1bWoq65VrEnP2AD8Xb9SOgXGIhgKPAvm0d0ZPb/RtSmczMVC+je/5wnEm5uU88CgLlRS+ZVBUc8rE9GjIW/Kl9LApbb9xLVJen9kGjn1fC+GyPtXfAwNy4ydwjZsADYhnfTQ897lehG6bgQyS4rAVryOxFQ/nsco60L7ZavgW782jSvh4T+9D41Xf0ZjoD6wZr7UJ4/2MpIb3l4E4e17E3C50X7XV9DUCTxxpFfzm90nLiAcEVipmBo90fPAjPdZLyWIFimhpYwCoM6tbHukxYiBvPcZaY3SYDWKzzf/H1PrRz0G7eu2oDE4HRHemaylnHsrsG8vfDBpiFFr2MnKxmroOYPaK5ahZc4qiTxyjAMt/QVY/FoHvAeSkSHRwA66ZwC8NteMZYB/rJ4jzZ+Wx75Pjox170N8+/NCFJJwX5u69uJHiz+rEA0rYBlsWVkJIBnZ0qRZFsTRsPpy1Dz7v4lRSlKdLAC0Vy5HYOlnk/tCZbmp9FUiaOOUgF5LLM33DBx06nnmX7cFjZGZmvUmPjc95W8Apt9lqUS45BkE8S13QqgKVh031Ad6d9jsQNxDSI4XBVEy0pBQEVZaPS+g/3zzoXwpHQwFnp2QbgUicub5JuqrAVWHgL7D8FXRle9t2JDDJqSTGEYvpVxTaVPDMAKZBUVgK15HpWokB4ABGAZhVzEar7kbbOVcS4agOF7tM5YgUL0ZQfcMMEj0okSiFcuN8/CpxRUIhUK6LyNSSlb7jCVoPF+MCEtuAZMLYy6HoVGVgF7KsV79nW5qJWFupeORTjWty6gliRyWo/iJe9S7NtIYBM7wiBQqo4kRhwuBK9bB2/y8KUPMTA27Xu0r0TmQIIfU2uuzl+BN3LPawCaB53jUPPoFxBPPxFe3Cti3F4Er1hHrNfmmXcBNNwNHDypTr+WGWuEMeJxx3NezHzUH26Vji+UH3r634I2dU4xBnLbP8dp50V6xDI1X3oHICHmNWwVtnFDgAobD1DRjNTyRft20YfU8a3fOTcwzDizDgOOTiujifYjiSLT6XzPvMrN7jC4o5I71VJj7fRZg1KrFcP2p7olWz5uKrTBRKa7ZABfqI/8hy90Kcg1yp5pC8K5h28RemI28gk1IJzGMXkpG9ZIT3VNKz+gEkHFF4JbXOhRqkl82UQPpqypDU2dQ08YgwrPSy9rsC5hvbkrUZCUNZV6mEjAWp/Tog/YlTzKQAgvWa0WYDIwKrqMVbS3HEaioUURt5N/PloFhtv9dw7Jy7DzSSzwGtX7FyGCgzK1UiHv8xUagTdYmxYLRa1YQQjeKf/iMYtylNeRyIb5lg/IHqmuz1I7GPcO0IaZXw97WM6BpDUJznpDSJqkqqAXTpbVBTDVVgQdwf/XXJVEepmEbfOvXCqSbFF0aiwB/fF1W2y6o7ILj4I2dg++6CIALRAKkW35gEKWUIxXioLfP08YJEAg4KU1PDQcXg/8KRneuy+dZe8UyRUSZ44XUadL7R/w3bf0brR+ze4zeHkcjdyX+BzCse/bUYGq/NUjJNdKQUN+T1b6mutc+QSmu2QDrqQAXvKD9Q462r8kWJlKTxMbkgU1IJzMMXkp69ZK5kM4rGZ3yWjUTff9SQctrHWjsLULElUhJcpWhsXcMeK3DkJTqEXtLL+CLIQSqN1ONuwhbgKbOIO5etVDxOekcxOuxaFRwHa1o26dsKxGMObHr6DkAoNbkZczAMNn/zldVhpPBEY0ojW46rZ6Rn5hbZgw/mjGf/DwKT2QZ/BW9mhozM2ldenV0hQ7WVBSf6xpG4AyvjOoF3yJG2AAhkh44OQ2h06fguXqzRrWVKr4T6bdkiCnSC5ubwO95Ai0txzXtJ0SoiZUibfLFRiBxjdTriw5KhrapVFOG0YjyOB7fA1TXUtM0cTGkK9Yi9lxVwGAuMPUN4F94AuB5ZR1fpB/+v+yH9/wb0netrnEz+zztfjgA3uYmnOp9Hb+ZWw2OYUCS2Sya5jIWN5Ot6T2L7lSkNwNCv9bdJy5Q5zgtfddQUMXEHmO0x9GM8Wm+WzFsoLJrFab3WxNt3fTmqfye2p3zwIBXOEdFWBWsMesAyBeU+B/A4DM7xq1bQS5HlyeLSJWNiYNNSCczDF5Kun0lcySdVzQ6lRuxseiJGkbR3sBZRiKjIsQ0PyOhHj1ib+kFPMtjaCiTDEuzyp5Wm6XzzU0IXK0lyPLob1YNDAu9ch9YPQdLyot0x1gxh4pLAIcTiKueZ3Gp1FfTyPCjGfMngyM42D2Y+JzR9isVYSKaSFujW1ZWKojvE0d60dQZJBLTuluq4etoFWpGL4bQvqAG9y/4OjHtVB2dChbOxI8Wf1Zx7TTxCv9ffmPZEFMb2IGKGiIZFUGa/1xHq5AmmwD1+ubxkqHtOUkWDCMhKcrzGOL/5AeGh1LuzUgnQEG0PPZ9gWwm2m4oxjJBRjV9ia/6DFBUDG/3YWCWB56COIIxcuo2Cens86IoXsvvz4PTSSsfitAzO4DE3nzTIwi5yuCJ9CNcUET8XljnOCnXd5vYY8zsceNljBtdi7q3rwIWiZI4vo2U8U2pft6kkzFfMM13K8Lh8LiQxMkWXbZhQw2bkE5iGNWJ6NXEPZFiClS2kM4L30wUIFRA6etJ+VwOXWPo1+ZfwEx9Azx/1q/JIhqWBoqlkkjIFQwaP2LMG20XQ8YRlywaGFZ75eql02pe5sNhwOEAiksFgqFKGW1qPYXQTd9VEjaVEUoz5vd3DWi4irw/rQQT0US9NWoli0FcP8kWOYnfqMgyMTrFOrFn0Z3StXv7TwLsewiMXqYktR/9EbAon9PWchyBFQ9LxwkaOGRI819tpGvENVQtiNjqWjRUDuCpo70w23pUWgeiIjOJjJox+CkEqL1imSCYlCCT8rGsSSieUmtjF9ej7hFBOKSBUFOpt8attLkiwUyNs14UTZrDiecbLJxJjdzrgbZO1l54E/Fn6WTB1B6TSyRK51p0hdpScOIC9PFlGWDbjSmI3llwMuYLcsUZYcNGvsMmpJMYZvL6aUY8Neqnav6dD545M1EAWosVT3TQ8Ph6pCGu8wImpd/4r2DQeD6qqfUEdAxLk4qldYCyXYFRXfAsj3FUNYsGRibrUogv83gccBfC8WRA+kgykBNzQRPdlBmE1FRnij2tJvdmoxW0NZpKdIvaSilBlqnRqYIiAIwwrktvgPdQE7ycNmLFv7QbcRPj1fJaB/Z86EL48jsktVgjMkKd/wQjXRDXeAuO3XuJx/JVlSlUpY2gaO0iB8sKA25ybqoJkELpV90uJTGWNYn7ozmH5C1OaHsRAGxu7tKseyttrkgIjURBStMVYRRFIxIeinpwKRPXvRb1OiFGlPbsRPyl3WA2btFNt7Wa/krKwLnbkwWSpXMt1EwZk8rVJFBF4fjMimRlK8V1UiGXHCM2bGQBNiGd5EjVe0cVFFI1/86HdBEzUQD/PB6NvWPEND8zoJEGqkrl0huI6Te+hm1gFy2RaqLEzEC1wqSZc5Be8lZEeZj6Bvj3HVDUkAKAm+EkIzPbBkbGvM8mX+ZGhE1uhNKMeVo2p4LU+NanvW5SiW7ptlLSA8PAsXtv0sgnkFEAQgRRjCJS9gipXttJqJUmkhEehU4WBQzIqcnFJcpesiIMnCJGqaQiFEJqanA8lfSSIBIg5pUAWpk5hoJAwZEY7l/zDfi7fqWraLvr0Pt4+5U/4sTsT0opvw+tmWMYSadld/hLQohvf0zXscB1tMIz6qZek96eJYI6V3leMRccXAyb3nkZ8S3fME3+qQRtOKypAdXbY4z2ONrzLS0tldpzpQPDUoPEtfB7niAfIA3CYqQzYVX00Ba/SQOTMLpsw4YcNiG1QYSeiqWEPEkXMRMFqLulGnitA4GzlySVXb8JlV0jkQHaC1gv/cb3eK0l73O2XvJsda2QgNmyn6qymzcGhsmXuS5hUxFtmjF/84LpshrSxOdcFP7uV1NOnSMhleiWbhsY33qUuliNYrSItp4BIX3URL2yhLGIkJbbO08yXEcHXWQySkFBPAaecSCcqC2VE6q1F94ERke0P3I4DZ0itGdR6GQwFo2DAwOW51DXe1y578nQvqAGAULk0QzMKP0CCYG1a+5BXe9xtMxZRfxNxOHCq59YAcQS0WbZM9KLpD9fv0j6jngP/pIQvL/4gTayuGenYv7yL+2Gv3ghsV5329r50nPQIy5U0a7oMAq5KLHO2bQzVI+IWXh3Ge1xtOf77JH38dyGKsPj68FKqUGcVjuaBmGh7XE3zC1OWfTQFr9JDXZ02cZkh01IbVBhpvl3PqSLmBW8qLul2lDASA6zIgOkF3A8w97sbL3k2epa1FXX6j6XfDAwzL7MqYQtOgimYZsm3R0gp2prBZbmwNfwnYzeUypCLtTf3HwtHFU3YUvPALWFRtOxD6T0UbOQaiNlfTHhmGbpGFHWCfCUdNaOJiH1Wo3CaYakn/QsnCwQjfPgGIH8cowDLXNWYfHg+xpS2n7ZKkER2ELPT3HP4MciCF5rQuk3gYjDhRMVf4Wt7/wMTy7ZSI4kU1J+jSLp6qyJ+PbH6E4H2R6H4TC8w6p63QR59H3huwCM6/dpmTibul6hOgEAKAgllfAatcuxMJf19jja8+0LW3DcUGC21ABIjbAYRTlpe1yuiB5OJeSN89eGjRRhE1Ib5pDH6SJ6xCEdpCUykMfPMx9h9mVOJWy1i8HK5ovCkHPG8OUz+wSl0w4PuPoG+KqtRblTQSrz2kgkqamTbsCHog56eizLAtOKNX8jRgEpNYJWERqJ0UnF8JDh70nPYjQa1/YUTqRsA0riNeou1igCy41ykrEvRpjbK5ZZv19XGer+9TsINHcRnSbE3yTObTbt0l8Sgteo56m4xyUg1OuSyaMRcSGNgb+kH97fnzS+uYshXcK7lkTQ5MjQXkt7vhWl7vQPbqFu0CphMSuKRirzyDXRw6mCfHD+2rCRKmxCasMU8j1dxGztpKW6mDREBvL9eeYjzLzMzZA8jSEXc6Jx7q3AUBjevs5xra22UhOs9xv1PZEg1cC63Np527ANADRzmqqaq6oRBM8L/7GEmjv1d8XrKXJacuzQ1rb8WdwVOEW83KB7hqblCk2AKZQQGSIZ+5xzHrwICgTXIjEXU7FJThPqMxobgL+CR2NkpiaFfKVjGLt+H1dcY2O4CKhYph+dBBL1jKVk50RxqfQ/zdQ5a+fjInCl25LEimXINcuzPPqEtz5B0F7arb3ODO61NCfWA2vmp39wi45LK4QlnShnumJYNmzYsKGGvXvYMIWpkC5ipY0GAF1jIdXaUvXzHDf1RhsSjEieofCRKkouzoV25zwEFt2GkGs6PEUFlqL02WiILj9m05pvSMrCJEjCPsNDYDY9RL0W+ZxuX1BDFWAtjY2gMD6mSPMEgB8u/izisrYzDi6GW3qPo2XejYpopCi8g8iopFQrHevMAfjWr5Xusa3lOPbMrkO4oDip6EtZ21ShKp4zHen1FDmpxn5g0W3w9r1pLCKlgjwVW3KaHPsAoagDnkg/Vobe1tSXiiJ03tdPAjdtRCCibNMTWLAekUKdeawHsRb+J08rBXYcTqmPr/gsUiEucmJFbGeSIJSh0/qEVzxONtaPCJoT61OLKxAKpVfSkk3HZTotf1Lu+2rDhg0bFNiE1IZpTKZ0EZKB0tQ7z5LH2KqCrpnaUjlIBHnnkV7seSOITSvSTznOZ8jHr31BjUBIEuqimUjH1oMppdpElFw0pttnLEHjNXcnI2wWRECy0RBdfUxqv12eR7lcVGZWOQ5VLkdTdVKkqKGyXOo+Kp/TgeYugPSseB6b3ttLJT0KcnmuBb5PrcG1lXOJwjvCc1VGLhsX3gm07Ie36yTa3wtpVKJFkNY20dDmoogw5l6VTlY4BjWl0TUdcLl1FXMV4HmURkew6fxBrL1yFVBVCyDpNJGvg8XcRQQq1yLkKtMIAZHa9Dy15F7yNRqR5QQhMuNUywRx0TtPyZl3iCJcasKb7rvLiNCmkqlgBtl0BKcT5cxWGYwNGzamLmxCamPKgWbgh9Z8F6SQDo2ApKKga8UoojUlHxg1T2bMIBX5/omEfPwk0ZyYsJVZIXqpQlepVkQipU6cC6RaSrPpcenMJ9rYqo9JI0jlkX78uOMx4R8uN9rXbUGjOovg8Blwz78Mb+yswljWi7TQyKiiHlHWP9EH5XiKwjvE5+pwIVBRA2/bYwhUP2LYVkXs4QmQDW1/ST8CZ3hTBHKag4Gvqkxq26SGp6gATMM23Nd6BM9cdovutbFcHP946v9Jz4M/ewwipVTvOYcql2PP8fMIjwnfGGVVxyWkvJZERxB2FRM/V6C4FHAXEgmReg/km5sUjpJMERdNxLS5CS2/bMGlxX8LsEozxsEgo5G6bDiErCBbjuB0nQXZIuE2bNiYmrAJqY0pB5qB7xkbRJCQtqjnMc6mgq6eQZ8pRUPLacoqZDMVjgb5+KVC9NIl4NQevWKvSnlKXWLMaVEnU+I0KdYq642tWi3X372P2L5DuqfiUjAbtyDQ60EkrrzmCFuAwIK/gbfjMfBNu9ASLkRgyEPS5AYgkFxDGKUlGjxX8XMzqbHq+U6qacRrHWg8H0WELdA91lBUIH56xj5btQj33HEPmOOnqcQVAHiG1bbZemk3EB1TkKO2fYfww6srEAcrpRGHXcX40eLP4tT0+TjhuZbcPoU6QrLPXW4wG7dQ17QZspZJ4iI/X6B6M2Ksdm8ucrEZJUqpOITaegYQeKUHfeFIzjr5JirKORHvDBs2bOQ+bEKqgr1ZTgFQDHl/16/RuPTz6dfFJGpLNbVtfYcttZWhReJEZELRMB1hiwmLHMjGj0pIKM8mXQIu/55cZdd/Zj+8fW9p+4wm5oJeiqY8QkdEiorMemNbozqmSFLU7Tsk8uIuBFtdixBF9Ecch/YZS9B4vhgRlvz8FSRXDpcbiEWFSB7LAjfdrJlDir2ZZQCOpz5XMVptJjU2Euex+/h53TGou6Ua7xzrxb73BnSP5RkbBGDO2BeJ2maKaq6HRNwJIkKBK9YJZFSFGOvEq3PXJOtmC2ei8Zp7AAjjPVSgjY4CSHzOmHr/ZSobxCzk56Ot/XCEM15TVmDRIZSJPWa8MN5RzomONtuwYSN3QZA0nLqQNsuLQQB8crPsaJ3oS7ORSVAMeW/oLWz9xMcoL3KCAVBe5MS2G2dbfmEz9Q1Cj8Jr7kGwcCZ4hhGMwfm3o61H36CVo2FZOdwMQV0ygUwoGqYjbKFrjGYTsvEjGu2gPxs9kmYFvqoyPF+/CL/wL8bzn/sr1D3yNTh274Xj8T0Kw4qpbwBcboGEUVRZjc4tHkMBE8ImemNLOqa3/yR+3PEYfta2HT/ueEwZnUsY37TnKo5DYMF6chSR51E++jG2vvOyNl3X4RSEccS0Uo4Djh5U7LuavTnxXX/3PrjjY4rDyUkv6e8khKO84dp8/dyw7t8FEaFfS//2VZXhuTln8bM/fB8//vVXUPPsw8R3ScOycrgdylIBNxclE3cCdKPA6t6kshY21LVTXECcy0RQyVoQ8e2bMv/ulJ2Pdv2AEPW2stfqgub4oXyeqT1mMmLC3hk2bNjIediEVAZ7s5waIBr4AMBx8P7iB3huzlmBaNQvSsl7zFbXInBtvTaVlGctGSW+qjJsff9XKB0b0pAZNxfNSJ0UlWCYIbtptL2Rg+toRXz7JsS33GnKiJWPH5GQ6ES10yHgqYCtrgXTsA3e2Dnqd4zOLR4Ds8ohRK7KwTRsMyQLemNLO6bwbwISxjeRPMkIII0cMYCW5ALC+QqnAfG44uP2GUvwpZPTcFfgFDY3d6Gt5Tixn6Q39AdsfednKI/0g1GTXpcb3iVzsPXcfpSPfgyG58FS01SNHQPUcZKfN3ZW+tisg9NXVYZtN85WOMK2zh6Gt1/Vi9PlVrRUEaFHzIj3kRgjf/c+uLmo4m+WM0L0ovTZcOjKzqfnbMgkAbTqEBrvPSavkKF3hg0bNiYf7JRdOezNckpAEuL4tye1Yh8ZSjcLxchLy6pR4u0+DG/3IW36b/er8DV8J61rBNIUtkgxlVSOVFK45EIq3r63gJJS0yq7tDRohjGROpsixDrjclpqpgnyn4qwidHYko7JQdtLVG58K1NRo/CMKlN7qSm0BXGBfBJKIeJb7pS+116xDHsW3YlwQZGiRYu8z6vygnnU/et3UAd1uUUydboOkFLlW17rwJMXyogtW4LDUdwVOEltyUObO5Lwk6wfK2Dg4LzjHsXHhr04E88M0I6Pv3ufpl2O8EVKb9IEgfX2nwRmDyMw5Em5hpCoNE663wylY8rPJ86FJ5fcSx7PkRg2N3elXR9pVenW7tGpgwy8M2zYsDE5Ye+Qctib5ZQBW12bMfEhEjJmlCTmpEJ9FKBHsiwiHWGLTPTIS7UGTU6m5ITDCCSSBgAcrxW3yTTGu3dfymNb4EqOSULMiNbigutoBf/uOYg1h/4rGDR+xGjvcfXlcHxuD/l8spprtbCSCGp/TNnebETauY5WeH/2NPbc+E2iuiwYBjzoNX+0ljD+7le1tcNA2g5O9f209Qxg94kLCK/5LsADpdFhbDrfAu+FTuDUT7Fn0Qah1yqA0ugI/nrwFFoqb9C93rrqakt17aRrTJI1SkQyzf1UreuAm24G2oSIvLevU3BgkMYTSdGwdOs4rTiE7B6ddGSzr6oNGzbyGzYhlcHeLKcYsuiAyJRRQpyT7szOyVSFLTLSI2+csxLE+3zyaC84VfZmppSLjc49nqqWVsZWE60GBEVXHagNdV9HK/D6KwhU1CDongGWASLxZDqsXj9fkmKyHJp0YKvOj5d2A/EYNnXtpRJfEaS5QGsJ4/3TWWLLE6v7i56gXlvPAJ7u6EWMAwAGYICwqwQ/nP9p4Ia18P7iB/AekZH1RLT22srZqvk2JyOZFSLaegbQ1DsPoeu/Bs/YAPxdv9J1GlgFKYMCRw8KqcuSwBM9DVuObK5vtXL3zQum443zozmtsjsRyGZfVRs2bOQ3bEIqg71ZTi1k0wGhSW0cG4S/69eoefMsOAtzijQnp3/hQQxftzLta7QKYruUdHvkTUBWgq+qDE8c6SX+Ldt1Xrncu6+t5TgCKx6W0sJXht4WWoZ0zYCnt8vQqBbJg3csAgyFFaQvOBLDziO9OBkcwQOr5yh+J87xUJd+ixa9tF9TSBAYtaIwDxBTPg3nwtgocPi15PxVpZtb2V+MUtebOoMJMqpEnAcCQx74GrTpvWx1raZ/ayahUZN1lSlUfAGkvZ/SMihQ4BLqOsciVLVgErKxvkmquge7B/H1dVdhhceW6VAjW31Vbdiwkd+wCakK9mY5dZBtB4SvqgxrL7ypMUqtytyr5+Q0jwfDocxGEI3aHWWrlcFEZSVMpTovM31X23oG0Dj31iSBLJypbBliYryN+sMCwL73BrCkvEhzDLa6Fp73/4QgpfbaKO03eY+C82dl359xouI6hFzTpZrQGtn35Snw91c/Qq57Vc0FzRqIOdG48E4gFk0SMFm6uZX9xSh1XY9IhUZiE/LeIqrJOlx4eslGPLXkXniig/DP41FXXZ36SWiZEsNDYDY9BL65yVRrHxHZWN80Vd1nj7yP5zZUZfx8kwV2iz0bNmzIMfmsLxs2LCDbhtx49+lLBWaEhdLpV6qHicpKmCp1XmYdCU2dQS2BVLcMMRpvE/1hAaDp2AfEY/i79ylIMQCA51Eav4QtaxZSz6u8RwZBVxlenXuThkxzl1fD+0EH+byqFF63g4G/JIT49sekedm04iFE4spXJrG2VfYcTO8vBqnrej2JJ8qJQiPJHCNEBYOuMjR+xIA1EAvTdZjoZFCIz7ZBNccBwMkKmk7yLStb65v2HPrCFKEnG3Y/Uhs2bGhgE1IbNrKJPFBuNkOas9nKYCKiOxNRzzkRMOtIMDuOwZEY7gqc0jwvrqMVYBmIhbl6UatQ1AGuo1VjeHq7DwNDYZWa9D54+96C4+/2WrpHEpkOXLMB3g+PK1vMMAy8w6eBd36GwKLbpIiqvyQE7y9+oDCYQ1GH0L9GfT9q8p1KurlB6nrDsnJZDWkSDgYpk6x0I1R6JFlEJM6j6eDbqHn3eeLxjRwmZjIoaGuZ9Fk21jftOVSUaluLmclWmArIB0etDRs2xhc2IbVhI5vIUeVmhWF09WZF6w4J8ib045jiSjOUM23M5XI9Z6Zg1pFghlyIUCvRSmnpshZK/u591HYcnki/ZHgqxnTNN+Dv+pXQQkUOA0Vps2Q6FHOC+f++TJxbaqXm+PbHNAYztaWNrA9o+2WrELi2HiECadeDEfESj7H7xAWEI8JzLi1gsGXV7JTmcCYiVDTFajVC7hnU4xs5TMxmUNDW8nisb1q2xQNr5iu+l62yh7xEBhy1dsqvDRuTCzYhtTGhmOwe41xUbtYYRoUztWIkgII0j1eKK8lQbtt3CHu6yxHmHdL3prQxB/11IzfUPGu+gaBL+3zUjgSz5EIOkTjUdGijHd6+TpyaPl9RhwoA7vgY/N37gIuhjInimCXTniJnWim0xNRe8X4AtF9ejcZFdyESS6SsWpijRsRLHO+hCIfyDOyTtAhVW8txBHrnmdqP1ZFJJhkgV0Ai7IQImBmHSS7rOnAdrahpbgLnnKeIsDcsK8enFlcgJKv1z3UlPFUAACAASURBVFbZQ14iTUetnfJrw8bkQ1qEtKmpCSdOnIDT6URlZSUefPBBFBebV7yzMbUxFTzGuajcTBMjUdTCmUyLy/Q4qQ3l9oplaFx4JyIyMipd8xQ15vTWjVpEy9/1K2J9pNqRQBrfG+YW4/VzwwiNxKiNNUIjMWpU40tde7F48H1CCm4nMKscu09cIM/DRbfD2/eW6bVCJNM8ryTCVp0nBIPZ29cJlJQiMNuLUMF05f0ACFz+PxDhlaqqVuboocrlaKqWkcHKcviQpX2SMGbtFcuEGl5Z786dR3qx+/h5aiRWHplUXyegJOyk806UuFgmHKFyUuRFEN6+N6V2O2zVIs33s1n2kG9I11Erf0+0VyxL7jF/7oe/5fvw1a2yiakNG3mGtHb966+/Hp///OfhcDjw4osvorm5Gffdd1+mrs3GJEZbz8CE9IKcCOSah59qGLlnAGAsp8VlFCqD1ag3pdk0UxpyJUIvv46KUjf8S2dRr0Mv0qKOVkpkadHtCLnKdO9Rb3w3N3eRiYMzRo92QKlmK8HhxHOVPoRH4+R2K64yOHbTa0ZJ1w0oWyyRVHatjCvNYPbVrYJ3z6Mg9b4MFUwnHssM4dAjndTxPvYBap59GLgYQvuCGsEojznNzWPCmNHWWjjKmyLAinEYjmoIu3ReGYiZF1wU/pJ+AFpSlwlkiuBbrYOcSsreRkjbUZt4T7RXLFO2lyqcica5twL79sIHO1qaKeTKe9LG5EZaO+EnP/lJ6X9fffXV6OjQKhjasKGGaBCQ0ruA/PEY5+smTTWMigssEYF0QK3/URnKemqtgKCjkypyJULf8loHGs8XI8IWAAAuhCO610FbH0FKtFIghW+lNbYNy8qx6+g5RQTQHR+D/929wNIbgKMHtca5CJcbKJkuXFtxCdpLr8KrFauIZBRIzUDXkukbLR9DDj2DOd7cRCTgnuigqfRoEvScDFQHUtQBXAwmI5uJljlm5jGJcOutNbOOQnEcuI5WtO07hMCC9UILmEg//GcOwLd+rWLt18zygFt6GwKRy5RR9I6T4Eq3ZYVQZCx11mId5FRR9jaLtBy1ifcEyYkScbgQuGIdvM3P55QjOF+RK+9JG5MfGXPNHTx4EGvWrMnU4XIS+UpAcg1EVUwZ8sFjnM+b9EQYRoq144zB//YheEWjXlb/ozaUjXoM0pwaZpALNV1cRysCZ9yIFBaYvg69msn2BTXwdh/S/iFNES1fVRm4l55DoKJGm347Wg6mYRv4F54QUmXVYBg4Hhf6h8a3b0LgylupZBQwpxo7HoImNIOZFj31z+PR+BGT0rrSS+ekOpAStZlEo9xgHpMItwejCGKa5Wsk4VDlcjReUyE5MIQ69buB8KBGvdjb9u/wEo5hRnE1lXmg59DZ3Nxl/r1usQ5yqih7jwfENUhzoghCWrmjZJ9PUK8pYrurSZjJZmPiYWj5f+9730N/f7/m840bN2LVqlUAgJ///OdwOBxYu3Yt9TgHDhzAgQMHAAA7duyAxzOxKqNW8ZtTfdh17AIiCd394EgMu45dQGlpKT61uGKCry4Jp9OZ8882NHKK+je3k8WDaxfA4/HgUtt+DAWeBRfqA+upQIn/AUzz3TqOV0pH4JUeIpkJ/PEi7l61MKvnTneM7/Z4UFpaimePvI++cAQVpW48sGZ+1uaxZu3EnGhceCcQiybT+cYi4P/tSUz/x28BD35dGnf/h61onH87NW23stSd8rOgzcPQSGzc1lDwlQBC1z5s6ToeXMvhO/vfJf7m/y68Hd5zx4CIjCy53Zj+hQcxLc178vYcJpPdj0OouOMeXHjhCfIPI6Mo/vMJTPPdigsfh/Sj3jwPbs8TKFh+Jcru/yrxK5fa9mPwxV3Je7wYBP+Tp8D9dA/4oUEwJdPBgweGwmA9FXCt/GuMnfhd5vaRO+7BpdJSzd70t75bUXaqz9S6Uq/hilI3LhD6VorH2PHbLmn9AMraTKpRbjSP77hH+A/CM/X/9L+Fem3KWquwsNYCr/Ro62l5Fk9fmI6nbvouOZ1XjY9DuucjzoMXd6G4tFR3fGnPGrD2Xr/0hQcx2LiDutZI+/TdHg9uG+mS5g5zaDri4IHwIMCyAMeBLa/MqXddTiKxBj3HKFkJkX6w5RVZ38fzwd6yAtKaora7Gsf35ERhso1vrsOQkH7rW9/S/XtraytOnDiBf/7nfwaj4/Vet24d1q1bJ/1brj6XD3jmULfCIACASIzDM4e6scLDUn41/vB4PDn/bGkef5YBtq2uxAoPi77/flkRheCCFzD4zA6Ew+GcqAuhNT3vC0ey/vwzMcYrPCye21Cl+Cxb101cO2oRJQDgOAw+s0MQBXl0NxwAvNs3Ae+8jD2L7kS4oEgpVMNF4V86J+Xr1qvpGq81xAX76O1EKNeht98ExxjBmEgYt5hVDqa+AcPXrcRwKJReZHEmJSI0MzEfaX8HMPgfz2D4upXATI9+1JthEKi6Fd5XH8PopUtw3LdVk5niP3UQ3ohq/cXj4MMDACD9f0DYN0Zf/bni3xnZR65bCSYxRwFgGMBwKGR6XanXsH/pLG3WAsPh3j+/jE/+8jC2qmpE/ad+Ka0dq/NHhOK5jsXgj0WxlbbWHAz8S2eZXhe0/ZFj5BFTgrK3HDP197n4fzyjJIMAEIkk5xoFpGetOATlvZ5cO8Hk+iouBZwuYHgImOVB+7otCLxbhlDnYWItuFodVj5X2z3XJ8V5Ovrh//C/UXdLNfU+pjyuW4mGogFyKcGZA+A3+PPiXZxLIK2pVPeXyYDJNr4Thcsuu8zU99JiUp2dndi7dy+2b98Ot1vbBHoywVbIyxwalpXD7VA6L9wOBv900xzp5a0rGJEDoKUV50O68XhDX0RJBfUYXwzB29eJfz/yHfzTyf9E+ejHYHge5aMfY+vs4bRShmjzcFxrumZ54O/eB3d8THkdXFT3Ospp809ssSH2BF16g0S8JGP4YhAAn0yV7mg1dalMfYNQDyqHTBlTVyEzkT7H1DfAf+aA5n7lkObFof1SanwwofQbHImhce6taK9YZuqaicihfUSEr6oM226cjfIiJxgA5c4Ytr7zs0REmoe3+xB+3P4d/HzheTxfvwi+ulXSWBDnj8E81jxXWcsdzVorcmLbjdb6nZrZB0WnFBFmFFdT7GUpf9Y0qPcs5dpBcn0Nh4HoGJhND+HwAzvR+NFM6ZmKteBtPUnSSXyvISnOEyycCZ5hBMJ+vljx23xBW88ANjd34a7AKWxu7srqPfiqyrDtprkod8aS74Vz++FbvzYnHNd5B0q7K6v7iw0bqSAt63nPnj2IxWL43ve+BwC46qqr8KUvfSkjF5ZrsBXyMgdTtTQZaJydTdgCFeZhVAOngXyMZXVaGsXWd8vBlY6mbHjkQk0XU98Ab9Mu4J2Xle1RrmB0r4M4/9QtNgCgbR+4RUvAVtdaVgVVw0gZk62uRfyl3YKRrkairo6troUPAFr24+l5t4Fjte18GJ5De8UyePs6DVsUKVo+mEkDFZEj+4gccmGm+PZNkmCR4v5aDqOuulYxFt6+t4R2NBZUdqktdxLPVVpriQg7/+xjiFuIqpvtaxtyzxCI9U03A3983VrkPo1eluKzpqpHq97rNCIJQFpDTdXzjGvSKfOOWAfMFuRdnd5EaCtoBc1uysp5pgT02l0trrdrn21kFWmxqR/+8IeZuo6ch01AMgvDFiJpNs7ONiaazGjSGEtC8B7YnTO9TuUgrh2Gg79nP/kHsjEmCsiIyEAz9HFpZaMDkVh4m5vg7dgBzPJg+hce1E055DpaUdPcBM45D4FFtwmtTUbpZEwinBlw8hgpYzIbtxj2F2SrawVSRehbCQAc6xCidQyrG10ntnwwSgMVkSP7iAjNenbOAyrmEltasD0D8FWVKcaiLvGf2XOFIxzxb4qsBZcbWHqDcjxNrjn1/sgwZAEyT3RQSNFPYf2m28sSsPBeN1ojF0Pmsqgo7zW9OuB8Qi4IxdlIHXrtruqqs9OGyYYNEXZ4zyQmmoBMNWTC2Mg2JorM/OZUn8YL3RguApxz4UUwI0Qtk6CtnbULasE3/dmQvCSjcgQHhYUI32RAy2sdCJxxI7T0q0LErOtX8PafBApc5MgkgHbnPASauxDy7TDVGzIdHKpcjibvvyAUdQjn6jtMbVIvzosnf3dOqi0UEXG4sGfxZ+jR9YI4Aou0YlfE2mQ1cmwfIUWVGhffA1csQry/dI37pk5ynS8gEER5L2KjqLqe8rx8f1TfI5AgfrWLwaZ4L2n3soSF97pOr13x72ayqGgONr06vXzCVCltEuuJL3ws1M7nkgM4HWRiTdmwkSrya7ebYEx0NGUqwd4Y6Xj2yPu66XYAco6oEddOFXmMD1UuR1Nzl8xAXA7f47WIb7kTACHMQohejEdbkExALXKCi0EMNu4Ac582atTWMyD0K020iJEigu+8DO/waeLx2yuWoXHxPYiMxACxNk0eRcwgOUuSDifAJK6vagPYytlCmi4BvqoyPHGkl/i3MONCzdxiHOwe1BKZ1ZdTf6er4ptIQc2luUCMKrEFiBSQX8/pGve0lkEAD//5duVHOlF1K+mZ2XLoptXLUnZtRtehm6mRWEMNlcbRVs17rbgEgFCnJ4+GA0IWSb5lYE2F0ibSnp1LDuB0kYk1ZcNGKpg8u4SNSYd82hjHkwDRFCw1hngO1smpoR5jPSO3xmQadz4ZDMQIVITsTGjqDCLCqvqVio6Ijh2Abz3Qpqwh3bNoA/03sXOaeZpOr+VU0/X0+qq+fm4Y226cTbymps6gtdpkJPuh5hKoBJMiWp+ucc9S0mfB8cm2Pok1g+ISak2w1fHOZ4euJlNDpWIt1UYjSbpJKrviseRrm+tohfel3do68jMHsHbBWqCqFvmCqVDalG4tvg0bNsiwCakNG2livAkQrY+exhDPsTo5M9AzcteaTOPOK4PBQl2nrlrxLA8c920Ft2iJ5BhpX1CDsKuY/JvCmRpylq4gSarpeg3LyrGTFu0ciVGJDM349fcdJp8oR9cDjZCXuh0Yi/EZN+6JZBRQtHkBIKyhApdQS0pYc6HTUyM9UwsGmPEJotNRPlfNtIyQvzu8w52aVHO++S9p71npOJmsYkqUNuW44KING/kKm5DasJEmxpsAPbBmPnYceE9fYTXH6uTMQo/UmE7jzieDwYJ4l55asTjW8uhLoLkLoDxPUpQtXUESo3Q9mmHsqyrD7uPnEY5qmZJeNJBam3zlKvBnj6F9xhKNcrFZ4Z90YDVbgkast6ysBJB5476cMk7lpMjy8BCYTQ9p7gcAPGMDCLq010IaM7OkKFdT7bPldNRV7wWkPSvV55Ibqrfjj1RIuOnf5Ljgog0b+QqbkNqwkS7GmQB9anEFwuGwSmW3H94/n4NckCQXDDmrMCI1ptK488hgINamucnOBCJx4aLwX8FoxprraEVouFIb9ZIdS410BUn00vWMDOMtq2abSvVTG+Zr6xvgq69VXkhVLVrChUK9LSurt/2IkRRqs4VUiItRVCnT10udR+qWQQAwy0NMMeWbdsE/Y4m27pEwZmZJEfHZ7dmJeNdJOO7bmuZdp4esOR2N3hGzPGmR4amoepsKCbfym3wQXLRhIx9hE1IbNtJFCgQo3TQqrRd6EXBLtYWLzk1kogYpnwwGUtSX1vaFTFzmaOaNaMB6VjxMVO4sdbPEuZauIIkesdrc3KVrGJtJ9bNimAeGPIiwynsZD0O8reU4Aise1vRFNSIu4xlVIj1rf0k/vB0nlV9UrZmkMyDZFxhAMgodHURD7WLNfZglRdRooayX7oQhW05HPfXexPNPhwwbOZlyNSKdDlIh4VZ+o9izJ5nKrg0bEwmbkNqwkSasEqCJSKPKF2SiBinfFJrVEahpHg+GKbVnZoiLaMASlTtlqaBqZMIZQLs+M9FXvXtr6xlA08lpCN30XWXrGophnk60N1VnUVvPABrn3krpi/qW4e8zBTMkg+TQ4kq3UX+ncQYk4O2T1z0ycPz9Xs31mB4LHXLH79mJeHPTxK3jLGVdUNV7i0vBbNwCtroW8T1PkH9sggzrOZnySfzNClJZ+1Z/I+7ZZuqEbdiwYQ42IbVhI01YJUBTMY3KCjIRLconheaMI2GoaiJYkX403Hwt9dlmU5Akneir5MBJ1CtqWtcQDPNUz9fWM4BdR88hwgt9UYMjMew6eg6AsbOoqTNI74saO6f7WzVSjVzFX2xUKi1bIBl6a8aw1hGgkjPTY2HU63MCCVMqTsfAKz3oC0d015Gpd0caZFjPycQ/+1j+iL9ZQCprfyq0q7FhI9dhrzYbNjIAKwRoqjQPtzFBkBmwigjWrHI4Num3PclW6qjZ6CspOkl04Mj77hIM81SjvU3HPkCEV74WIzyLpmMfGD4XPRVkK+niqUauuI5WTdsfAONT66hDzsyOBVPfAH7PTv3zTBBhsuJ0pGXAnAyO4PVzwxpnj9G7I50SBD0nUzyfxN8sgDjf4mPwn/oluI5VxDGbCu1qbNjIddiE1IaNcYbtjbWRTeRiDa2Z6CvNkFeTUREh9wzqfaUa7Q1FHcT+n6Gow/Aeqeu6IG4popdqzSDf3EQ/aDZrHWW9OEkwOxZsdS3iXSfJpFqOCSJMZp2OtAyYfe8NSP+2UqaRbgkC1cmUR+JvViDNt2MfIBR1KGu5zx4jOnamRLsaGzZyHLYFbMPGOMP2xtrIJnK1htYo+koz5FmG3DvTEx0E07BNlwhZNSg9kX6iEJSmx28C8tRa/4IaNM6/XUr3BRLrevXllq4hZQEdvb9no9bR5dZ9/nKYHQtlL10aAbZ+L6TI+9oLb2ZljZjNdLFSppGNEoRcdFxlCr6qMtQ8+7B2Duk4dnKhXY0NG1MZNiG1YWOcYXtjbWQb+VhDSzPkOV4gdhoHTu1isBleM/6+wwphIiCR7td3GMBNAOTkJgrPqBt+51x4EYS3+xAwOorAtfUIxZypr2sTkSsSwarRiWJmhGQUuJLkRSa6k2mIc5copJQCYSJG3o+eA/fOIXjF55XB+lRapJyEiSzTyFXHVcaQ5ZRks3XCNmzYMAebkNqwMQGwvbE2bChBM+TLZbWk2Xbg+OpWAfv2InDFOmXrluHT4DpacahyuYzcMBqBJe+Hx+Ed/Qscj+vX6urBKHJFIlg7j/Ri9ycfxqZ3fg7vh8dVN7U+LZJBJIbRMc330m1lpUamCBMx8s6zCFyxTvmsMlSfSsqAoWGiyzTy0XFlGllMSbaV8m3YyDxsQmrDxiRDpg1DGzbkyFbvQr1U9vFy4LDVtfAB8L70I2A4rPgb37QLTd5/QSSuEj1KCCwBMkXj5q6U150RESMRLAAI8w788Oq7gcJCeLsPZ2xszNS0ZstAzwRh0hOb0iAD0TPxfgN/vChFz26YW4yD3YN2mcY4IpspybZSvg0bmYdNSG3YmESwPbc2sols9i7MlVR2troW8eYmDSHFWIQqehR0z1D0fE133ekRMb00zzhY7Fm4AXWPfM3yOakwkfqYywY6VWyKVBecIUEfX1UZ7l61UNGjckl50YTP7amEbKYk20r5NmxkHjYhtWFjEiGXDUMb+Q9qtOzfnswYKc2JeUohYTTRI5bntD1IM7zuxMwHo0TQcNQ4VdQSTKQ+5rKBToy8Mxz8Zw4ov5hlQZ+cmdtTCNlKSbaV8m3YyDxY46/YsGEjX5DLhqGN3EZbzwA2N3fhrsApbG7uQlvPgPZLtGgZxwmR0o7WrF7juIESKfP3HYbboQyRurkoOIb8Ks3UuhMzH0yJ5fB8RseBqW8AXG7lhyryRjPEc8FA91WVYduNs1Fe5AQDoSZ5201z4Vu/FphVDoARWteYVAy2YQ1cRyvi2zchvuVOxLdvmhR7RMOycu0+YKdg27CRFib+bWHDho2Mwfbc2rAKrqMVbS3HFeqy1JRTvX6UGRKFyQXQ6s98davAVs5WpV7OQVNnMKvrjlY3SkJpdMR0GrWZemAzqY/EKGR8DP5TvwTXsWrCiR4xOllVOynmai4jmyn+EwlSnbCdgm3DRnqwrVQbNiYR7B6nNsyirWcg0Ty+Esy828CxDsXfSSmnRKImR4ZaKkw09EiYD+S60GyuO2pklOcBJhmpcXIxbOraa8o5YIUsGKU+SvW/xz5AKOpIqhP3dYI/eywrBMQWb8t9mBHEyleQ6oRt2LCROmxCasPGJEKuCMPYyG0kxa+cAAPwjIP4PXXKqUjU2v67FYGqW5WtUfo6MyYKQ7re8Z7TVurPsrnuiKnTCZRGR1DIjWnHATB0DqRCFvTGwVdVhppnH9ZG0LNAQHJJvC1bqtOTAlnuBWrDho3JA5uQ/v/t3X9wVOW9x/HP2SwJRiUk2fArSoWCtY4W9EpJGSFBbDt11Iq9l0bTzDhVKZCpt3Z6B+q01inTMR2NWGcimRYvddJMe52OgbYDl04uN4kUY/khHS5KlTEVLWgSYvghuCHZvX/EJCTZzW72nN3n7Nn3a8bRnOxmH/fJ5pzveb7P9wt4DMUzEEu8KaCRUk5fmX6TNl8/TcHwwL7JoV6c/kkD+/Ic1tJ+WrWv/nP49c73qfbVf0pyV+XoZH3u6g9FSZEOh/Xgse3DAehosW4ORAkKWv1XqaHx2JigM64gMEUBiFuKtw2uMrdO/bwaSh4auDFwpEcVZ9v0b/fdObGf48WgNom9QAF4CwEpkAE8e8GDhMRTbCdaymn9oc6h4HBQMCtbDdev1PKSGxwb49Dr/fU9BcOjen+Gfar/63uuCkiTZby5WtbxN+nyK6VPLkj9lzwunoqxBQG1+ouHe6cGe/QvXW/of2d9UcFPX/PSoDOuIDBFAYhbireFG+vVOvXzI1v+TM7X5g8uKu9oh24OxK4b6dV9llJye4EC8BYCUsDjvHzBg8REK37lC/UrbPkUmNSvyi9eHTHgixoM9CXndBKt92fXxchpxulovBtG0eaq6PJJyvrVdklS/282S6/skkIhyeeTvnRbzM926+0Pa/PJ3BGB1H8XLxmxJ1UaDjrjCQJTFYC4pnhbd5caSh4a2/LHN0l1e9/VL++eM+J4pJTnWz28zzKZvUABeAttXwCPG3evGDJSxLYF/b165P0denneh9ryzRuirj6musVHINgzoePpZuiGUXenpPDwDaNP22PEajERamuWXt09EIxKA/9+dXfM9hoN5wJjAqnRweigwQAqkkuP+0rKZFVWJb2dimvabhQE1JUzNeK3Os6O/Jt7aeuesIZXn1v9V0X+2R7ZZ/nK9Jv0nZIf6htlP9d3Sn6oV6bfZHpIAFyIFVLA6ygsgVEiF+GZqdI5/xHzuamu5FzRsWdESxrp05YiHXskfSkpr5moRIovxSouFKtgUqKVTCeS3jr4mvHM+0SKQSXKLcXbrJWVChzpUefk/DHfm3blyN6t0VKeG+bdoWUdr4/94R7YZ+mm4lMA3I2AFPA6CksggkSL8KQ6GChdvkjauV0Ns28friZ7vCkpBZTsSPjiO44bRuPOVYI3nKKlvY6WE7qoiit6VDpnniTzQeAgu0WknKjc7CspU8XZNm3+4KKCvklDx3OyLK1Z8pkRj42a8pw9RcrO8eQ+S7cUnwLgfgSkDqN4DNyGwhJwWiorOQ/2/lzWuMXVf1cTvvi2e8MowedHW/FcnntOBzpHtZJpe1OhK6tUesmKrRNGny9bb39YDecCSQ94nVy5W/7lEvkiBLdfuW7aiB6V0fe9TpJVWeXJ6wa3FJ8C4H4EpA6ieAzciMISSHepSAO1K9GLb7s3jBJ9frSV7oi9RCXHi+yMPl+2+os/LbI0tsKv00Gp0yt38dygGS/l2Tdnnut/vxPhmuJTAFyPvwoOSnQvD5Bs6XBBDySLE+mZo41e3Qvc/Kg6I1QajnXxbfeGkZ3nRwqk+lO053z0+bJh7tfGVqtNUnqniZU7t+x7TaVU7zcHkL4ISJ1E8RgAGcbt2xSSUVglUjZMxRuN2vy5b4zo0RrvxbfdG0aO3nBK1Z7zUefFaNVqkxEk2l25S/QGRypT3d0gE4NwAIkhIHUSxWMAZBC3blO4NGCwLCk0MjtzYOVt9xu69a0tCQXQkbJhlp3YJ02erIbrVqb1xXfK9pyPOl8GgpGr1SYjvdPOyh2VYycm04JwAImx9Zf+d7/7nfbv3y/LspSXl6d169apoKDAqbGlHYrHAMgkbtymMDpgCIcjP64rZ2riAXSUrJdl7+zR8h/Gbp3jZqnacz76fFnxzk5t/ty/jmzvk6T0Tjsrd1SOBQDn2QpI7777bpWXl0uSduzYod///vdavXq1IwNLRxSPQSZIxn48pCkXblOIFDBEEgj2DPxHIgG0x7NhUrHnfPT5clnfP6WZ59VwLjc17YQSXLmjciwAOM9WQJqbmzv038FgUJZl2R5QuqN4DLyMdDWMkOTALJH9qfEEBjn9vap4Z+fwgQkG0GTDOGP0+XL5p/+40eCNuGi3OqgcCwCJs/0X9Le//a1aW1uVm5urn/zkJ06MCYBLka6GSyUzMEt0f2q0gjU+SwqHwsO9NTsODX9zggE02TCpZzIzY/SNuNGoHAsA9ljhcLQdNgM2btyonp6eMcfLy8u1aNGioa8bGxt18eJFrVq1KuLPaWpqUlNTkySpurpavb29dsaNKPx+v/r6SB3yMpNzfOsv9kRcIbAk7fn3W+P+OX8+2qG6ve+q42xQ067M0Zoln9FXrpvm2DjTWbp9hi+07NK5hjqFujrkC0zTFRVrdFnpV23/3M7VKxXq/HDMcV/RdBX9sjHq8/58tEPV/3NMwb7Q0LEcv08bVszT0g9f15nN1VLwkgA6J0dT1m5wZMzxSrc5HmTqczvenKbi9e/9z3368Gww4vemR3kf0nWOET/m2NuYX2dkZ2fHfpDiCEjj1dnZqerqatXU1MT1+BMnTjjxshglEAioq4s2M15mco4ftdrYDwAADelJREFU+q//i9hrscjfpy3fvCGunxFptSEndFFrZ3ys5V8ucWys6YrP8ID+h78uRbn9kfWr7eM+d7zVNDe0qUnHOY74uc2yVLV4RtJXKh9qPBZx1bso168tK+cl9bUl6Z6Go1FvxG2ruC7ic9JxjjExzLG3Mb/OmDVrVlyPs5Wye/LkSc2cOVOStH///rhf1Iso9IJMUPHOTm0u/urISpj9vao4vktSfAFpxLRf3yQ1HA+rtK2ZtEcMsLE/dbyCNV7Z55/qc47JdH3ThYTs9i0FAIzP1l/ThoYGnTx5UpZlKRAIZGyFXQq9IFMse2ePdO6sGuZ+TV05Uy/Zj/c3SfG1u4h6cZkzVeHGpz0RLMA+CgdFZ+KcYzIoNB0Q2ulbCgCIzdZf8x/84AdOjSOtUegFGaMgoGUdh0YWhJGkgvgvzKJeXAZ7jLYLgbtQOCg6E+cck0Gh6YDQTt9SAEBs5Js4wHQ6EZAqTqxaVS4sUu2e4wr6Jg0dG2rD4ZE+jpnOqX2aXkmvdZqdc06ic2MyKExGQDjR9yHRvqUAgNgISB1gOp0ISBUnVq1K5+QpdOxjNRwPj0z77XlTVmVV0saO1Ei0XQvil+g5x87cmF4ldDIg5HcUANyFiMkBptOJgFRyYtVq+ZdLVNrWPLBndDCwraziYtADwo31I1fQJak3OHCc+XVEouccu3PjlVVCfkcBwF0ISB1g+s4xkI5Ix/SoaPuA2R/smITPOTHmxg0tcVKC31EAcBUCUod45c4xAG9LersQG+1aEL+EzjnjzE1GpbEm+DuaMQE7AKSYz/QAAMBpobZm9a9/UP0Pf1396x9UqK3Z9JBcYbBdSOf5PoU13C6kpf20Y69hrayUsnNGHqRdiyuMNzfjprF6TCK/o0MBe3enpPBwwM7fFgCwjYAUgKdw4RjdeO1CnOIrKRsoTlVQJMmSCorYH+wS485NBqWxJvI7mkkBOwCkGim7ADyFgiXRpapFFfuD3Svq3GRYqvWEf0czKGAHgFQjIAXgLVw4Soq83y2QexUtqhCREz2GPS3DAnYASCVSdgF4S7QLxAy6cIyWtlxxRZdysqwRj6VFFSRSrWNhbzQAJA+3xQF4Cis90dOWlzX9Sr41z9CiChGRah2dr6RMIYkquwCQBASkADyFC0eNm7ZMiyogMQTsAJAcBKQAPCfjLxzZ7wYAANIEe0gBwGPY7wYAANIFK6QA4DGkLQMAgHRBQAoAHpTxacsAACAtkLILAAAAADCCgBQAAAAAYAQpuwAySkv76Yzrwxlqa57wftJMfJ8AAEDqEZACyBgt7adV+9oHCvaHJUmd5/tU+9oHkuTqYMtOcBhqa1a4vlbqDQ4c6O5UuL5WISlqUJqu7xOQaty4AQD7SNkFkDHqD3UOBVmDgv1h1R+K0LPTJQaDw87zfQprODhsaT8d1/PDjfXDweig3uDA8SjS8X1C6oTamtW//kH1P/x19a9/UKG2ZtNDMsLuZxMAMICAFEDG6DrfN6HjbmA7OOzumthxpef7hNQYWnHv7pQUHl5xz8CglBs3AOAMAlIAGSOQG3mXQrTjbmA7OCwITOy40vN9QmoksuLuVdy4AQBnEJACyBiVC4uUk2WNOJaTZalyYZGhEcVmNzi0VlZK2TkjD2bnDByPIh3fJ2kghfKhxmO6p+GoHmo8RupkMiSw4u5V3LgBAGcQkALIGKVz8lS1eIaKcv2yJBXl+lW1eIari5DYDQ59JWWyKqukgiJJllRQJKuyatwqu+n4PrGfL0USWHH3qnS9cQMAbsNtPAAZpXROnqsDq9EGx2qnkqevpEyK0eYl0uum0/s03n6+dPr/cDtrZeXIqs1SzBV3r3LiswkAICAFANdLt+DQBPbzpYavpEwhacJ9bb2KzyYA2EdACgAwLtTWbCvICeT61Rkh+GQ/n/N8JWVqmX7T8MrgSb8q208TmAEAEsKZGgAyXEv7aaNph0OtRAbTQAdbiUhxB6WVC4tU+9oHI9J22c+XHIP7dQff68H9upIISgEAE0ZRIwDIYG4oBuREK5F0LMSUrui/CQBwEiukAJDBXFEMyKFWIuznSw326wIAnMQKKQBkMFcEF7QSSSv03wQAOMmRgPQPf/iDVq1apTNnzjjx4wAAKeKG4MJaWSll54w8mKGtRNIB/TcBAE6yHZB2dXXp8OHDCgS4kw0A6cYNwYWvpExWZZVUUCTJkgqKZFVWZWwrEbdjvy4AwEm2b4G/+OKLqqio0FNPPeXEeAAAKTQYRJissit9Wk2XADRtsF8XAOAUWwHp/v37VVBQoGuuucah4QAAUi2ZwYXd/qIAAMDbYgakGzduVE9Pz5jj5eXlamxs1I9+9KO4XqipqUlNTU2SpOrqalJ8k8Tv9/Peehxz7G1emt8LLbt05je1UvCS/qK/qdXlV16py0q/anZwBnlpjhEZc+x9zLG3Mb+pZYXD4XDsh411/Phx/fSnP1VOzkAhilOnTik/P19PPvmkpk6dGvP5J06cSORlEUMgEFBX18RaJSC9MMfe5qX57V//oNQdoTdlQZGyfv5C6gfkEl6aY0TGHHsfc+xtzK8zZs2aFdfjEk7ZnT17trZs2TL0dVVVlZ588klNmTIl0R8JAPASh/qLAgAA76IPKQAgOegvCgAAYnAsIK2trWV1FAAwhP6iAAAgltR1PgcAZBRfSZlCElV2AQBAVASkAICkob8oAAAYD3tIAQAAAABGEJACAAAAAIwgIAUAAAAAGEFACgAAAAAwgoAUAAAAAGAEASkAAAAAwAgCUgAAAACAEQSkAAAAAAAjCEgBAAAAAEYQkAIAAAAAjLDC4XDY9CAAAAAAAJmHFVKP2bBhg+khIMmYY29jfr2POfY+5tj7mGNvY35Ti4AUAAAAAGAEASkAAAAAwIisJ5544gnTg4Cz5s6da3oISDLm2NuYX+9jjr2POfY+5tjbmN/UoagRAAAAAMAIUnYBAAAAAEb4TQ8Azquvr9eBAwfk9/s1ffp0rVu3TpdffrnpYcGmQ4cOaevWrQqFQlqxYoXuuece00OCg7q6ulRbW6uenh5ZlqXbb79dd9xxh+lhwWGhUEgbNmxQQUEBVRw96OOPP1ZdXZ3ee+89WZaltWvX6tprrzU9LDjoT3/6k3bv3i3LsnT11Vdr3bp1ys7ONj0s2PD888/r4MGDysvLU01NjSTp3Llz2rRpkzo7O1VUVKRHH31UV1xxheGRehcrpB70hS98QTU1NXr66ac1c+ZMNTY2mh4SbAqFQnrhhRf02GOPadOmTfrLX/6i999/3/Sw4KCsrCxVVlZq06ZN+tnPfqZdu3Yxxx60Y8cOFRcXmx4GkmTr1q1auHChnn32WT311FPMtcd0d3dr586dqq6uVk1NjUKhkPbu3Wt6WLCprKxMjz322Ihj27Zt04033qjnnntON954o7Zt22ZodJmBgNSDFixYoKysLEnStddeq+7ubsMjgl3Hjh3TjBkzNH36dPn9fi1ZskT79u0zPSw4KD8/f6iAwmWXXabi4mI+ux5z6tQpHTx4UCtWrDA9FCTB+fPn9eabb+q2226TJPn9frKTPCgUCqm3t1f9/f3q7e1Vfn6+6SHBpuuvv37M6ue+fftUWloqSSotLeWaK8lI2fW43bt3a8mSJaaHAZu6u7tVWFg49HVhYaHefvttgyNCMnV0dKi9vV3z5s0zPRQ46Ne//rW+9a1v6cKFC6aHgiTo6OjQlClT9Pzzz+vdd9/V3Llz9cADD2jy5MmmhwaHFBQU6K677tLatWuVnZ2tBQsWaMGCBaaHhSQ4ffr00M2G/Px8nTlzxvCIvI2ANE1t3LhRPT09Y46Xl5dr0aJFkqSXX35ZWVlZWrp0aaqHB4dFKoZtWZaBkSDZPvnkE9XU1OiBBx5Qbm6u6eHAIQcOHFBeXp7mzp2rI0eOmB4OkqC/v1/t7e369re/rfnz52vr1q3atm2bysvLTQ8NDjl37pz27dun2tpa5ebm6plnnlFra6uWLVtmemhAWiMgTVM//vGPx/1+c3OzDhw4oMcff5zAxQMKCwt16tSpoa9PnTpFmpAH9fX1qaamRkuXLtXixYtNDwcO+vvf/679+/fr9ddfV29vry5cuKDnnntOjzzyiOmhwSGFhYUqLCzU/PnzJUklJSXsO/OYw4cPa9q0aZoyZYokafHixXrrrbcISD0oLy9PH330kfLz8/XRRx8NzTmSgz2kHnTo0CFt375d69evV05OjunhwAGf/exndfLkSXV0dKivr0979+7VLbfcYnpYcFA4HFZdXZ2Ki4t15513mh4OHHb//ferrq5OtbW1+t73vqcbbriBYNRjpk6dqsLCQp04cULSQPBy1VVXGR4VnBQIBPT2228rGAwqHA7r8OHDFK7yqFtuuUUtLS2SpJaWlqHsQySHFY6UC4i09t3vfld9fX1DG7Tnz5+v1atXGx4V7Dp48KBefPFFhUIhLV++XPfee6/pIcFBR48e1eOPP67Zs2cPZTXcd999uvnmmw2PDE47cuSI/vjHP9L2xYP+8Y9/qK6uTn19fZo2bZrWrVtHqwiPeemll7R3715lZWXpmmuu0Zo1azRp0iTTw4INzz77rN544w2dPXtWeXl5WrVqlRYtWqRNmzapq6tLgUBA3//+9/ksJxEBKQAAAADACFJ2AQAAAABGEJACAAAAAIwgIAUAAAAAGEFACgAAAAAwgoAUAAAAAGAEASkAAAAAwAgCUgAAAACAEQSkAAAAAAAj/h9jcAxMBl17uAAAAABJRU5ErkJggg==\n", "text/plain": ["
"]}, "metadata": {}, "output_type": "display_data"}], "source": ["import random\n", "x1 = [random.gauss(0,1) for i in range(0,150)] + [random.gauss(0,1)*2 + 4 for i in range(0,500)]\n", "y1 = [random.gauss(0,1) for i in range(0,150)] + [random.gauss(0,1)-1 for i in range(0,500)]\n", "x2 = [x + random.gauss(0,0.2) for x in x1 ]\n", "y2 = [y + random.gauss(0,0.2) for y in y1 ]\n", "plt.figure(figsize=(16,6))\n", "plt.plot(x1,y1,\"o\")\n", "plt.plot(x2,y2,\"o\");"]}, {"cell_type": "markdown", "metadata": {}, "source": ["On veut apparier les points bleus et rouges. Si on dessine une grille sur les donn\u00e9es, deux points ont plus de chance d'\u00eatre appari\u00e9s s'ils font partie de la m\u00eame case. Mais cela ne suffit pas. Il faut aussi consid\u00e9rer les voisins."]}, {"cell_type": "markdown", "metadata": {}, "source": ["## Exercice 1 : combien de voisins faut-il consid\u00e9rer ?\n", "\n", "On veut \u00eatre s\u00fbr de ne manquer aucun appariement. On suppose que les cases sont de tailles $(W,H)$. On suppose que deux points $P_i$ (rouge) et $Q_j$ (bleu) ne peuvent jamais \u00eatre appari\u00e9s si la distance $dist( P_i,Q_j) > h$. Le point $P_i=(x_1^i,y_1^i)$ est dans la case $c_1^i=(k_1^i,l_1^i)$. O\u00f9 peut \u00eatre $Q_j$ ? Comment utiliser cette information pour r\u00e9duire le nombre de distances \u00e0 calculer ?"]}, {"cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": []}, {"cell_type": "markdown", "metadata": {}, "source": ["## Exercice 2 : nombre de distances ?\n", "\n", "Ecrire un programme python qui calcule ce nombre de distances."]}, {"cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": []}, {"cell_type": "markdown", "metadata": {}, "source": ["## Exercice 3 : distribuer les calculs\n", " \n", "Ecrire le m\u00eame programme en PIG."]}, {"cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": []}, {"cell_type": "markdown", "metadata": {}, "source": ["## Exercice 4 : donn\u00e9es antipathiques\n", " \n", "Y a-t-il des cas o\u00f9 cette distribution sera difficilement r\u00e9alisable ? (indice : **skewed**)\n"]}, {"cell_type": "code", "execution_count": 7, "metadata": {"collapsed": true}, "outputs": [], "source": []}, {"cell_type": "markdown", "metadata": {}, "source": ["## Exercice 5 : comment distribuer malgr\u00e9 tout ?\n", "\n", "Oublions le probl\u00e8me initial. On a deux datasets qu'on doit fusionner (*JOIN*). Une des cl\u00e9s est partag\u00e9e par plus de 10% des deux bases. Comment distribuer ce *JOIN* sur plusieurs machines ?"]}, {"cell_type": "code", "execution_count": 8, "metadata": {"collapsed": true}, "outputs": [], "source": []}], "metadata": {"kernelspec": {"display_name": "Python 3", "language": "python", "name": "python3"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4"}}, "nbformat": 4, "nbformat_minor": 2}